path
stringlengths
13
17
screenshot_names
sequencelengths
1
873
code
stringlengths
0
40.4k
cell_type
stringclasses
1 value
32068790/cell_11
[ "text_html_output_1.png" ]
import numpy as np import pandas as pd import os, gc, pickle, copy, datetime, warnings import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import lightgbm as lgb from sklearn import metrics pd.set_option('display.max_columns', 100) warnings.filterwarnings('ignore') df_train = pd.read_csv('../input/covid19-global-forecasting-week-4/train.csv') df_test = pd.read_csv('../input/covid19-global-forecasting-week-4/test.csv') df_traintest = pd.concat([df_train, df_test]) df_traintest['Date'] = pd.to_datetime(df_traintest['Date']) df_traintest['day'] = df_traintest['Date'].apply(lambda x: x.dayofyear).astype(np.int16) day_before_valid = 71 + 7 + 7 day_before_public = 78 + 7 + 7 day_before_private = df_traintest['day'][pd.isna(df_traintest['ForecastId'])].max() df_latlong = pd.read_csv('../input/smokingstats/df_Latlong.csv') df_latlong.head()
code
32068790/cell_7
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd import os, gc, pickle, copy, datetime, warnings import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import lightgbm as lgb from sklearn import metrics pd.set_option('display.max_columns', 100) warnings.filterwarnings('ignore') df_train = pd.read_csv('../input/covid19-global-forecasting-week-4/train.csv') df_test = pd.read_csv('../input/covid19-global-forecasting-week-4/test.csv') df_traintest = pd.concat([df_train, df_test]) df_traintest['Date'] = pd.to_datetime(df_traintest['Date']) df_traintest['day'] = df_traintest['Date'].apply(lambda x: x.dayofyear).astype(np.int16) df_traintest.head()
code
32068790/cell_8
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import numpy as np import pandas as pd import os, gc, pickle, copy, datetime, warnings import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import lightgbm as lgb from sklearn import metrics pd.set_option('display.max_columns', 100) warnings.filterwarnings('ignore') df_train = pd.read_csv('../input/covid19-global-forecasting-week-4/train.csv') df_test = pd.read_csv('../input/covid19-global-forecasting-week-4/test.csv') df_traintest = pd.concat([df_train, df_test]) df_traintest['Date'] = pd.to_datetime(df_traintest['Date']) df_traintest['day'] = df_traintest['Date'].apply(lambda x: x.dayofyear).astype(np.int16) day_before_valid = 71 + 7 + 7 day_before_public = 78 + 7 + 7 day_before_private = df_traintest['day'][pd.isna(df_traintest['ForecastId'])].max() print(df_traintest['Date'][df_traintest['day'] == day_before_valid].values[0]) print(df_traintest['Date'][df_traintest['day'] == day_before_public].values[0]) print(df_traintest['Date'][df_traintest['day'] == day_before_private].values[0])
code
32068790/cell_15
[ "text_plain_output_1.png" ]
import numpy as np import pandas as pd import os, gc, pickle, copy, datetime, warnings import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import lightgbm as lgb from sklearn import metrics pd.set_option('display.max_columns', 100) warnings.filterwarnings('ignore') df_train = pd.read_csv('../input/covid19-global-forecasting-week-4/train.csv') df_test = pd.read_csv('../input/covid19-global-forecasting-week-4/test.csv') df_traintest = pd.concat([df_train, df_test]) df_traintest['Date'] = pd.to_datetime(df_traintest['Date']) df_traintest['day'] = df_traintest['Date'].apply(lambda x: x.dayofyear).astype(np.int16) day_before_valid = 71 + 7 + 7 day_before_public = 78 + 7 + 7 day_before_private = df_traintest['day'][pd.isna(df_traintest['ForecastId'])].max() def func(x): try: x_new = x['Country_Region'] + '/' + x['Province_State'] except: x_new = x['Country_Region'] return x_new df_traintest['place_id'] = df_traintest.apply(lambda x: func(x), axis=1) df_latlong = pd.read_csv('../input/smokingstats/df_Latlong.csv') def func(x): try: x_new = x['Country/Region'] + '/' + x['Province/State'] except: x_new = x['Country/Region'] return x_new df_latlong['place_id'] = df_latlong.apply(lambda x: func(x), axis=1) df_latlong = df_latlong[df_latlong['place_id'].duplicated() == False] df_traintest = pd.merge(df_traintest, df_latlong[['place_id', 'Lat', 'Long']], on='place_id', how='left') places = np.sort(df_traintest['place_id'].unique()) print(len(places))
code
32068790/cell_16
[ "text_html_output_1.png" ]
import numpy as np import pandas as pd import os, gc, pickle, copy, datetime, warnings import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import lightgbm as lgb from sklearn import metrics pd.set_option('display.max_columns', 100) warnings.filterwarnings('ignore') df_train = pd.read_csv('../input/covid19-global-forecasting-week-4/train.csv') df_test = pd.read_csv('../input/covid19-global-forecasting-week-4/test.csv') df_traintest = pd.concat([df_train, df_test]) df_traintest['Date'] = pd.to_datetime(df_traintest['Date']) df_traintest['day'] = df_traintest['Date'].apply(lambda x: x.dayofyear).astype(np.int16) day_before_valid = 71 + 7 + 7 day_before_public = 78 + 7 + 7 day_before_private = df_traintest['day'][pd.isna(df_traintest['ForecastId'])].max() def func(x): try: x_new = x['Country_Region'] + '/' + x['Province_State'] except: x_new = x['Country_Region'] return x_new df_traintest['place_id'] = df_traintest.apply(lambda x: func(x), axis=1) df_latlong = pd.read_csv('../input/smokingstats/df_Latlong.csv') def func(x): try: x_new = x['Country/Region'] + '/' + x['Province/State'] except: x_new = x['Country/Region'] return x_new df_latlong['place_id'] = df_latlong.apply(lambda x: func(x), axis=1) df_latlong = df_latlong[df_latlong['place_id'].duplicated() == False] df_traintest = pd.merge(df_traintest, df_latlong[['place_id', 'Lat', 'Long']], on='place_id', how='left') places = np.sort(df_traintest['place_id'].unique()) df_traintest2 = copy.deepcopy(df_traintest) df_traintest2['cases/day'] = 0 df_traintest2['fatal/day'] = 0 tmp_list = np.zeros(len(df_traintest2)) for place in places: tmp = df_traintest2['ConfirmedCases'][df_traintest2['place_id'] == place].values tmp[1:] -= tmp[:-1] df_traintest2['cases/day'][df_traintest2['place_id'] == place] = tmp tmp = df_traintest2['Fatalities'][df_traintest2['place_id'] == place].values tmp[1:] -= tmp[:-1] df_traintest2['fatal/day'][df_traintest2['place_id'] == place] = tmp print(df_traintest2.shape) df_traintest2[df_traintest2['place_id'] == 'China/Hubei'].head()
code
32068790/cell_3
[ "text_html_output_1.png" ]
import pandas as pd import os, gc, pickle, copy, datetime, warnings import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import lightgbm as lgb from sklearn import metrics pd.set_option('display.max_columns', 100) warnings.filterwarnings('ignore') df_train = pd.read_csv('../input/covid19-global-forecasting-week-4/train.csv') print(df_train.shape) df_train.tail()
code
32068790/cell_14
[ "text_html_output_1.png" ]
import numpy as np import pandas as pd import os, gc, pickle, copy, datetime, warnings import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import lightgbm as lgb from sklearn import metrics pd.set_option('display.max_columns', 100) warnings.filterwarnings('ignore') df_train = pd.read_csv('../input/covid19-global-forecasting-week-4/train.csv') df_test = pd.read_csv('../input/covid19-global-forecasting-week-4/test.csv') df_traintest = pd.concat([df_train, df_test]) df_traintest['Date'] = pd.to_datetime(df_traintest['Date']) df_traintest['day'] = df_traintest['Date'].apply(lambda x: x.dayofyear).astype(np.int16) day_before_valid = 71 + 7 + 7 day_before_public = 78 + 7 + 7 day_before_private = df_traintest['day'][pd.isna(df_traintest['ForecastId'])].max() def func(x): try: x_new = x['Country_Region'] + '/' + x['Province_State'] except: x_new = x['Country_Region'] return x_new df_traintest['place_id'] = df_traintest.apply(lambda x: func(x), axis=1) df_latlong = pd.read_csv('../input/smokingstats/df_Latlong.csv') def func(x): try: x_new = x['Country/Region'] + '/' + x['Province/State'] except: x_new = x['Country/Region'] return x_new df_latlong['place_id'] = df_latlong.apply(lambda x: func(x), axis=1) df_latlong = df_latlong[df_latlong['place_id'].duplicated() == False] df_traintest = pd.merge(df_traintest, df_latlong[['place_id', 'Lat', 'Long']], on='place_id', how='left') print(pd.isna(df_traintest['Lat']).sum()) df_traintest[pd.isna(df_traintest['Lat'])].head()
code
32068790/cell_10
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import numpy as np import pandas as pd import os, gc, pickle, copy, datetime, warnings import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import lightgbm as lgb from sklearn import metrics pd.set_option('display.max_columns', 100) warnings.filterwarnings('ignore') df_train = pd.read_csv('../input/covid19-global-forecasting-week-4/train.csv') df_test = pd.read_csv('../input/covid19-global-forecasting-week-4/test.csv') df_traintest = pd.concat([df_train, df_test]) df_traintest['Date'] = pd.to_datetime(df_traintest['Date']) df_traintest['day'] = df_traintest['Date'].apply(lambda x: x.dayofyear).astype(np.int16) day_before_valid = 71 + 7 + 7 day_before_public = 78 + 7 + 7 day_before_private = df_traintest['day'][pd.isna(df_traintest['ForecastId'])].max() def func(x): try: x_new = x['Country_Region'] + '/' + x['Province_State'] except: x_new = x['Country_Region'] return x_new df_traintest['place_id'] = df_traintest.apply(lambda x: func(x), axis=1) df_traintest[(df_traintest['day'] >= day_before_public - 3) & (df_traintest['place_id'] == 'China/Hubei')].head()
code
32068790/cell_12
[ "text_html_output_1.png", "text_plain_output_1.png" ]
import numpy as np import pandas as pd import os, gc, pickle, copy, datetime, warnings import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import lightgbm as lgb from sklearn import metrics pd.set_option('display.max_columns', 100) warnings.filterwarnings('ignore') df_train = pd.read_csv('../input/covid19-global-forecasting-week-4/train.csv') df_test = pd.read_csv('../input/covid19-global-forecasting-week-4/test.csv') df_traintest = pd.concat([df_train, df_test]) df_traintest['Date'] = pd.to_datetime(df_traintest['Date']) df_traintest['day'] = df_traintest['Date'].apply(lambda x: x.dayofyear).astype(np.int16) day_before_valid = 71 + 7 + 7 day_before_public = 78 + 7 + 7 day_before_private = df_traintest['day'][pd.isna(df_traintest['ForecastId'])].max() def func(x): try: x_new = x['Country_Region'] + '/' + x['Province_State'] except: x_new = x['Country_Region'] return x_new df_traintest['place_id'] = df_traintest.apply(lambda x: func(x), axis=1) df_latlong = pd.read_csv('../input/smokingstats/df_Latlong.csv') def func(x): try: x_new = x['Country/Region'] + '/' + x['Province/State'] except: x_new = x['Country/Region'] return x_new df_latlong['place_id'] = df_latlong.apply(lambda x: func(x), axis=1) df_latlong = df_latlong[df_latlong['place_id'].duplicated() == False] df_latlong.head()
code
32068790/cell_5
[ "text_html_output_1.png" ]
import pandas as pd import os, gc, pickle, copy, datetime, warnings import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import lightgbm as lgb from sklearn import metrics pd.set_option('display.max_columns', 100) warnings.filterwarnings('ignore') df_train = pd.read_csv('../input/covid19-global-forecasting-week-4/train.csv') df_test = pd.read_csv('../input/covid19-global-forecasting-week-4/test.csv') print(df_test.shape) df_test.head()
code
17113130/cell_25
[ "text_plain_output_1.png" ]
from keras.layers import Input, Embedding, Flatten, Dot, Dense from keras.models import Model import numpy as np import pandas as pd def import_data(): dataset = pd.read_csv('../input/ratings.csv') books = pd.read_csv('../input/books.csv') return (dataset, books) def extract_book_and_user(dataset): n_user = len(dataset.user_id.unique()) n_books = len(dataset.book_id.unique()) return (n_user, n_books) def nural_net_model_function(): from keras.layers import Input, Embedding, Flatten, Dot, Dense from keras.models import Model book_input = Input(shape=[1], name='Book-Input') book_embadding = Embedding(n_books + 1, 5, name='Bok-embadding')(book_input) book_vec = Flatten(name='Flatten-books')(book_embadding) user_input = Input(shape=[1], name='User-Input') user_embedding = Embedding(n_user + 1, 5, name='User-Embedding')(user_input) user_vec = Flatten(name='Flatten-Users')(user_embedding) prod = Dot(name='Dot-Product', axes=1)([book_vec, user_vec]) x_train = [user_input, book_input] y_train = prod model = Model(x_train, y_train) OPTIMIZER = 'adam' ERROR_FUNCTION = 'mean_squared_error' model.compile(OPTIMIZER, ERROR_FUNCTION) model.fit([train.user_id, train.book_id], train.rating, epochs=10, verbose=1) return model model = nural_net_model_function() model.save('regresssion.model.h5') def get_unique_value(): book_data = np.array(list(set(datasets.book_id))) return book_data book_data = get_unique_value() def setting_user(user_id): user = np.array([user_id for i in range(len(book_data))]) return user user = setting_user(1) predictions = model.predict([user, book_data]) predictions = np.array([item[0] for item in predictions]) def get_recommended_book_id(predictions): recommended_book_ids = (-predictions).argsort()[:5] return recommended_book_ids recomended_book = get_recommended_book_id(predictions) recomended_book
code
17113130/cell_1
[ "text_plain_output_1.png" ]
## importing necessary packges import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split try: !pip install tensorflow-gpu import tensorflow as tf except: !pip install tensorflow import tensorflow as tf
code
17113130/cell_8
[ "text_plain_output_1.png" ]
import pandas as pd def import_data(): dataset = pd.read_csv('../input/ratings.csv') books = pd.read_csv('../input/books.csv') return (dataset, books) def extract_book_and_user(dataset): n_user = len(dataset.user_id.unique()) n_books = len(dataset.book_id.unique()) return (n_user, n_books) print(n_user) print(n_books)
code
17113130/cell_16
[ "text_plain_output_1.png" ]
import numpy as np def get_unique_value(): book_data = np.array(list(set(datasets.book_id))) return book_data book_data = get_unique_value() def setting_user(user_id): user = np.array([user_id for i in range(len(book_data))]) return user user = setting_user(1) user
code
17113130/cell_3
[ "text_html_output_1.png" ]
import pandas as pd def import_data(): dataset = pd.read_csv('../input/ratings.csv') books = pd.read_csv('../input/books.csv') return (dataset, books) datasets, book = import_data() book = book[['id', 'original_title', 'authors', 'isbn', 'original_publication_year']] book.head()
code
17113130/cell_24
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
from keras.layers import Input, Embedding, Flatten, Dot, Dense from keras.models import Model import numpy as np import pandas as pd def import_data(): dataset = pd.read_csv('../input/ratings.csv') books = pd.read_csv('../input/books.csv') return (dataset, books) datasets, book = import_data() book = book[['id', 'original_title', 'authors', 'isbn', 'original_publication_year']] def extract_book_and_user(dataset): n_user = len(dataset.user_id.unique()) n_books = len(dataset.book_id.unique()) return (n_user, n_books) def nural_net_model_function(): from keras.layers import Input, Embedding, Flatten, Dot, Dense from keras.models import Model book_input = Input(shape=[1], name='Book-Input') book_embadding = Embedding(n_books + 1, 5, name='Bok-embadding')(book_input) book_vec = Flatten(name='Flatten-books')(book_embadding) user_input = Input(shape=[1], name='User-Input') user_embedding = Embedding(n_user + 1, 5, name='User-Embedding')(user_input) user_vec = Flatten(name='Flatten-Users')(user_embedding) prod = Dot(name='Dot-Product', axes=1)([book_vec, user_vec]) x_train = [user_input, book_input] y_train = prod model = Model(x_train, y_train) OPTIMIZER = 'adam' ERROR_FUNCTION = 'mean_squared_error' model.compile(OPTIMIZER, ERROR_FUNCTION) model.fit([train.user_id, train.book_id], train.rating, epochs=10, verbose=1) return model model = nural_net_model_function() model.save('regresssion.model.h5') def get_unique_value(): book_data = np.array(list(set(datasets.book_id))) return book_data book_data = get_unique_value() def setting_user(user_id): user = np.array([user_id for i in range(len(book_data))]) return user user = setting_user(1) predictions = model.predict([user, book_data]) predictions = np.array([item[0] for item in predictions]) def get_recommended_book_id(predictions): recommended_book_ids = (-predictions).argsort()[:5] return recommended_book_ids recomended_book = get_recommended_book_id(predictions) def get_recommended_book_name(book, recomended_book): books_index = book['id'].isin(recomended_book) value = book[books_index] return value name = get_recommended_book_name(book, recomended_book) name
code
17113130/cell_10
[ "text_html_output_1.png" ]
from keras.layers import Input, Embedding, Flatten, Dot, Dense from keras.models import Model import pandas as pd def import_data(): dataset = pd.read_csv('../input/ratings.csv') books = pd.read_csv('../input/books.csv') return (dataset, books) def extract_book_and_user(dataset): n_user = len(dataset.user_id.unique()) n_books = len(dataset.book_id.unique()) return (n_user, n_books) def nural_net_model_function(): from keras.layers import Input, Embedding, Flatten, Dot, Dense from keras.models import Model book_input = Input(shape=[1], name='Book-Input') book_embadding = Embedding(n_books + 1, 5, name='Bok-embadding')(book_input) book_vec = Flatten(name='Flatten-books')(book_embadding) user_input = Input(shape=[1], name='User-Input') user_embedding = Embedding(n_user + 1, 5, name='User-Embedding')(user_input) user_vec = Flatten(name='Flatten-Users')(user_embedding) prod = Dot(name='Dot-Product', axes=1)([book_vec, user_vec]) x_train = [user_input, book_input] y_train = prod model = Model(x_train, y_train) OPTIMIZER = 'adam' ERROR_FUNCTION = 'mean_squared_error' model.compile(OPTIMIZER, ERROR_FUNCTION) model.fit([train.user_id, train.book_id], train.rating, epochs=10, verbose=1) return model model = nural_net_model_function()
code
16154407/cell_13
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
import gensim import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/train.csv') df.shape def read_questions(row, column_name): return gensim.utils.simple_preprocess(str(row[column_name]).encode('utf-8')) documents = [] for index, row in df.iterrows(): documents.append(read_questions(row, 'question1')) if row['is_duplicate'] == 0: documents.append(read_questions(row, 'question2')) model = gensim.models.Word2Vec(size=150, window=10, min_count=10, sg=1, workers=10) model.build_vocab(documents) model.train(sentences=documents, total_examples=len(documents), epochs=model.iter) w1 = 'phone' model.wv.most_similar(positive=w1, topn=5) w1 = ['women', 'rights'] w2 = ['girls'] model.wv.most_similar(positive=w1, negative=w2, topn=2) model.wv.doesnt_match(['government', 'corruption', 'peace'])
code
16154407/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/train.csv') df.shape
code
16154407/cell_11
[ "text_plain_output_1.png" ]
import gensim import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/train.csv') df.shape def read_questions(row, column_name): return gensim.utils.simple_preprocess(str(row[column_name]).encode('utf-8')) documents = [] for index, row in df.iterrows(): documents.append(read_questions(row, 'question1')) if row['is_duplicate'] == 0: documents.append(read_questions(row, 'question2')) model = gensim.models.Word2Vec(size=150, window=10, min_count=10, sg=1, workers=10) model.build_vocab(documents) model.train(sentences=documents, total_examples=len(documents), epochs=model.iter) w1 = 'phone' model.wv.most_similar(positive=w1, topn=5)
code
16154407/cell_7
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png" ]
import gensim import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/train.csv') df.shape def read_questions(row, column_name): return gensim.utils.simple_preprocess(str(row[column_name]).encode('utf-8')) documents = [] for index, row in df.iterrows(): documents.append(read_questions(row, 'question1')) if row['is_duplicate'] == 0: documents.append(read_questions(row, 'question2')) print("List of lists. Let's confirm: ", type(documents), ' of ', type(documents[0]))
code
16154407/cell_3
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/train.csv') df.head()
code
16154407/cell_10
[ "text_html_output_1.png" ]
import gensim import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/train.csv') df.shape def read_questions(row, column_name): return gensim.utils.simple_preprocess(str(row[column_name]).encode('utf-8')) documents = [] for index, row in df.iterrows(): documents.append(read_questions(row, 'question1')) if row['is_duplicate'] == 0: documents.append(read_questions(row, 'question2')) model = gensim.models.Word2Vec(size=150, window=10, min_count=10, sg=1, workers=10) model.build_vocab(documents) model.train(sentences=documents, total_examples=len(documents), epochs=model.iter)
code
16154407/cell_12
[ "text_plain_output_1.png" ]
import gensim import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('../input/train.csv') df.shape def read_questions(row, column_name): return gensim.utils.simple_preprocess(str(row[column_name]).encode('utf-8')) documents = [] for index, row in df.iterrows(): documents.append(read_questions(row, 'question1')) if row['is_duplicate'] == 0: documents.append(read_questions(row, 'question2')) model = gensim.models.Word2Vec(size=150, window=10, min_count=10, sg=1, workers=10) model.build_vocab(documents) model.train(sentences=documents, total_examples=len(documents), epochs=model.iter) w1 = 'phone' model.wv.most_similar(positive=w1, topn=5) w1 = ['women', 'rights'] w2 = ['girls'] model.wv.most_similar(positive=w1, negative=w2, topn=2)
code
32065814/cell_42
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt import seaborn as sns age_groups = pd.read_csv('/kaggle/input/covid19-in-india/AgeGroupDetails.csv') std = pd.read_csv('/kaggle/input/covid19-in-india/StatewiseTestingDetails.csv') std = std.drop(['Date'], axis=1) x = std.groupby(['State'], as_index=False).max() x['State / Union Territory'] = x['State'] x = x.drop(['State'], axis=1) x.sort_values(by='Positive', ascending=False).head(5) pop = pd.read_csv('/kaggle/input/covid19-in-india/population_india_census2011.csv') pop['Area/km2'] = pop['Area'].str.split(expand=True)[0] pop['Density/km2'] = pop['Density'].str.split('/', expand=True)[0] pop = pop.drop(['Sno', 'Population', 'Rural population', 'Urban population', 'Gender Ratio', 'Area', 'Density'], axis=1) pop.to_csv('pop.csv', index=False) covid = pd.read_csv('/kaggle/input/covid19-in-india/covid_19_india.csv') y = covid.groupby(['State/UnionTerritory'], as_index=False)['Cured', 'Deaths', 'Confirmed'].max() y['State / Union Territory'] = y['State/UnionTerritory'] y = y.drop(['State/UnionTerritory'], axis=1) master = pd.merge(pop, y, how='inner') master = master.sort_values(by='Confirmed', ascending=False) master2 = pd.merge(master, x) master2 = master2.drop(['Negative', 'Positive'], axis=1) beds = pd.read_csv('/kaggle/input/covid19-in-india/HospitalBedsIndia.csv') beds = beds.drop(['NumPrimaryHealthCenters_HMIS', 'NumCommunityHealthCenters_HMIS', 'NumSubDistrictHospitals_HMIS', 'NumDistrictHospitals_HMIS'], axis=1) beds['TotalPublicHealthFacilities_NHP18'] = beds['NumRuralHospitals_NHP18'] + beds['NumUrbanHospitals_NHP18'] beds = beds.drop(['Sno', 'NumRuralHospitals_NHP18', 'NumUrbanHospitals_NHP18'], axis=1) beds['TotalBeds_HMIS'] = beds['NumPublicBeds_HMIS'] beds = beds.drop(['NumPublicBeds_HMIS'], axis=1) beds['TotalBeds_NHP18'] = beds['NumRuralBeds_NHP18'] + beds['NumUrbanBeds_NHP18'] beds = beds.drop(['NumRuralBeds_NHP18', 'NumUrbanBeds_NHP18'], axis=1) beds_hmis = beds[['State/UT', 'TotalPublicHealthFacilities_HMIS', 'TotalBeds_HMIS']] beds_hmis = beds_hmis[:-1] beds_hmis['State / Union Territory'] = beds_hmis['State/UT'] beds_nhp18 = beds[['State/UT', 'TotalPublicHealthFacilities_NHP18', 'TotalBeds_NHP18']] beds_nhp18 = beds_nhp18[:-1] beds_nhp18['State / Union Territory'] = beds_nhp18['State/UT'] print(beds_nhp18.shape)
code
32065814/cell_9
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns import matplotlib.pyplot as plt import seaborn as sns age_groups = pd.read_csv('/kaggle/input/covid19-in-india/AgeGroupDetails.csv') age_groups = age_groups.drop(['Sno', 'TotalCases'], axis=1) sns.barplot(x='AgeGroup', y='Deaths', data=age_groups)
code
32065814/cell_25
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt import seaborn as sns age_groups = pd.read_csv('/kaggle/input/covid19-in-india/AgeGroupDetails.csv') std = pd.read_csv('/kaggle/input/covid19-in-india/StatewiseTestingDetails.csv') std = std.drop(['Date'], axis=1) pop = pd.read_csv('/kaggle/input/covid19-in-india/population_india_census2011.csv') pop['Area/km2'] = pop['Area'].str.split(expand=True)[0] pop['Density/km2'] = pop['Density'].str.split('/', expand=True)[0] pop = pop.drop(['Sno', 'Population', 'Rural population', 'Urban population', 'Gender Ratio', 'Area', 'Density'], axis=1) pop.to_csv('pop.csv', index=False) pop.head()
code
32065814/cell_4
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt import seaborn as sns age_groups = pd.read_csv('/kaggle/input/covid19-in-india/AgeGroupDetails.csv') print('People in India died due to COVID-19 as of 11th April 2019, 05:00 pm :', age_groups.TotalCases.sum())
code
32065814/cell_29
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt import seaborn as sns age_groups = pd.read_csv('/kaggle/input/covid19-in-india/AgeGroupDetails.csv') std = pd.read_csv('/kaggle/input/covid19-in-india/StatewiseTestingDetails.csv') std = std.drop(['Date'], axis=1) pop = pd.read_csv('/kaggle/input/covid19-in-india/population_india_census2011.csv') covid = pd.read_csv('/kaggle/input/covid19-in-india/covid_19_india.csv') covid.head()
code
32065814/cell_48
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt import seaborn as sns age_groups = pd.read_csv('/kaggle/input/covid19-in-india/AgeGroupDetails.csv') std = pd.read_csv('/kaggle/input/covid19-in-india/StatewiseTestingDetails.csv') std = std.drop(['Date'], axis=1) x = std.groupby(['State'], as_index=False).max() x['State / Union Territory'] = x['State'] x = x.drop(['State'], axis=1) x.sort_values(by='Positive', ascending=False).head(5) pop = pd.read_csv('/kaggle/input/covid19-in-india/population_india_census2011.csv') pop['Area/km2'] = pop['Area'].str.split(expand=True)[0] pop['Density/km2'] = pop['Density'].str.split('/', expand=True)[0] pop = pop.drop(['Sno', 'Population', 'Rural population', 'Urban population', 'Gender Ratio', 'Area', 'Density'], axis=1) pop.to_csv('pop.csv', index=False) covid = pd.read_csv('/kaggle/input/covid19-in-india/covid_19_india.csv') y = covid.groupby(['State/UnionTerritory'], as_index=False)['Cured', 'Deaths', 'Confirmed'].max() y['State / Union Territory'] = y['State/UnionTerritory'] y = y.drop(['State/UnionTerritory'], axis=1) master = pd.merge(pop, y, how='inner') master = master.sort_values(by='Confirmed', ascending=False) master2 = pd.merge(master, x) master2 = master2.drop(['Negative', 'Positive'], axis=1) beds = pd.read_csv('/kaggle/input/covid19-in-india/HospitalBedsIndia.csv') beds = beds.drop(['NumPrimaryHealthCenters_HMIS', 'NumCommunityHealthCenters_HMIS', 'NumSubDistrictHospitals_HMIS', 'NumDistrictHospitals_HMIS'], axis=1) beds['TotalPublicHealthFacilities_NHP18'] = beds['NumRuralHospitals_NHP18'] + beds['NumUrbanHospitals_NHP18'] beds = beds.drop(['Sno', 'NumRuralHospitals_NHP18', 'NumUrbanHospitals_NHP18'], axis=1) beds['TotalBeds_HMIS'] = beds['NumPublicBeds_HMIS'] beds = beds.drop(['NumPublicBeds_HMIS'], axis=1) beds['TotalBeds_NHP18'] = beds['NumRuralBeds_NHP18'] + beds['NumUrbanBeds_NHP18'] beds = beds.drop(['NumRuralBeds_NHP18', 'NumUrbanBeds_NHP18'], axis=1) beds_hmis = beds[['State/UT', 'TotalPublicHealthFacilities_HMIS', 'TotalBeds_HMIS']] beds_hmis = beds_hmis[:-1] beds_hmis['State / Union Territory'] = beds_hmis['State/UT'] beds_nhp18 = beds[['State/UT', 'TotalPublicHealthFacilities_NHP18', 'TotalBeds_NHP18']] beds_nhp18 = beds_nhp18[:-1] beds_nhp18['State / Union Territory'] = beds_nhp18['State/UT'] hmis = pd.merge(master, beds_hmis, on='State / Union Territory') hmis = hmis.drop(['State/UT'], axis=1) nhp18 = pd.merge(master, beds_nhp18, on='State / Union Territory') nhp18 = nhp18.drop(['State/UT'], axis=1) nhp18.head()
code
32065814/cell_2
[ "text_html_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
32065814/cell_7
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt import seaborn as sns age_groups = pd.read_csv('/kaggle/input/covid19-in-india/AgeGroupDetails.csv') age_groups = age_groups.drop(['Sno', 'TotalCases'], axis=1) age_groups
code
32065814/cell_18
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt import seaborn as sns age_groups = pd.read_csv('/kaggle/input/covid19-in-india/AgeGroupDetails.csv') std = pd.read_csv('/kaggle/input/covid19-in-india/StatewiseTestingDetails.csv') std = std.drop(['Date'], axis=1) pop = pd.read_csv('/kaggle/input/covid19-in-india/population_india_census2011.csv') pop.head()
code
32065814/cell_32
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt import seaborn as sns age_groups = pd.read_csv('/kaggle/input/covid19-in-india/AgeGroupDetails.csv') std = pd.read_csv('/kaggle/input/covid19-in-india/StatewiseTestingDetails.csv') std = std.drop(['Date'], axis=1) pop = pd.read_csv('/kaggle/input/covid19-in-india/population_india_census2011.csv') pop['Area/km2'] = pop['Area'].str.split(expand=True)[0] pop['Density/km2'] = pop['Density'].str.split('/', expand=True)[0] pop = pop.drop(['Sno', 'Population', 'Rural population', 'Urban population', 'Gender Ratio', 'Area', 'Density'], axis=1) pop.to_csv('pop.csv', index=False) covid = pd.read_csv('/kaggle/input/covid19-in-india/covid_19_india.csv') y = covid.groupby(['State/UnionTerritory'], as_index=False)['Cured', 'Deaths', 'Confirmed'].max() y['State / Union Territory'] = y['State/UnionTerritory'] y = y.drop(['State/UnionTerritory'], axis=1) master = pd.merge(pop, y, how='inner') master = master.sort_values(by='Confirmed', ascending=False) master.head()
code
32065814/cell_47
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt import seaborn as sns age_groups = pd.read_csv('/kaggle/input/covid19-in-india/AgeGroupDetails.csv') std = pd.read_csv('/kaggle/input/covid19-in-india/StatewiseTestingDetails.csv') std = std.drop(['Date'], axis=1) x = std.groupby(['State'], as_index=False).max() x['State / Union Territory'] = x['State'] x = x.drop(['State'], axis=1) x.sort_values(by='Positive', ascending=False).head(5) pop = pd.read_csv('/kaggle/input/covid19-in-india/population_india_census2011.csv') pop['Area/km2'] = pop['Area'].str.split(expand=True)[0] pop['Density/km2'] = pop['Density'].str.split('/', expand=True)[0] pop = pop.drop(['Sno', 'Population', 'Rural population', 'Urban population', 'Gender Ratio', 'Area', 'Density'], axis=1) pop.to_csv('pop.csv', index=False) covid = pd.read_csv('/kaggle/input/covid19-in-india/covid_19_india.csv') y = covid.groupby(['State/UnionTerritory'], as_index=False)['Cured', 'Deaths', 'Confirmed'].max() y['State / Union Territory'] = y['State/UnionTerritory'] y = y.drop(['State/UnionTerritory'], axis=1) master = pd.merge(pop, y, how='inner') master = master.sort_values(by='Confirmed', ascending=False) master2 = pd.merge(master, x) master2 = master2.drop(['Negative', 'Positive'], axis=1) beds = pd.read_csv('/kaggle/input/covid19-in-india/HospitalBedsIndia.csv') beds = beds.drop(['NumPrimaryHealthCenters_HMIS', 'NumCommunityHealthCenters_HMIS', 'NumSubDistrictHospitals_HMIS', 'NumDistrictHospitals_HMIS'], axis=1) beds['TotalPublicHealthFacilities_NHP18'] = beds['NumRuralHospitals_NHP18'] + beds['NumUrbanHospitals_NHP18'] beds = beds.drop(['Sno', 'NumRuralHospitals_NHP18', 'NumUrbanHospitals_NHP18'], axis=1) beds['TotalBeds_HMIS'] = beds['NumPublicBeds_HMIS'] beds = beds.drop(['NumPublicBeds_HMIS'], axis=1) beds['TotalBeds_NHP18'] = beds['NumRuralBeds_NHP18'] + beds['NumUrbanBeds_NHP18'] beds = beds.drop(['NumRuralBeds_NHP18', 'NumUrbanBeds_NHP18'], axis=1) beds_hmis = beds[['State/UT', 'TotalPublicHealthFacilities_HMIS', 'TotalBeds_HMIS']] beds_hmis = beds_hmis[:-1] beds_hmis['State / Union Territory'] = beds_hmis['State/UT'] beds_nhp18 = beds[['State/UT', 'TotalPublicHealthFacilities_NHP18', 'TotalBeds_NHP18']] beds_nhp18 = beds_nhp18[:-1] beds_nhp18['State / Union Territory'] = beds_nhp18['State/UT'] hmis = pd.merge(master, beds_hmis, on='State / Union Territory') hmis = hmis.drop(['State/UT'], axis=1) hmis.head()
code
32065814/cell_35
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt import seaborn as sns age_groups = pd.read_csv('/kaggle/input/covid19-in-india/AgeGroupDetails.csv') std = pd.read_csv('/kaggle/input/covid19-in-india/StatewiseTestingDetails.csv') std = std.drop(['Date'], axis=1) x = std.groupby(['State'], as_index=False).max() x['State / Union Territory'] = x['State'] x = x.drop(['State'], axis=1) x.sort_values(by='Positive', ascending=False).head(5) pop = pd.read_csv('/kaggle/input/covid19-in-india/population_india_census2011.csv') pop['Area/km2'] = pop['Area'].str.split(expand=True)[0] pop['Density/km2'] = pop['Density'].str.split('/', expand=True)[0] pop = pop.drop(['Sno', 'Population', 'Rural population', 'Urban population', 'Gender Ratio', 'Area', 'Density'], axis=1) pop.to_csv('pop.csv', index=False) covid = pd.read_csv('/kaggle/input/covid19-in-india/covid_19_india.csv') y = covid.groupby(['State/UnionTerritory'], as_index=False)['Cured', 'Deaths', 'Confirmed'].max() y['State / Union Territory'] = y['State/UnionTerritory'] y = y.drop(['State/UnionTerritory'], axis=1) master = pd.merge(pop, y, how='inner') master = master.sort_values(by='Confirmed', ascending=False) master2 = pd.merge(master, x) master2 = master2.drop(['Negative', 'Positive'], axis=1) master2 = master2.sort_values(by='TotalSamples', ascending=False) master2.head()
code
32065814/cell_43
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt import seaborn as sns age_groups = pd.read_csv('/kaggle/input/covid19-in-india/AgeGroupDetails.csv') std = pd.read_csv('/kaggle/input/covid19-in-india/StatewiseTestingDetails.csv') std = std.drop(['Date'], axis=1) x = std.groupby(['State'], as_index=False).max() x['State / Union Territory'] = x['State'] x = x.drop(['State'], axis=1) x.sort_values(by='Positive', ascending=False).head(5) pop = pd.read_csv('/kaggle/input/covid19-in-india/population_india_census2011.csv') pop['Area/km2'] = pop['Area'].str.split(expand=True)[0] pop['Density/km2'] = pop['Density'].str.split('/', expand=True)[0] pop = pop.drop(['Sno', 'Population', 'Rural population', 'Urban population', 'Gender Ratio', 'Area', 'Density'], axis=1) pop.to_csv('pop.csv', index=False) covid = pd.read_csv('/kaggle/input/covid19-in-india/covid_19_india.csv') y = covid.groupby(['State/UnionTerritory'], as_index=False)['Cured', 'Deaths', 'Confirmed'].max() y['State / Union Territory'] = y['State/UnionTerritory'] y = y.drop(['State/UnionTerritory'], axis=1) master = pd.merge(pop, y, how='inner') master = master.sort_values(by='Confirmed', ascending=False) master2 = pd.merge(master, x) master2 = master2.drop(['Negative', 'Positive'], axis=1) beds = pd.read_csv('/kaggle/input/covid19-in-india/HospitalBedsIndia.csv') beds = beds.drop(['NumPrimaryHealthCenters_HMIS', 'NumCommunityHealthCenters_HMIS', 'NumSubDistrictHospitals_HMIS', 'NumDistrictHospitals_HMIS'], axis=1) beds['TotalPublicHealthFacilities_NHP18'] = beds['NumRuralHospitals_NHP18'] + beds['NumUrbanHospitals_NHP18'] beds = beds.drop(['Sno', 'NumRuralHospitals_NHP18', 'NumUrbanHospitals_NHP18'], axis=1) beds['TotalBeds_HMIS'] = beds['NumPublicBeds_HMIS'] beds = beds.drop(['NumPublicBeds_HMIS'], axis=1) beds['TotalBeds_NHP18'] = beds['NumRuralBeds_NHP18'] + beds['NumUrbanBeds_NHP18'] beds = beds.drop(['NumRuralBeds_NHP18', 'NumUrbanBeds_NHP18'], axis=1) beds_hmis = beds[['State/UT', 'TotalPublicHealthFacilities_HMIS', 'TotalBeds_HMIS']] beds_hmis = beds_hmis[:-1] beds_hmis['State / Union Territory'] = beds_hmis['State/UT'] beds_nhp18 = beds[['State/UT', 'TotalPublicHealthFacilities_NHP18', 'TotalBeds_NHP18']] beds_nhp18 = beds_nhp18[:-1] beds_nhp18['State / Union Territory'] = beds_nhp18['State/UT'] print(beds_hmis.shape)
code
32065814/cell_14
[ "text_plain_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt import seaborn as sns age_groups = pd.read_csv('/kaggle/input/covid19-in-india/AgeGroupDetails.csv') std = pd.read_csv('/kaggle/input/covid19-in-india/StatewiseTestingDetails.csv') std = std.drop(['Date'], axis=1) x = std.groupby(['State'], as_index=False).max() x['State / Union Territory'] = x['State'] x = x.drop(['State'], axis=1) x.sort_values(by='Positive', ascending=False).head(5)
code
32065814/cell_37
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt import seaborn as sns age_groups = pd.read_csv('/kaggle/input/covid19-in-india/AgeGroupDetails.csv') std = pd.read_csv('/kaggle/input/covid19-in-india/StatewiseTestingDetails.csv') std = std.drop(['Date'], axis=1) x = std.groupby(['State'], as_index=False).max() x['State / Union Territory'] = x['State'] x = x.drop(['State'], axis=1) x.sort_values(by='Positive', ascending=False).head(5) pop = pd.read_csv('/kaggle/input/covid19-in-india/population_india_census2011.csv') pop['Area/km2'] = pop['Area'].str.split(expand=True)[0] pop['Density/km2'] = pop['Density'].str.split('/', expand=True)[0] pop = pop.drop(['Sno', 'Population', 'Rural population', 'Urban population', 'Gender Ratio', 'Area', 'Density'], axis=1) pop.to_csv('pop.csv', index=False) covid = pd.read_csv('/kaggle/input/covid19-in-india/covid_19_india.csv') y = covid.groupby(['State/UnionTerritory'], as_index=False)['Cured', 'Deaths', 'Confirmed'].max() y['State / Union Territory'] = y['State/UnionTerritory'] y = y.drop(['State/UnionTerritory'], axis=1) master = pd.merge(pop, y, how='inner') master = master.sort_values(by='Confirmed', ascending=False) master2 = pd.merge(master, x) master2 = master2.drop(['Negative', 'Positive'], axis=1) beds = pd.read_csv('/kaggle/input/covid19-in-india/HospitalBedsIndia.csv') beds.head()
code
90108705/cell_21
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
import pandas as pd import seaborn as sns train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') sns.set_style('whitegrid') sns.set_style('whitegrid') sns.set_style('whitegrid') sns.boxplot(x='Pclass', y='Age', data=train)
code
90108705/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') train.head()
code
90108705/cell_34
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import seaborn as sns train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') sns.set_style('whitegrid') sns.set_style('whitegrid') sns.set_style('whitegrid') def impute_age(cols): Age = cols[0] Pclass = cols[1] if pd.isnull(Age): if Pclass == 1: return 37 elif Pclass == 2: return 29 else: return 24 else: return Age train.drop('Cabin', axis=1, inplace=True) test.drop('Cabin', axis=1, inplace=True) train.dropna(inplace=True) test.dropna(inplace=True) sex_train = pd.get_dummies(train['Sex'], drop_first=True) sex_test = pd.get_dummies(test['Sex'], drop_first=True) embark_train = pd.get_dummies(train['Embarked'], drop_first=True) embark_test = pd.get_dummies(test['Embarked'], drop_first=True) train = pd.concat([train, sex_train, embark_train], axis=1) test = pd.concat([test, sex_test, embark_test], axis=1) train.head()
code
90108705/cell_6
[ "text_html_output_1.png" ]
import pandas as pd import seaborn as sns train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') sns.heatmap(train.isnull(), yticklabels=False, cbar=False, cmap='viridis')
code
90108705/cell_29
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
import pandas as pd import seaborn as sns train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') sns.set_style('whitegrid') sns.set_style('whitegrid') sns.set_style('whitegrid') train.drop('Cabin', axis=1, inplace=True) test.drop('Cabin', axis=1, inplace=True) train.head()
code
90108705/cell_26
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import seaborn as sns train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') sns.set_style('whitegrid') sns.set_style('whitegrid') sns.set_style('whitegrid') sns.heatmap(train.isnull(), yticklabels=False, cbar=False)
code
90108705/cell_18
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import seaborn as sns train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') sns.set_style('whitegrid') sns.set_style('whitegrid') sns.set_style('whitegrid') sns.distplot(train['Fare'].dropna(), kde=False, bins=40)
code
90108705/cell_32
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import seaborn as sns train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') sns.set_style('whitegrid') sns.set_style('whitegrid') sns.set_style('whitegrid') train.drop('Cabin', axis=1, inplace=True) test.drop('Cabin', axis=1, inplace=True) train.dropna(inplace=True) test.dropna(inplace=True) train.info()
code
90108705/cell_8
[ "text_html_output_1.png" ]
import pandas as pd import seaborn as sns train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') sns.set_style('whitegrid') sns.countplot(x='Survived', data=train, palette='RdBu_r')
code
90108705/cell_16
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import seaborn as sns train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') sns.set_style('whitegrid') sns.set_style('whitegrid') sns.set_style('whitegrid') sns.countplot(x='SibSp', data=train)
code
90108705/cell_14
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import seaborn as sns train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') sns.set_style('whitegrid') sns.set_style('whitegrid') sns.set_style('whitegrid') sns.distplot(train['Age'].dropna(), kde=False, bins=30)
code
90108705/cell_10
[ "text_html_output_1.png" ]
import pandas as pd import seaborn as sns train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') sns.set_style('whitegrid') sns.set_style('whitegrid') sns.countplot(x='Survived', hue='Sex', data=train, palette='RdBu_r')
code
90108705/cell_12
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd import seaborn as sns train = pd.read_csv('/kaggle/input/titanic/train.csv') test = pd.read_csv('/kaggle/input/titanic/test.csv') sns.set_style('whitegrid') sns.set_style('whitegrid') sns.set_style('whitegrid') sns.countplot(x='Survived', data=train, hue='Pclass')
code
74051946/cell_21
[ "text_plain_output_1.png" ]
from sklearn.compose import make_column_transformer from sklearn.impute import SimpleImputer from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split from sklearn.pipeline import make_pipeline, Pipeline from sklearn.preprocessing import OneHotEncoder from sklearn.preprocessing import PowerTransformer, StandardScaler,Normalizer,RobustScaler,MaxAbsScaler,MinMaxScaler,QuantileTransformer from tensorflow.keras import layers from tensorflow.keras.callbacks import EarlyStopping from tensorflow.keras.callbacks import LearningRateScheduler import tensorflow as tf import pandas as pd #To work with dataset train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') cat_columns = train.drop(['id', 'target'], axis=1).select_dtypes(exclude=['int64', 'float64']).columns num_columns = train.drop(['id', 'target'], axis=1).select_dtypes(include=['int64', 'float64']).columns train[train.select_dtypes(['float64']).columns] = train[train.select_dtypes(['float64']).columns].apply(pd.to_numeric) train[train.select_dtypes(['object']).columns] = train.select_dtypes(['object']).apply(lambda x: x.astype('category')) num_columns = ['cont0', 'cont1', 'cont2', 'cont3', 'cont4', 'cont5', 'cont6', 'cont7', 'cont8', 'cont9', 'cont10', 'cont11', 'cont12', 'cont13'] cat_columns = ['cat0', 'cat1', 'cat2', 'cat3', 'cat4', 'cat5', 'cat6', 'cat7', 'cat8', 'cat9'] all_columns = num_columns + cat_columns Robustscaler = make_pipeline(SimpleImputer(strategy='median', add_indicator=True), RobustScaler()) OneHotencoder = make_pipeline(SimpleImputer(strategy='most_frequent', add_indicator=True), OneHotEncoder()) OneHot_RobustScaler = make_column_transformer((OneHotencoder, cat_columns), (Robustscaler, num_columns)) y = train['target'] X = train.drop(['id', 'target'], axis=1) OneHot_RobustScaler.fit(X) Xpre = OneHot_RobustScaler.transform(X) test_final = test.drop(['id'], axis=1) test_finalpre = OneHot_RobustScaler.transform(test_final) X_train, X_test, y_train, y_test = train_test_split(Xpre, y, test_size=0.1) def lr_schedul(epoch): x = 0.01 if epoch >= 5: x = 0.005 if epoch >= 10: x = 0.001 if epoch >= 15: x = 0.0008 if epoch >= 20: x = 0.0005 if epoch >= 30: x = 0.0001 if epoch >= 60: x = 1e-05 return x lr_decay = LearningRateScheduler(lr_schedul, verbose=1) from pandas import read_csv from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder from tensorflow.keras import Sequential from tensorflow.keras.layers import Dense n_features = X_train.shape[1] model = tf.keras.Sequential() model.add(layers.Dense(20, kernel_initializer='he_normal', input_shape=(n_features,), activation='relu')) model.add(layers.Dense(10, activation='relu')) model.add(layers.Dense(1, activation='linear')) optimizer = tf.keras.optimizers.Adam(learning_rate=2e-05) model.compile(loss='mean_squared_error', optimizer=optimizer, metrics=[tf.keras.metrics.RootMeanSquaredError(name='rmse')]) model.summary() EPOCHS = 1000 es = EarlyStopping(monitor='val_loss', min_delta=1e-13, restore_best_weights=True, patience=10) with tf.device('/gpu:0'): history = model.fit(Xpre, y, batch_size=256, epochs=EPOCHS, validation_split=0.1, verbose=0, callbacks=[lr_decay, es], shuffle=True) from pandas import read_csv from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder from tensorflow.keras import Sequential from tensorflow.keras.layers import Dense n_features = X_train.shape[1] model_reg = tf.keras.Sequential() model_reg.add(layers.Dense(50, input_shape=(n_features,), activation='relu')) model_reg.add(layers.BatchNormalization()) model_reg.add(layers.Dropout(0.4)) model_reg.add(layers.Dense(30, activation='relu')) model_reg.add(layers.Dropout(0.2)) model_reg.add(layers.Dense(5, activation='relu')) model_reg.add(layers.Dense(1, activation='linear')) optimizer = tf.keras.optimizers.Adam(learning_rate=2e-05) model_reg.compile(loss='mean_squared_error', optimizer=optimizer, metrics=[tf.keras.metrics.RootMeanSquaredError(name='rmse')]) model_reg.summary() EPOCHS = 1000 es = EarlyStopping(monitor='val_loss', min_delta=1e-13, restore_best_weights=True, patience=10) with tf.device('/gpu:0'): history2 = model_reg.fit(Xpre, y, batch_size=256, epochs=EPOCHS, validation_split=0.1, verbose=0, callbacks=[lr_decay, es], shuffle=True)
code
74051946/cell_13
[ "text_html_output_1.png" ]
from sklearn.compose import make_column_transformer from sklearn.impute import SimpleImputer from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split from sklearn.pipeline import make_pipeline, Pipeline from sklearn.preprocessing import OneHotEncoder from sklearn.preprocessing import PowerTransformer, StandardScaler,Normalizer,RobustScaler,MaxAbsScaler,MinMaxScaler,QuantileTransformer from tensorflow.keras import layers import tensorflow as tf import pandas as pd #To work with dataset train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') cat_columns = train.drop(['id', 'target'], axis=1).select_dtypes(exclude=['int64', 'float64']).columns num_columns = train.drop(['id', 'target'], axis=1).select_dtypes(include=['int64', 'float64']).columns train[train.select_dtypes(['float64']).columns] = train[train.select_dtypes(['float64']).columns].apply(pd.to_numeric) train[train.select_dtypes(['object']).columns] = train.select_dtypes(['object']).apply(lambda x: x.astype('category')) num_columns = ['cont0', 'cont1', 'cont2', 'cont3', 'cont4', 'cont5', 'cont6', 'cont7', 'cont8', 'cont9', 'cont10', 'cont11', 'cont12', 'cont13'] cat_columns = ['cat0', 'cat1', 'cat2', 'cat3', 'cat4', 'cat5', 'cat6', 'cat7', 'cat8', 'cat9'] all_columns = num_columns + cat_columns Robustscaler = make_pipeline(SimpleImputer(strategy='median', add_indicator=True), RobustScaler()) OneHotencoder = make_pipeline(SimpleImputer(strategy='most_frequent', add_indicator=True), OneHotEncoder()) OneHot_RobustScaler = make_column_transformer((OneHotencoder, cat_columns), (Robustscaler, num_columns)) y = train['target'] X = train.drop(['id', 'target'], axis=1) OneHot_RobustScaler.fit(X) Xpre = OneHot_RobustScaler.transform(X) test_final = test.drop(['id'], axis=1) test_finalpre = OneHot_RobustScaler.transform(test_final) X_train, X_test, y_train, y_test = train_test_split(Xpre, y, test_size=0.1) from pandas import read_csv from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder from tensorflow.keras import Sequential from tensorflow.keras.layers import Dense n_features = X_train.shape[1] model = tf.keras.Sequential() model.add(layers.Dense(20, kernel_initializer='he_normal', input_shape=(n_features,), activation='relu')) model.add(layers.Dense(10, activation='relu')) model.add(layers.Dense(1, activation='linear')) optimizer = tf.keras.optimizers.Adam(learning_rate=2e-05) model.compile(loss='mean_squared_error', optimizer=optimizer, metrics=[tf.keras.metrics.RootMeanSquaredError(name='rmse')]) model.summary()
code
74051946/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd #To work with dataset train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') train.head()
code
74051946/cell_20
[ "text_plain_output_1.png" ]
from sklearn.compose import make_column_transformer from sklearn.impute import SimpleImputer from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split from sklearn.pipeline import make_pipeline, Pipeline from sklearn.preprocessing import OneHotEncoder from sklearn.preprocessing import PowerTransformer, StandardScaler,Normalizer,RobustScaler,MaxAbsScaler,MinMaxScaler,QuantileTransformer from tensorflow.keras import layers from tensorflow.keras.callbacks import EarlyStopping from tensorflow.keras.callbacks import LearningRateScheduler import tensorflow as tf import pandas as pd #To work with dataset train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') cat_columns = train.drop(['id', 'target'], axis=1).select_dtypes(exclude=['int64', 'float64']).columns num_columns = train.drop(['id', 'target'], axis=1).select_dtypes(include=['int64', 'float64']).columns train[train.select_dtypes(['float64']).columns] = train[train.select_dtypes(['float64']).columns].apply(pd.to_numeric) train[train.select_dtypes(['object']).columns] = train.select_dtypes(['object']).apply(lambda x: x.astype('category')) num_columns = ['cont0', 'cont1', 'cont2', 'cont3', 'cont4', 'cont5', 'cont6', 'cont7', 'cont8', 'cont9', 'cont10', 'cont11', 'cont12', 'cont13'] cat_columns = ['cat0', 'cat1', 'cat2', 'cat3', 'cat4', 'cat5', 'cat6', 'cat7', 'cat8', 'cat9'] all_columns = num_columns + cat_columns Robustscaler = make_pipeline(SimpleImputer(strategy='median', add_indicator=True), RobustScaler()) OneHotencoder = make_pipeline(SimpleImputer(strategy='most_frequent', add_indicator=True), OneHotEncoder()) OneHot_RobustScaler = make_column_transformer((OneHotencoder, cat_columns), (Robustscaler, num_columns)) y = train['target'] X = train.drop(['id', 'target'], axis=1) OneHot_RobustScaler.fit(X) Xpre = OneHot_RobustScaler.transform(X) test_final = test.drop(['id'], axis=1) test_finalpre = OneHot_RobustScaler.transform(test_final) X_train, X_test, y_train, y_test = train_test_split(Xpre, y, test_size=0.1) def lr_schedul(epoch): x = 0.01 if epoch >= 5: x = 0.005 if epoch >= 10: x = 0.001 if epoch >= 15: x = 0.0008 if epoch >= 20: x = 0.0005 if epoch >= 30: x = 0.0001 if epoch >= 60: x = 1e-05 return x lr_decay = LearningRateScheduler(lr_schedul, verbose=1) from pandas import read_csv from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder from tensorflow.keras import Sequential from tensorflow.keras.layers import Dense n_features = X_train.shape[1] model = tf.keras.Sequential() model.add(layers.Dense(20, kernel_initializer='he_normal', input_shape=(n_features,), activation='relu')) model.add(layers.Dense(10, activation='relu')) model.add(layers.Dense(1, activation='linear')) optimizer = tf.keras.optimizers.Adam(learning_rate=2e-05) model.compile(loss='mean_squared_error', optimizer=optimizer, metrics=[tf.keras.metrics.RootMeanSquaredError(name='rmse')]) model.summary() EPOCHS = 1000 es = EarlyStopping(monitor='val_loss', min_delta=1e-13, restore_best_weights=True, patience=10) with tf.device('/gpu:0'): history = model.fit(Xpre, y, batch_size=256, epochs=EPOCHS, validation_split=0.1, verbose=0, callbacks=[lr_decay, es], shuffle=True) from pandas import read_csv from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder from tensorflow.keras import Sequential from tensorflow.keras.layers import Dense n_features = X_train.shape[1] model_reg = tf.keras.Sequential() model_reg.add(layers.Dense(50, input_shape=(n_features,), activation='relu')) model_reg.add(layers.BatchNormalization()) model_reg.add(layers.Dropout(0.4)) model_reg.add(layers.Dense(30, activation='relu')) model_reg.add(layers.Dropout(0.2)) model_reg.add(layers.Dense(5, activation='relu')) model_reg.add(layers.Dense(1, activation='linear')) optimizer = tf.keras.optimizers.Adam(learning_rate=2e-05) model_reg.compile(loss='mean_squared_error', optimizer=optimizer, metrics=[tf.keras.metrics.RootMeanSquaredError(name='rmse')]) model_reg.summary() tf.keras.utils.plot_model(model=model_reg, show_shapes=True, dpi=76)
code
74051946/cell_6
[ "image_output_1.png" ]
import pandas as pd #To work with dataset train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') cat_columns = train.drop(['id', 'target'], axis=1).select_dtypes(exclude=['int64', 'float64']).columns num_columns = train.drop(['id', 'target'], axis=1).select_dtypes(include=['int64', 'float64']).columns train[train.select_dtypes(['float64']).columns] = train[train.select_dtypes(['float64']).columns].apply(pd.to_numeric) train[train.select_dtypes(['object']).columns] = train.select_dtypes(['object']).apply(lambda x: x.astype('category')) num_columns = ['cont0', 'cont1', 'cont2', 'cont3', 'cont4', 'cont5', 'cont6', 'cont7', 'cont8', 'cont9', 'cont10', 'cont11', 'cont12', 'cont13'] cat_columns = ['cat0', 'cat1', 'cat2', 'cat3', 'cat4', 'cat5', 'cat6', 'cat7', 'cat8', 'cat9'] all_columns = num_columns + cat_columns print(cat_columns) print(num_columns) print(all_columns)
code
74051946/cell_2
[ "image_output_1.png" ]
import warnings import warnings import pandas as pd import numpy as np import matplotlib.gridspec as gridspec import seaborn as sns import matplotlib.pyplot as plt import warnings from sklearn.preprocessing import LabelEncoder, OrdinalEncoder from sklearn.neighbors import KNeighborsClassifier from sklearn.preprocessing import PowerTransformer, StandardScaler, Normalizer, RobustScaler, MaxAbsScaler, MinMaxScaler, QuantileTransformer from sklearn.impute import SimpleImputer from sklearn.preprocessing import OneHotEncoder from sklearn.feature_extraction.text import CountVectorizer from sklearn.compose import make_column_transformer from sklearn.pipeline import make_pipeline, Pipeline from sklearn.preprocessing import FunctionTransformer from sklearn.manifold import TSNE from sklearn.model_selection import GridSearchCV from sklearn.model_selection import train_test_split from sklearn.model_selection import KFold from sklearn.metrics import mean_squared_error from datetime import datetime, date from sklearn.linear_model import ElasticNet, Lasso, BayesianRidge, LassoLarsIC from sklearn.model_selection import cross_val_score import lightgbm as lgbm from catboost import CatBoostRegressor import tensorflow as tf from tensorflow.keras import layers from tensorflow.keras.callbacks import EarlyStopping from tensorflow.keras.callbacks import LearningRateScheduler from sklearn.base import BaseEstimator, TransformerMixin, RegressorMixin, clone from sklearn.kernel_ridge import KernelRidge from sklearn.ensemble import GradientBoostingRegressor, RandomForestRegressor import lightgbm as lgb from scipy import sparse from sklearn.neighbors import KNeighborsRegressor from sklearn.decomposition import PCA from sklearn.cluster import KMeans from sklearn.feature_selection import SelectKBest from sklearn.feature_selection import f_regression, f_classif from sklearn.feature_selection import mutual_info_regression from sklearn.preprocessing import PolynomialFeatures from itertools import combinations from sklearn.linear_model import LinearRegression, RidgeCV import category_encoders as ce import warnings import optuna warnings.filterwarnings('ignore')
code
74051946/cell_19
[ "text_plain_output_1.png" ]
from sklearn.compose import make_column_transformer from sklearn.impute import SimpleImputer from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split from sklearn.pipeline import make_pipeline, Pipeline from sklearn.preprocessing import OneHotEncoder from sklearn.preprocessing import PowerTransformer, StandardScaler,Normalizer,RobustScaler,MaxAbsScaler,MinMaxScaler,QuantileTransformer from tensorflow.keras import layers from tensorflow.keras.callbacks import EarlyStopping from tensorflow.keras.callbacks import LearningRateScheduler import tensorflow as tf import pandas as pd #To work with dataset train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') cat_columns = train.drop(['id', 'target'], axis=1).select_dtypes(exclude=['int64', 'float64']).columns num_columns = train.drop(['id', 'target'], axis=1).select_dtypes(include=['int64', 'float64']).columns train[train.select_dtypes(['float64']).columns] = train[train.select_dtypes(['float64']).columns].apply(pd.to_numeric) train[train.select_dtypes(['object']).columns] = train.select_dtypes(['object']).apply(lambda x: x.astype('category')) num_columns = ['cont0', 'cont1', 'cont2', 'cont3', 'cont4', 'cont5', 'cont6', 'cont7', 'cont8', 'cont9', 'cont10', 'cont11', 'cont12', 'cont13'] cat_columns = ['cat0', 'cat1', 'cat2', 'cat3', 'cat4', 'cat5', 'cat6', 'cat7', 'cat8', 'cat9'] all_columns = num_columns + cat_columns Robustscaler = make_pipeline(SimpleImputer(strategy='median', add_indicator=True), RobustScaler()) OneHotencoder = make_pipeline(SimpleImputer(strategy='most_frequent', add_indicator=True), OneHotEncoder()) OneHot_RobustScaler = make_column_transformer((OneHotencoder, cat_columns), (Robustscaler, num_columns)) y = train['target'] X = train.drop(['id', 'target'], axis=1) OneHot_RobustScaler.fit(X) Xpre = OneHot_RobustScaler.transform(X) test_final = test.drop(['id'], axis=1) test_finalpre = OneHot_RobustScaler.transform(test_final) X_train, X_test, y_train, y_test = train_test_split(Xpre, y, test_size=0.1) def lr_schedul(epoch): x = 0.01 if epoch >= 5: x = 0.005 if epoch >= 10: x = 0.001 if epoch >= 15: x = 0.0008 if epoch >= 20: x = 0.0005 if epoch >= 30: x = 0.0001 if epoch >= 60: x = 1e-05 return x lr_decay = LearningRateScheduler(lr_schedul, verbose=1) from pandas import read_csv from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder from tensorflow.keras import Sequential from tensorflow.keras.layers import Dense n_features = X_train.shape[1] model = tf.keras.Sequential() model.add(layers.Dense(20, kernel_initializer='he_normal', input_shape=(n_features,), activation='relu')) model.add(layers.Dense(10, activation='relu')) model.add(layers.Dense(1, activation='linear')) optimizer = tf.keras.optimizers.Adam(learning_rate=2e-05) model.compile(loss='mean_squared_error', optimizer=optimizer, metrics=[tf.keras.metrics.RootMeanSquaredError(name='rmse')]) model.summary() EPOCHS = 1000 es = EarlyStopping(monitor='val_loss', min_delta=1e-13, restore_best_weights=True, patience=10) with tf.device('/gpu:0'): history = model.fit(Xpre, y, batch_size=256, epochs=EPOCHS, validation_split=0.1, verbose=0, callbacks=[lr_decay, es], shuffle=True) from pandas import read_csv from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder from tensorflow.keras import Sequential from tensorflow.keras.layers import Dense n_features = X_train.shape[1] model_reg = tf.keras.Sequential() model_reg.add(layers.Dense(50, input_shape=(n_features,), activation='relu')) model_reg.add(layers.BatchNormalization()) model_reg.add(layers.Dropout(0.4)) model_reg.add(layers.Dense(30, activation='relu')) model_reg.add(layers.Dropout(0.2)) model_reg.add(layers.Dense(5, activation='relu')) model_reg.add(layers.Dense(1, activation='linear')) optimizer = tf.keras.optimizers.Adam(learning_rate=2e-05) model_reg.compile(loss='mean_squared_error', optimizer=optimizer, metrics=[tf.keras.metrics.RootMeanSquaredError(name='rmse')]) model_reg.summary()
code
74051946/cell_15
[ "text_plain_output_1.png" ]
from sklearn.compose import make_column_transformer from sklearn.impute import SimpleImputer from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split from sklearn.pipeline import make_pipeline, Pipeline from sklearn.preprocessing import OneHotEncoder from sklearn.preprocessing import PowerTransformer, StandardScaler,Normalizer,RobustScaler,MaxAbsScaler,MinMaxScaler,QuantileTransformer from tensorflow.keras import layers from tensorflow.keras.callbacks import EarlyStopping from tensorflow.keras.callbacks import LearningRateScheduler import tensorflow as tf import matplotlib.pyplot as plt import matplotlib.pyplot as plt #to plot some parameters in seaborn import pandas as pd #To work with dataset train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') cat_columns = train.drop(['id', 'target'], axis=1).select_dtypes(exclude=['int64', 'float64']).columns num_columns = train.drop(['id', 'target'], axis=1).select_dtypes(include=['int64', 'float64']).columns train[train.select_dtypes(['float64']).columns] = train[train.select_dtypes(['float64']).columns].apply(pd.to_numeric) train[train.select_dtypes(['object']).columns] = train.select_dtypes(['object']).apply(lambda x: x.astype('category')) num_columns = ['cont0', 'cont1', 'cont2', 'cont3', 'cont4', 'cont5', 'cont6', 'cont7', 'cont8', 'cont9', 'cont10', 'cont11', 'cont12', 'cont13'] cat_columns = ['cat0', 'cat1', 'cat2', 'cat3', 'cat4', 'cat5', 'cat6', 'cat7', 'cat8', 'cat9'] all_columns = num_columns + cat_columns Robustscaler = make_pipeline(SimpleImputer(strategy='median', add_indicator=True), RobustScaler()) OneHotencoder = make_pipeline(SimpleImputer(strategy='most_frequent', add_indicator=True), OneHotEncoder()) OneHot_RobustScaler = make_column_transformer((OneHotencoder, cat_columns), (Robustscaler, num_columns)) y = train['target'] X = train.drop(['id', 'target'], axis=1) OneHot_RobustScaler.fit(X) Xpre = OneHot_RobustScaler.transform(X) test_final = test.drop(['id'], axis=1) test_finalpre = OneHot_RobustScaler.transform(test_final) X_train, X_test, y_train, y_test = train_test_split(Xpre, y, test_size=0.1) def lr_schedul(epoch): x = 0.01 if epoch >= 5: x = 0.005 if epoch >= 10: x = 0.001 if epoch >= 15: x = 0.0008 if epoch >= 20: x = 0.0005 if epoch >= 30: x = 0.0001 if epoch >= 60: x = 1e-05 return x lr_decay = LearningRateScheduler(lr_schedul, verbose=1) from pandas import read_csv from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder from tensorflow.keras import Sequential from tensorflow.keras.layers import Dense n_features = X_train.shape[1] model = tf.keras.Sequential() model.add(layers.Dense(20, kernel_initializer='he_normal', input_shape=(n_features,), activation='relu')) model.add(layers.Dense(10, activation='relu')) model.add(layers.Dense(1, activation='linear')) optimizer = tf.keras.optimizers.Adam(learning_rate=2e-05) model.compile(loss='mean_squared_error', optimizer=optimizer, metrics=[tf.keras.metrics.RootMeanSquaredError(name='rmse')]) model.summary() EPOCHS = 1000 es = EarlyStopping(monitor='val_loss', min_delta=1e-13, restore_best_weights=True, patience=10) with tf.device('/gpu:0'): history = model.fit(Xpre, y, batch_size=256, epochs=EPOCHS, validation_split=0.1, verbose=0, callbacks=[lr_decay, es], shuffle=True) import matplotlib.pyplot as plt plt.style.use('ggplot') def plot_history(history): acc = history.history['rmse'] val_acc = history.history['val_rmse'] loss = history.history['loss'] val_loss = history.history['val_loss'] x = range(1, len(acc) + 1) plt.figure(figsize=(12, 5)) plt.subplot(1, 2, 1) plt.plot(x, acc, 'b', label='Training rmse') plt.plot(x, val_acc, 'r', label='Validation rmse') plt.title('Training and validation accuracy') plt.legend() plt.subplot(1, 2, 2) plt.plot(x, loss, 'b', label='Training loss') plt.plot(x, val_loss, 'r', label='Validation loss') plt.title('Training and validation loss') plt.legend() plot_history(history)
code
74051946/cell_16
[ "text_plain_output_1.png" ]
from sklearn.compose import make_column_transformer from sklearn.impute import SimpleImputer from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split from sklearn.pipeline import make_pipeline, Pipeline from sklearn.preprocessing import OneHotEncoder from sklearn.preprocessing import PowerTransformer, StandardScaler,Normalizer,RobustScaler,MaxAbsScaler,MinMaxScaler,QuantileTransformer from tensorflow.keras import layers from tensorflow.keras.callbacks import EarlyStopping from tensorflow.keras.callbacks import LearningRateScheduler import tensorflow as tf import pandas as pd #To work with dataset train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') cat_columns = train.drop(['id', 'target'], axis=1).select_dtypes(exclude=['int64', 'float64']).columns num_columns = train.drop(['id', 'target'], axis=1).select_dtypes(include=['int64', 'float64']).columns train[train.select_dtypes(['float64']).columns] = train[train.select_dtypes(['float64']).columns].apply(pd.to_numeric) train[train.select_dtypes(['object']).columns] = train.select_dtypes(['object']).apply(lambda x: x.astype('category')) num_columns = ['cont0', 'cont1', 'cont2', 'cont3', 'cont4', 'cont5', 'cont6', 'cont7', 'cont8', 'cont9', 'cont10', 'cont11', 'cont12', 'cont13'] cat_columns = ['cat0', 'cat1', 'cat2', 'cat3', 'cat4', 'cat5', 'cat6', 'cat7', 'cat8', 'cat9'] all_columns = num_columns + cat_columns Robustscaler = make_pipeline(SimpleImputer(strategy='median', add_indicator=True), RobustScaler()) OneHotencoder = make_pipeline(SimpleImputer(strategy='most_frequent', add_indicator=True), OneHotEncoder()) OneHot_RobustScaler = make_column_transformer((OneHotencoder, cat_columns), (Robustscaler, num_columns)) y = train['target'] X = train.drop(['id', 'target'], axis=1) OneHot_RobustScaler.fit(X) Xpre = OneHot_RobustScaler.transform(X) test_final = test.drop(['id'], axis=1) test_finalpre = OneHot_RobustScaler.transform(test_final) X_train, X_test, y_train, y_test = train_test_split(Xpre, y, test_size=0.1) def lr_schedul(epoch): x = 0.01 if epoch >= 5: x = 0.005 if epoch >= 10: x = 0.001 if epoch >= 15: x = 0.0008 if epoch >= 20: x = 0.0005 if epoch >= 30: x = 0.0001 if epoch >= 60: x = 1e-05 return x lr_decay = LearningRateScheduler(lr_schedul, verbose=1) from pandas import read_csv from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder from tensorflow.keras import Sequential from tensorflow.keras.layers import Dense n_features = X_train.shape[1] model = tf.keras.Sequential() model.add(layers.Dense(20, kernel_initializer='he_normal', input_shape=(n_features,), activation='relu')) model.add(layers.Dense(10, activation='relu')) model.add(layers.Dense(1, activation='linear')) optimizer = tf.keras.optimizers.Adam(learning_rate=2e-05) model.compile(loss='mean_squared_error', optimizer=optimizer, metrics=[tf.keras.metrics.RootMeanSquaredError(name='rmse')]) model.summary() EPOCHS = 1000 es = EarlyStopping(monitor='val_loss', min_delta=1e-13, restore_best_weights=True, patience=10) with tf.device('/gpu:0'): history = model.fit(Xpre, y, batch_size=256, epochs=EPOCHS, validation_split=0.1, verbose=0, callbacks=[lr_decay, es], shuffle=True) loss, rmse = model.evaluate(X_test, y_test, verbose=2) print(' rmse'.format(rmse))
code
74051946/cell_14
[ "text_plain_output_1.png" ]
from sklearn.compose import make_column_transformer from sklearn.impute import SimpleImputer from sklearn.model_selection import train_test_split from sklearn.model_selection import train_test_split from sklearn.pipeline import make_pipeline, Pipeline from sklearn.preprocessing import OneHotEncoder from sklearn.preprocessing import PowerTransformer, StandardScaler,Normalizer,RobustScaler,MaxAbsScaler,MinMaxScaler,QuantileTransformer from tensorflow.keras import layers from tensorflow.keras.callbacks import EarlyStopping from tensorflow.keras.callbacks import LearningRateScheduler import tensorflow as tf import pandas as pd #To work with dataset train = pd.read_csv('../input/30-days-of-ml/train.csv') test = pd.read_csv('../input/30-days-of-ml/test.csv') cat_columns = train.drop(['id', 'target'], axis=1).select_dtypes(exclude=['int64', 'float64']).columns num_columns = train.drop(['id', 'target'], axis=1).select_dtypes(include=['int64', 'float64']).columns train[train.select_dtypes(['float64']).columns] = train[train.select_dtypes(['float64']).columns].apply(pd.to_numeric) train[train.select_dtypes(['object']).columns] = train.select_dtypes(['object']).apply(lambda x: x.astype('category')) num_columns = ['cont0', 'cont1', 'cont2', 'cont3', 'cont4', 'cont5', 'cont6', 'cont7', 'cont8', 'cont9', 'cont10', 'cont11', 'cont12', 'cont13'] cat_columns = ['cat0', 'cat1', 'cat2', 'cat3', 'cat4', 'cat5', 'cat6', 'cat7', 'cat8', 'cat9'] all_columns = num_columns + cat_columns Robustscaler = make_pipeline(SimpleImputer(strategy='median', add_indicator=True), RobustScaler()) OneHotencoder = make_pipeline(SimpleImputer(strategy='most_frequent', add_indicator=True), OneHotEncoder()) OneHot_RobustScaler = make_column_transformer((OneHotencoder, cat_columns), (Robustscaler, num_columns)) y = train['target'] X = train.drop(['id', 'target'], axis=1) OneHot_RobustScaler.fit(X) Xpre = OneHot_RobustScaler.transform(X) test_final = test.drop(['id'], axis=1) test_finalpre = OneHot_RobustScaler.transform(test_final) X_train, X_test, y_train, y_test = train_test_split(Xpre, y, test_size=0.1) def lr_schedul(epoch): x = 0.01 if epoch >= 5: x = 0.005 if epoch >= 10: x = 0.001 if epoch >= 15: x = 0.0008 if epoch >= 20: x = 0.0005 if epoch >= 30: x = 0.0001 if epoch >= 60: x = 1e-05 return x lr_decay = LearningRateScheduler(lr_schedul, verbose=1) from pandas import read_csv from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder from tensorflow.keras import Sequential from tensorflow.keras.layers import Dense n_features = X_train.shape[1] model = tf.keras.Sequential() model.add(layers.Dense(20, kernel_initializer='he_normal', input_shape=(n_features,), activation='relu')) model.add(layers.Dense(10, activation='relu')) model.add(layers.Dense(1, activation='linear')) optimizer = tf.keras.optimizers.Adam(learning_rate=2e-05) model.compile(loss='mean_squared_error', optimizer=optimizer, metrics=[tf.keras.metrics.RootMeanSquaredError(name='rmse')]) model.summary() EPOCHS = 1000 es = EarlyStopping(monitor='val_loss', min_delta=1e-13, restore_best_weights=True, patience=10) with tf.device('/gpu:0'): history = model.fit(Xpre, y, batch_size=256, epochs=EPOCHS, validation_split=0.1, verbose=0, callbacks=[lr_decay, es], shuffle=True)
code
90120308/cell_9
[ "text_html_output_1.png" ]
from sklearn.impute import SimpleImputer from sklearn.preprocessing import OneHotEncoder from torch import nn from torch.utils.data import DataLoader, TensorDataset, SubsetRandomSampler import numpy as np import pandas as pd import random import torch import pandas as pd import numpy as np import torch from torch import nn import matplotlib.pyplot as plt from torch.utils.data import DataLoader, TensorDataset, SubsetRandomSampler from sklearn.impute import SimpleImputer from sklearn.preprocessing import OneHotEncoder import random random.seed(1) torch.manual_seed(1) np.random.seed(1) rng = np.random.default_rng(1) def load_data(train_path, test_path): train_data = pd.read_csv(train_path) test_data = pd.read_csv(test_path) return (train_data, test_data) def describe_unique_dataset(df: pd.DataFrame, show_values=False): nunique = {} unique = {} nan = {} for col in df.columns: nunique[col] = df[col].nunique() unique[col] = df[col].unique() nan[col] = df[col].isna().sum() [print(f'{item} : {nunique[item]}') for item in nunique.keys()] [print(f'{item} : {nan[item]}') for item in nan.keys()] if show_values == True: [print(f'{item} : {unique[item]}') for item in unique.keys()] def impute(data): data_c = data.copy() s_imputer = SimpleImputer(strategy='most_frequent') data_c['Embarked'] = s_imputer.fit_transform(np.array(data_c['Embarked']).reshape(-1, 1)) data_c['Age'] = data_c.groupby(['Pclass', 'Embarked', 'Sex'])['Age'].transform(lambda x: x.fillna(x.mean())) data_c['Fare'] = data_c.groupby(['Pclass', 'Embarked', 'Sex'])['Fare'].transform(lambda x: x.fillna(x.mean())) return data_c def ohe_data(data: pd.DataFrame, cat_name): data_c = data.copy() oh_encoder = OneHotEncoder(sparse=False) transformed_data = oh_encoder.fit_transform(np.array(data_c[cat_name]).reshape(-1, 1)) df_transformed_data = pd.DataFrame(transformed_data) df_transformed_data.columns = oh_encoder.get_feature_names_out(input_features=[cat_name]) data_c[df_transformed_data.columns] = transformed_data return data_c def encode(data: pd.DataFrame): data_c = data.copy() data_c = ohe_data(data_c, 'Embarked') data_c = ohe_data(data_c, 'Sex') data_c['Pclass'].replace({3: 1, 1: 3}, inplace=True) for col in data_c.select_dtypes('object'): data_c[col], _ = data_c[col].factorize() return data_c def feature_extraction(data: pd.DataFrame): data_c = data.copy() data_c['TicketNr'] = data_c['Ticket'].str.extract('(\\d+)$', expand=True).astype(np.float32) data_c['TicketNr'].fillna(0, inplace=True) name_extraction = data_c['Name'].str.extract('^(\\w+)..(\\w+)\\W+(\\w+\\s*\\w+)', expand=True) name_extraction.columns = ['LastName', 'Hon', 'FirstName'] data_c[name_extraction.columns] = name_extraction return data_c def split_train_test_indices(data_length, ratio): r_num = int(data_length * ratio) indices = np.random.permutation(data_length) return (indices[:r_num], indices[r_num:]) def load_data(train_path, test_path): train_data = pd.read_csv(train_path, index_col='PassengerId') test_data = pd.read_csv(test_path, index_col='PassengerId') return (train_data, test_data) train_data, test_data = load_data('../input/titanic/train.csv', '../input/titanic/test.csv') dataset = pd.concat([train_data, test_data]) dataset = impute(dataset) dataset = feature_extraction(dataset) dataset = encode(dataset) dataset.drop(columns=['Name', 'Sex', 'Ticket', 'Cabin', 'Embarked'], inplace=True) dataset = dataset.astype(np.float32) train_data = dataset.loc[train_data.index, :] test_data = dataset.loc[test_data.index, :] test_data.drop(columns=['Survived'], inplace=True) train_indices, valid_indices = split_train_test_indices(len(train_data), 0.8) y = train_data.pop('Survived') X = train_data t_train_data = TensorDataset(torch.Tensor(X.to_numpy()), torch.Tensor(y.to_numpy().reshape(-1, 1))) t_test_data = torch.Tensor(test_data.to_numpy()) class BinaryLogisticNetwork(nn.Module): def __init__(self, input_size): super(BinaryLogisticNetwork, self).__init__() self.input_size = input_size self.binary_logistic = nn.Sequential(nn.BatchNorm1d(input_size), nn.Linear(input_size, 2048), nn.ReLU(), nn.Dropout(0.2), nn.BatchNorm1d(2048), nn.Linear(2048, 2048), nn.ReLU(), nn.Dropout(0.2), nn.BatchNorm1d(2048), nn.Linear(2048, 2048), nn.ReLU(), nn.Dropout(0.2), nn.BatchNorm1d(2048), nn.Linear(2048, 2048), nn.ReLU(), nn.Dropout(0.2), nn.BatchNorm1d(2048), nn.Linear(2048, 2048), nn.ReLU(), nn.Dropout(0.2), nn.BatchNorm1d(2048), nn.Linear(2048, 2048), nn.ReLU(), nn.Dropout(0.2), nn.Linear(2048, 1), nn.Sigmoid()) def forward(self, x): out = self.binary_logistic(x) return out def accuracy(y_preds, y_true): y_preds = torch.round(y_preds) return float((y_preds == y_true).sum().float() / y_preds.shape[0]) BATCH_SIZE = 32 EPOCHS = 20 train_sampler = SubsetRandomSampler(train_indices) valid_sampler = SubsetRandomSampler(valid_indices) g = torch.Generator() g.manual_seed(1) train_loader = DataLoader(t_train_data, BATCH_SIZE, sampler=train_sampler, worker_init_fn=1, generator=g) valid_loader = DataLoader(t_train_data, BATCH_SIZE, sampler=valid_sampler, worker_init_fn=1, generator=g) model = BinaryLogisticNetwork(len(X.columns)) loss_fn = nn.functional.binary_cross_entropy optimizer = torch.optim.Adagrad(model.parameters(), lr=0.01, eps=0.01) def evaluate(model, valid_dl, loss_fn, metric): losses = [] val_accuracy = [] with torch.no_grad(): for x, y in valid_dl: preds = model(x) loss = loss_fn(preds, y) losses.append(loss.item()) val_accuracy.append(metric(preds, y)) return (sum(losses) / len(losses), sum(val_accuracy) / len(val_accuracy)) def fit(epochs, model, loss_fn, opt, train_dl, valid_dl, metric): history = {'Loss': [], 'Accuracy': [], 'Val_Loss': [], 'Val_Accuracy': []} scheduler = torch.optim.lr_scheduler.StepLR(opt, 30, gamma=0.01) for epoch in range(epochs): loss_list = [] scores = [] for count, (x, y) in enumerate(train_dl): preds = model(x) loss = loss_fn(preds, y) loss.backward() opt.step() opt.zero_grad() scheduler.step() score = accuracy(preds, y) loss_list.append(loss.item()) scores.append(score) val_loss, val_accuracy = evaluate(model, valid_dl, loss_fn, metric) history['Loss'].append(sum(loss_list) / len(loss_list)) history['Accuracy'].append(sum(scores) / len(scores)) history['Val_Loss'].append(val_loss) history['Val_Accuracy'].append(val_accuracy) return history history = fit(EPOCHS, model, loss_fn, optimizer, train_loader, valid_loader, accuracy)
code
90120308/cell_10
[ "text_plain_output_1.png" ]
from sklearn.impute import SimpleImputer from sklearn.preprocessing import OneHotEncoder from torch import nn from torch.utils.data import DataLoader, TensorDataset, SubsetRandomSampler import numpy as np import pandas as pd import random import torch import pandas as pd import numpy as np import torch from torch import nn import matplotlib.pyplot as plt from torch.utils.data import DataLoader, TensorDataset, SubsetRandomSampler from sklearn.impute import SimpleImputer from sklearn.preprocessing import OneHotEncoder import random random.seed(1) torch.manual_seed(1) np.random.seed(1) rng = np.random.default_rng(1) def load_data(train_path, test_path): train_data = pd.read_csv(train_path) test_data = pd.read_csv(test_path) return (train_data, test_data) def describe_unique_dataset(df: pd.DataFrame, show_values=False): nunique = {} unique = {} nan = {} for col in df.columns: nunique[col] = df[col].nunique() unique[col] = df[col].unique() nan[col] = df[col].isna().sum() [print(f'{item} : {nunique[item]}') for item in nunique.keys()] [print(f'{item} : {nan[item]}') for item in nan.keys()] if show_values == True: [print(f'{item} : {unique[item]}') for item in unique.keys()] def impute(data): data_c = data.copy() s_imputer = SimpleImputer(strategy='most_frequent') data_c['Embarked'] = s_imputer.fit_transform(np.array(data_c['Embarked']).reshape(-1, 1)) data_c['Age'] = data_c.groupby(['Pclass', 'Embarked', 'Sex'])['Age'].transform(lambda x: x.fillna(x.mean())) data_c['Fare'] = data_c.groupby(['Pclass', 'Embarked', 'Sex'])['Fare'].transform(lambda x: x.fillna(x.mean())) return data_c def ohe_data(data: pd.DataFrame, cat_name): data_c = data.copy() oh_encoder = OneHotEncoder(sparse=False) transformed_data = oh_encoder.fit_transform(np.array(data_c[cat_name]).reshape(-1, 1)) df_transformed_data = pd.DataFrame(transformed_data) df_transformed_data.columns = oh_encoder.get_feature_names_out(input_features=[cat_name]) data_c[df_transformed_data.columns] = transformed_data return data_c def encode(data: pd.DataFrame): data_c = data.copy() data_c = ohe_data(data_c, 'Embarked') data_c = ohe_data(data_c, 'Sex') data_c['Pclass'].replace({3: 1, 1: 3}, inplace=True) for col in data_c.select_dtypes('object'): data_c[col], _ = data_c[col].factorize() return data_c def feature_extraction(data: pd.DataFrame): data_c = data.copy() data_c['TicketNr'] = data_c['Ticket'].str.extract('(\\d+)$', expand=True).astype(np.float32) data_c['TicketNr'].fillna(0, inplace=True) name_extraction = data_c['Name'].str.extract('^(\\w+)..(\\w+)\\W+(\\w+\\s*\\w+)', expand=True) name_extraction.columns = ['LastName', 'Hon', 'FirstName'] data_c[name_extraction.columns] = name_extraction return data_c def split_train_test_indices(data_length, ratio): r_num = int(data_length * ratio) indices = np.random.permutation(data_length) return (indices[:r_num], indices[r_num:]) def load_data(train_path, test_path): train_data = pd.read_csv(train_path, index_col='PassengerId') test_data = pd.read_csv(test_path, index_col='PassengerId') return (train_data, test_data) train_data, test_data = load_data('../input/titanic/train.csv', '../input/titanic/test.csv') dataset = pd.concat([train_data, test_data]) dataset = impute(dataset) dataset = feature_extraction(dataset) dataset = encode(dataset) dataset.drop(columns=['Name', 'Sex', 'Ticket', 'Cabin', 'Embarked'], inplace=True) dataset = dataset.astype(np.float32) train_data = dataset.loc[train_data.index, :] test_data = dataset.loc[test_data.index, :] test_data.drop(columns=['Survived'], inplace=True) train_indices, valid_indices = split_train_test_indices(len(train_data), 0.8) y = train_data.pop('Survived') X = train_data t_train_data = TensorDataset(torch.Tensor(X.to_numpy()), torch.Tensor(y.to_numpy().reshape(-1, 1))) t_test_data = torch.Tensor(test_data.to_numpy()) class BinaryLogisticNetwork(nn.Module): def __init__(self, input_size): super(BinaryLogisticNetwork, self).__init__() self.input_size = input_size self.binary_logistic = nn.Sequential(nn.BatchNorm1d(input_size), nn.Linear(input_size, 2048), nn.ReLU(), nn.Dropout(0.2), nn.BatchNorm1d(2048), nn.Linear(2048, 2048), nn.ReLU(), nn.Dropout(0.2), nn.BatchNorm1d(2048), nn.Linear(2048, 2048), nn.ReLU(), nn.Dropout(0.2), nn.BatchNorm1d(2048), nn.Linear(2048, 2048), nn.ReLU(), nn.Dropout(0.2), nn.BatchNorm1d(2048), nn.Linear(2048, 2048), nn.ReLU(), nn.Dropout(0.2), nn.BatchNorm1d(2048), nn.Linear(2048, 2048), nn.ReLU(), nn.Dropout(0.2), nn.Linear(2048, 1), nn.Sigmoid()) def forward(self, x): out = self.binary_logistic(x) return out def accuracy(y_preds, y_true): y_preds = torch.round(y_preds) return float((y_preds == y_true).sum().float() / y_preds.shape[0]) BATCH_SIZE = 32 EPOCHS = 20 train_sampler = SubsetRandomSampler(train_indices) valid_sampler = SubsetRandomSampler(valid_indices) g = torch.Generator() g.manual_seed(1) train_loader = DataLoader(t_train_data, BATCH_SIZE, sampler=train_sampler, worker_init_fn=1, generator=g) valid_loader = DataLoader(t_train_data, BATCH_SIZE, sampler=valid_sampler, worker_init_fn=1, generator=g) model = BinaryLogisticNetwork(len(X.columns)) loss_fn = nn.functional.binary_cross_entropy optimizer = torch.optim.Adagrad(model.parameters(), lr=0.01, eps=0.01) def evaluate(model, valid_dl, loss_fn, metric): losses = [] val_accuracy = [] with torch.no_grad(): for x, y in valid_dl: preds = model(x) loss = loss_fn(preds, y) losses.append(loss.item()) val_accuracy.append(metric(preds, y)) return (sum(losses) / len(losses), sum(val_accuracy) / len(val_accuracy)) def fit(epochs, model, loss_fn, opt, train_dl, valid_dl, metric): history = {'Loss': [], 'Accuracy': [], 'Val_Loss': [], 'Val_Accuracy': []} scheduler = torch.optim.lr_scheduler.StepLR(opt, 30, gamma=0.01) for epoch in range(epochs): loss_list = [] scores = [] for count, (x, y) in enumerate(train_dl): preds = model(x) loss = loss_fn(preds, y) loss.backward() opt.step() opt.zero_grad() scheduler.step() score = accuracy(preds, y) loss_list.append(loss.item()) scores.append(score) val_loss, val_accuracy = evaluate(model, valid_dl, loss_fn, metric) history['Loss'].append(sum(loss_list) / len(loss_list)) history['Accuracy'].append(sum(scores) / len(scores)) history['Val_Loss'].append(val_loss) history['Val_Accuracy'].append(val_accuracy) return history history = fit(EPOCHS, model, loss_fn, optimizer, train_loader, valid_loader, accuracy) df_history = pd.DataFrame(history) df_history.plot() df_history
code
130017473/cell_13
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('/kaggle/input/non-alcohol-fatty-liver-disease/nafld1.csv') import seaborn as sns sns.kdeplot(data=data, x='weight', hue='status', multiple='stack')
code
130017473/cell_9
[ "application_vnd.jupyter.stderr_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('/kaggle/input/non-alcohol-fatty-liver-disease/nafld1.csv') import seaborn as sns sns.kdeplot(data=data, x='futime')
code
130017473/cell_4
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('/kaggle/input/non-alcohol-fatty-liver-disease/nafld1.csv') import seaborn as sns sns.countplot(x='male', data=data)
code
130017473/cell_6
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('/kaggle/input/non-alcohol-fatty-liver-disease/nafld1.csv') import seaborn as sns sns.kdeplot(data=data, x='weight')
code
130017473/cell_2
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) data = pd.read_csv('/kaggle/input/non-alcohol-fatty-liver-disease/nafld1.csv') data.head()
code
130017473/cell_11
[ "text_html_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('/kaggle/input/non-alcohol-fatty-liver-disease/nafld1.csv') import seaborn as sns sns.countplot(data=data, x='male', hue='status')
code
130017473/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
130017473/cell_7
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('/kaggle/input/non-alcohol-fatty-liver-disease/nafld1.csv') import seaborn as sns sns.kdeplot(data=data, x='height')
code
130017473/cell_8
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('/kaggle/input/non-alcohol-fatty-liver-disease/nafld1.csv') import seaborn as sns sns.kdeplot(data=data, x='bmi')
code
130017473/cell_15
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('/kaggle/input/non-alcohol-fatty-liver-disease/nafld1.csv') import seaborn as sns sns.kdeplot(data=data, x='bmi', hue='status', multiple='stack')
code
130017473/cell_16
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('/kaggle/input/non-alcohol-fatty-liver-disease/nafld1.csv') import seaborn as sns sns.kdeplot(data=alldata, x='futime', hue='status', multiple='stack')
code
130017473/cell_14
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('/kaggle/input/non-alcohol-fatty-liver-disease/nafld1.csv') import seaborn as sns sns.kdeplot(data=data, x='height', hue='status', multiple='stack')
code
130017473/cell_12
[ "text_plain_output_2.png", "application_vnd.jupyter.stderr_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('/kaggle/input/non-alcohol-fatty-liver-disease/nafld1.csv') import seaborn as sns sns.kdeplot(data=data, x='age', hue='status', multiple='stack')
code
130017473/cell_5
[ "text_plain_output_1.png", "image_output_1.png" ]
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns data = pd.read_csv('/kaggle/input/non-alcohol-fatty-liver-disease/nafld1.csv') import seaborn as sns sns.kdeplot(data=data, x='age')
code
72116744/cell_4
[ "text_plain_output_1.png" ]
import pandas as pd kfold_df = pd.read_csv('../input/braintumor-sampling/brain_tumor_kfold.csv') kfold_df.head(4)
code
72116744/cell_7
[ "application_vnd.jupyter.stderr_output_27.png", "text_plain_output_5.png", "text_plain_output_15.png", "text_plain_output_9.png", "text_plain_output_20.png", "application_vnd.jupyter.stderr_output_26.png", "text_plain_output_4.png", "text_plain_output_13.png", "text_plain_output_14.png", "text_plain_output_10.png", "text_plain_output_6.png", "text_plain_output_24.png", "text_plain_output_21.png", "text_plain_output_25.png", "text_plain_output_18.png", "text_plain_output_3.png", "text_plain_output_22.png", "text_plain_output_7.png", "text_plain_output_16.png", "text_plain_output_8.png", "text_plain_output_23.png", "text_plain_output_2.png", "text_plain_output_1.png", "text_plain_output_19.png", "image_output_2.png", "image_output_1.png", "text_plain_output_17.png", "text_plain_output_11.png", "text_plain_output_12.png" ]
from torch.utils.data import DataLoader, Dataset import pandas as pd kfold_df = pd.read_csv('../input/braintumor-sampling/brain_tumor_kfold.csv') train_df = kfold_df[kfold_df.fold != 0] train_ds = DataRetriever(train_df['BraTS21ID'].values, '../input/rsna-miccai-brain-tumor-radiogenomic-classification/train', 'FLAIR', targets=train_df['MGMT_value'].values) train_dl = DataLoader(train_ds, batch_size=1, shuffle=True, num_workers=1) next(iter(train_dl))['X'].shape
code
72116744/cell_3
[ "text_html_output_1.png" ]
from pathlib import Path import pytorch_lightning as pl class Config: seed = 42 img_size = 256 num_imgs = 64 lr = 2e-08 data_dir = Path('/kaggle/input/rsna-miccai-brain-tumor-radiogenomic-classification') pl.utilities.seed.seed_everything(Config.seed, workers=True)
code
72116744/cell_12
[ "text_plain_output_1.png" ]
from IPython.core.magic import register_cell_magic from efficientnet_pytorch_3d import EfficientNet3D from pathlib import Path from pytorch_lightning.core.memory import ModelSummary from sklearn.metrics import roc_auc_score, roc_curve, auc from time import time from torch.utils.data import DataLoader, Dataset import cv2 import glob import matplotlib.pyplot as plt import numpy as np import pandas as pd import pydicom import pytorch_lightning as pl import re import sys import time import torch import torch from IPython.core.magic import register_cell_magic import os from pathlib import Path @register_cell_magic def write_and_run(line, cell): argz = line.split() file = argz[-1] mode = 'w' if len(argz) == 2 and argz[0] == '-a': mode = 'a' with open(file, mode) as f: f.write(cell) get_ipython().run_cell(cell) Path('/kaggle/working/scripts').mkdir(exist_ok=True) models_dir = Path('/kaggle/working/models') models_dir.mkdir(exist_ok=True) import os import json import glob import random import collections import numpy as np import pandas as pd import pydicom from pydicom.pixel_data_handlers.util import apply_voi_lut import cv2 import matplotlib.pyplot as plt import seaborn as sns plt.style.use('seaborn-talk') import torch from sklearn.metrics import roc_auc_score, roc_curve, auc from torchvision import transforms import time import torch from torch import nn from torch.utils.data import DataLoader, Dataset from sklearn import model_selection as sk_model_selection from torch.nn import functional as F from sklearn.model_selection import StratifiedKFold import pytorch_lightning as pl from transformers import DeiTFeatureExtractor, DeiTForImageClassification, AutoConfig from pytorch_lightning.core.memory import ModelSummary import sys sys.path.append('../input/efficientnetpyttorch3d/EfficientNet-PyTorch-3D') from efficientnet_pytorch_3d import EfficientNet3D class Config: seed = 42 img_size = 256 num_imgs = 64 lr = 2e-08 data_dir = Path('/kaggle/input/rsna-miccai-brain-tumor-radiogenomic-classification') pl.utilities.seed.seed_everything(Config.seed, workers=True) kfold_df = pd.read_csv('../input/braintumor-sampling/brain_tumor_kfold.csv') import re def load_dicom_image(path, rotate=False): dicom = pydicom.read_file(path) data = dicom.pixel_array data = dicom.pixel_array if rotate: data = cv2.rotate(data, cv2.ROTATE_180) data = cv2.resize(data, (Config.img_size, Config.img_size)) return data def load_images_3d(dp_id, mri_type='FLAIR', split='train', augment=False): dp_dir = str(Config.data_dir / split / dp_id / mri_type / '*.dcm') files = sorted(glob.glob(dp_dir), key=lambda var: [int(x) if x.isdigit() else x for x in re.findall('[^0-9]|[0-9]+', var)]) middle = len(files) // 2 num_imgs2 = Config.num_imgs // 2 p1 = max(0, middle - num_imgs2) p2 = min(len(files), middle + num_imgs2) img3d = np.stack([load_dicom_image(f, rotate=augment) for f in files[p1:p2]]).T if img3d.shape[-1] < Config.num_imgs: n_zero = np.zeros((Config.img_size, Config.img_size, Config.num_imgs - img3d.shape[-1])) img3d = np.concatenate((img3d, n_zero), axis=-1) if np.min(img3d) < np.max(img3d): img3d = img3d - np.min(img3d) img3d = img3d / np.max(img3d) return np.expand_dims(img3d, 0) train_df = kfold_df[kfold_df.fold != 0] train_ds = DataRetriever(train_df['BraTS21ID'].values, '../input/rsna-miccai-brain-tumor-radiogenomic-classification/train', 'FLAIR', targets=train_df['MGMT_value'].values) train_dl = DataLoader(train_ds, batch_size=1, shuffle=True, num_workers=1) next(iter(train_dl))['X'].shape def calc_roc_auc(y_true, y_pred): return roc_auc_score(y_true, y_pred) return 0.5 from time import time class Metrics: def __init__(self): self.losses = [] self.reduced_losses = [] self.y_batches = [] self.y_hat_batches = [] self.roc_auc_list = [] self.train_epoch_start_time = None self.validation_epoch_start_time = None class MetricsCallback(pl.callbacks.Callback): def __init__(self): self.train_metrics = Metrics() self.validation_metrics = Metrics() self.best_validation_roc_auc = float('-inf') def on_train_epoch_start(self, trainer, pl_module): self.train_epoch_start_time = time() def on_validation_epoch_start(self, trainer, pl_module): self.validation_epoch_start_time = time() def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx): self.after_batch(self.train_metrics, outputs) def on_validation_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx): self.after_batch(self.validation_metrics, outputs) def on_train_epoch_end(self, trainer, pl_module): self.train_epoch_start_time = None def on_validation_epoch_end(self, trainer, pl_module): train_loss = self.get_avg_loss(self.train_metrics) validation_loss = self.get_avg_loss(self.validation_metrics) train_roc_auc = self.get_roc_auc(self.train_metrics) validation_roc_auc = self.get_roc_auc(self.validation_metrics) self.log('roc_auc', validation_roc_auc) if validation_roc_auc > self.best_validation_roc_auc: self.best_validation_roc_auc = validation_roc_auc self.validation_epoch_start_time = None def get_avg_loss(self, metrics): avg_loss = np.array(metrics.losses).mean() metrics.reduced_losses.append(avg_loss) metrics.losses = [] return avg_loss def after_batch(self, metrics, outputs): metrics.losses.append(outputs['loss'].item()) metrics.y_batches.append(outputs['y']) metrics.y_hat_batches.append(outputs['y_hat']) def get_roc_auc(self, metrics): if not metrics.y_batches: return None y_np = torch.hstack(metrics.y_batches).detach().cpu().numpy() y_hat_np = torch.hstack(metrics.y_hat_batches).detach().cpu().numpy() roc_auc = calc_roc_auc(y_np, y_hat_np) metrics.roc_auc_list.append(roc_auc) metrics.y_batches = [] metrics.y_hat_batches = [] return roc_auc def plot_metrics(metrics_callback): train_losses = metrics_callback.train_metrics.reduced_losses validation_losses = metrics_callback.validation_metrics.reduced_losses train_roc_aucs = metrics_callback.train_metrics.roc_auc_list validation_roc_aucs = metrics_callback.validation_metrics.roc_auc_list mri_types = ['FLAIR', 'T1w', 'T1wCE', 'T2w'] mri_type_roc_aucs = [] for mri_type in mri_types: print('MRI TYPE:', mri_type) roc_aucs = [] for fold_n in range(5): print('Fold:', fold_n + 1) train_df = kfold_df[kfold_df.fold != fold_n] train_ds = DataRetriever(train_df['BraTS21ID'].values, '../input/rsna-miccai-brain-tumor-radiogenomic-classification/train', mri_type=mri_type, targets=train_df['MGMT_value'].values) val_df = kfold_df[kfold_df.fold == fold_n] val_ds = DataRetriever(val_df['BraTS21ID'].values, '../input/rsna-miccai-brain-tumor-radiogenomic-classification/train', mri_type=mri_type, targets=val_df['MGMT_value'].values) train_dl = DataLoader(train_ds, batch_size=4, shuffle=True, num_workers=2, pin_memory=True) val_dl = DataLoader(val_ds, batch_size=4, shuffle=False, num_workers=2, pin_memory=True) net = EfficientNet3D.from_name('efficientnet-b5', override_params={'num_classes': 1}, in_channels=1) model = Model(net) checkpoint_callback = pl.callbacks.ModelCheckpoint(dirpath='models', filename=f'model_{mri_type}_{fold_n}_' + '{epoch}_{roc_auc:.3}', monitor='roc_auc', mode='max', save_weights_only=True) metrics_callback = MetricsCallback() print(ModelSummary(model)) trainer = pl.Trainer(fast_dev_run=False, max_epochs=10, gpus=1, auto_lr_find=True, precision=16, limit_train_batches=5, limit_val_batches=5, num_sanity_val_steps=0, val_check_interval=1.0, callbacks=[metrics_callback, checkpoint_callback]) trainer.fit(model, train_dl, val_dl) plot_metrics(metrics_callback) roc_aucs.append(metrics_callback.best_validation_roc_auc) print('roc_auc_s:', roc_aucs) print('roc_auc mean:', np.array(roc_aucs).mean()) print('roc_auc std:', np.array(roc_aucs).std()) mri_type_roc_aucs.append(np.array(roc_aucs).mean()) print('mri_type roc_auc_s:', mri_type_roc_aucs) print('mri_type roc_auc mean:', np.array(mri_type_roc_aucs).mean()) print('mri_type roc_auc std:', np.array(mri_type_roc_aucs).std())
code
74058231/cell_11
[ "image_output_2.png", "image_output_1.png" ]
from sklearn.metrics import classification_report, explained_variance_score, r2_score, max_error from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import torch train = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/train.csv', index_col='Id') test = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/test.csv', index_col='Id') def fill_na_in_data(dataset): df = dataset for column in df.columns: column_type = df[column].dtype if column_type == 'int64': df[column] = df[column].fillna(0) elif column_type == 'object': df[column] = df[column].fillna('None') elif column_type == 'float64': df[column] = df[column].fillna(df[column].median()) return df train = fill_na_in_data(train) test = fill_na_in_data(test) def map_non_float_values(dataset): for cat_column in dataset.dtypes.loc[dataset.dtypes == 'O'].index: dataset[cat_column] = dataset[cat_column].astype('category') dataset[cat_column + '_cat'] = dataset[cat_column].cat.codes return dataset train = map_non_float_values(train) test = map_non_float_values(test) X = train.loc[:, train.dtypes != 'category'].drop('SalePrice', axis=1) y = train.SalePrice X_val = test.loc[:, test.dtypes != 'category'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) X_train = torch.Tensor(X_train.values) X_test = torch.Tensor(X_test.values) y_train = torch.Tensor(y_train.values) y_test = torch.Tensor(y_test.values) X_val = torch.Tensor(X_val.values) class HouseNet(torch.nn.Module): def __init__(self, hidden_neurons): super(HouseNet, self).__init__() self.fc1 = torch.nn.Linear(79, hidden_neurons) self.ac1 = torch.nn.ReLU() self.bn1 = torch.nn.BatchNorm1d(hidden_neurons) self.fc2 = torch.nn.Linear(hidden_neurons, hidden_neurons) self.ac2 = torch.nn.Sigmoid() self.bn2 = torch.nn.BatchNorm1d(hidden_neurons) self.fc3 = torch.nn.Linear(hidden_neurons, hidden_neurons) self.ac3 = torch.nn.Sigmoid() self.fc4 = torch.nn.Linear(hidden_neurons, 1) def forward(self, x): x = self.fc1(x) x = self.ac1(x) x = self.bn1(x) x = self.fc2(x) x = self.ac2(x) x = self.bn2(x) x = self.fc3(x) x = self.fc3(x) x = self.fc4(x) return x loss = torch.nn.MSELoss() house_net = HouseNet(50) optimizer = torch.optim.Adam(house_net.parameters(), lr=0.001, weight_decay=1e-05) batch_size = 50 r2 = [] test_loss_history = [] val_loss_history_avg = [] for epoch in range(50): batch_loss_history = [] order = np.random.permutation(len(X_train)) for start_index in range(0, len(X_train), batch_size): optimizer.zero_grad() house_net.train() batch_indexes = order[start_index:start_index + batch_size] X_batch = X_train[batch_indexes] y_batch = y_train[batch_indexes] preds = house_net.forward(X_batch) loss_value = loss(preds.view(preds.size()[0]), y_batch) batch_loss_history.append(loss_value) loss_value.backward() optimizer.step() house_net.eval() val_loss_history_avg.append(sum(batch_loss_history) / len(batch_loss_history)) test_preds = house_net.forward(X_test) test_loss_history.append(loss(test_preds.view(test_preds.size()[0]), y_test)) r2.append(r2_score(list(y_test), list(test_preds))) plt.plot(test_loss_history, label='test') plt.plot(val_loss_history_avg, label='train loss(avg)') plt.legend() plt.show() plt.plot(r2) plt.show()
code
74058231/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
74058231/cell_10
[ "text_plain_output_1.png" ]
from sklearn.metrics import classification_report, explained_variance_score, r2_score, max_error from sklearn.model_selection import train_test_split import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import torch train = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/train.csv', index_col='Id') test = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/test.csv', index_col='Id') def fill_na_in_data(dataset): df = dataset for column in df.columns: column_type = df[column].dtype if column_type == 'int64': df[column] = df[column].fillna(0) elif column_type == 'object': df[column] = df[column].fillna('None') elif column_type == 'float64': df[column] = df[column].fillna(df[column].median()) return df train = fill_na_in_data(train) test = fill_na_in_data(test) def map_non_float_values(dataset): for cat_column in dataset.dtypes.loc[dataset.dtypes == 'O'].index: dataset[cat_column] = dataset[cat_column].astype('category') dataset[cat_column + '_cat'] = dataset[cat_column].cat.codes return dataset train = map_non_float_values(train) test = map_non_float_values(test) X = train.loc[:, train.dtypes != 'category'].drop('SalePrice', axis=1) y = train.SalePrice X_val = test.loc[:, test.dtypes != 'category'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) X_train = torch.Tensor(X_train.values) X_test = torch.Tensor(X_test.values) y_train = torch.Tensor(y_train.values) y_test = torch.Tensor(y_test.values) X_val = torch.Tensor(X_val.values) class HouseNet(torch.nn.Module): def __init__(self, hidden_neurons): super(HouseNet, self).__init__() self.fc1 = torch.nn.Linear(79, hidden_neurons) self.ac1 = torch.nn.ReLU() self.bn1 = torch.nn.BatchNorm1d(hidden_neurons) self.fc2 = torch.nn.Linear(hidden_neurons, hidden_neurons) self.ac2 = torch.nn.Sigmoid() self.bn2 = torch.nn.BatchNorm1d(hidden_neurons) self.fc3 = torch.nn.Linear(hidden_neurons, hidden_neurons) self.ac3 = torch.nn.Sigmoid() self.fc4 = torch.nn.Linear(hidden_neurons, 1) def forward(self, x): x = self.fc1(x) x = self.ac1(x) x = self.bn1(x) x = self.fc2(x) x = self.ac2(x) x = self.bn2(x) x = self.fc3(x) x = self.fc3(x) x = self.fc4(x) return x loss = torch.nn.MSELoss() house_net = HouseNet(50) optimizer = torch.optim.Adam(house_net.parameters(), lr=0.001, weight_decay=1e-05) batch_size = 50 r2 = [] test_loss_history = [] val_loss_history_avg = [] for epoch in range(50): batch_loss_history = [] order = np.random.permutation(len(X_train)) for start_index in range(0, len(X_train), batch_size): optimizer.zero_grad() house_net.train() batch_indexes = order[start_index:start_index + batch_size] X_batch = X_train[batch_indexes] y_batch = y_train[batch_indexes] preds = house_net.forward(X_batch) loss_value = loss(preds.view(preds.size()[0]), y_batch) batch_loss_history.append(loss_value) loss_value.backward() optimizer.step() house_net.eval() val_loss_history_avg.append(sum(batch_loss_history) / len(batch_loss_history)) test_preds = house_net.forward(X_test) test_loss_history.append(loss(test_preds.view(test_preds.size()[0]), y_test)) r2.append(r2_score(list(y_test), list(test_preds))) print(r2[-1])
code
74058231/cell_12
[ "text_plain_output_1.png" ]
from sklearn.metrics import classification_report, explained_variance_score, r2_score, max_error from sklearn.model_selection import train_test_split import numpy as np import numpy as np # linear algebra import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import torch train = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/train.csv', index_col='Id') test = pd.read_csv('/kaggle/input/house-prices-advanced-regression-techniques/test.csv', index_col='Id') def fill_na_in_data(dataset): df = dataset for column in df.columns: column_type = df[column].dtype if column_type == 'int64': df[column] = df[column].fillna(0) elif column_type == 'object': df[column] = df[column].fillna('None') elif column_type == 'float64': df[column] = df[column].fillna(df[column].median()) return df train = fill_na_in_data(train) test = fill_na_in_data(test) def map_non_float_values(dataset): for cat_column in dataset.dtypes.loc[dataset.dtypes == 'O'].index: dataset[cat_column] = dataset[cat_column].astype('category') dataset[cat_column + '_cat'] = dataset[cat_column].cat.codes return dataset train = map_non_float_values(train) test = map_non_float_values(test) X = train.loc[:, train.dtypes != 'category'].drop('SalePrice', axis=1) y = train.SalePrice X_val = test.loc[:, test.dtypes != 'category'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) X_train = torch.Tensor(X_train.values) X_test = torch.Tensor(X_test.values) y_train = torch.Tensor(y_train.values) y_test = torch.Tensor(y_test.values) X_val = torch.Tensor(X_val.values) class HouseNet(torch.nn.Module): def __init__(self, hidden_neurons): super(HouseNet, self).__init__() self.fc1 = torch.nn.Linear(79, hidden_neurons) self.ac1 = torch.nn.ReLU() self.bn1 = torch.nn.BatchNorm1d(hidden_neurons) self.fc2 = torch.nn.Linear(hidden_neurons, hidden_neurons) self.ac2 = torch.nn.Sigmoid() self.bn2 = torch.nn.BatchNorm1d(hidden_neurons) self.fc3 = torch.nn.Linear(hidden_neurons, hidden_neurons) self.ac3 = torch.nn.Sigmoid() self.fc4 = torch.nn.Linear(hidden_neurons, 1) def forward(self, x): x = self.fc1(x) x = self.ac1(x) x = self.bn1(x) x = self.fc2(x) x = self.ac2(x) x = self.bn2(x) x = self.fc3(x) x = self.fc3(x) x = self.fc4(x) return x loss = torch.nn.MSELoss() house_net = HouseNet(50) optimizer = torch.optim.Adam(house_net.parameters(), lr=0.001, weight_decay=1e-05) batch_size = 50 r2 = [] test_loss_history = [] val_loss_history_avg = [] for epoch in range(50): batch_loss_history = [] order = np.random.permutation(len(X_train)) for start_index in range(0, len(X_train), batch_size): optimizer.zero_grad() house_net.train() batch_indexes = order[start_index:start_index + batch_size] X_batch = X_train[batch_indexes] y_batch = y_train[batch_indexes] preds = house_net.forward(X_batch) loss_value = loss(preds.view(preds.size()[0]), y_batch) batch_loss_history.append(loss_value) loss_value.backward() optimizer.step() house_net.eval() val_loss_history_avg.append(sum(batch_loss_history) / len(batch_loss_history)) test_preds = house_net.forward(X_test) test_loss_history.append(loss(test_preds.view(test_preds.size()[0]), y_test)) r2.append(r2_score(list(y_test), list(test_preds))) predictions = house_net.forward(X_val).detach() predictions = predictions.numpy() output = pd.DataFrame({'Id': test.index, 'SalePrice': pd.DataFrame(predictions)[0]}) output.to_csv('my_submission.csv', index=False) print('Your submission was successfully saved!')
code
89139379/cell_21
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import seaborn as sns df = pd.read_csv('/kaggle/input/wine-quality-dataset/WineQT.csv') df.shape df.isnull().sum() df.Id.nunique() df.Id.unique() df = df.drop('Id', axis=1) df.quality.unique() df.quality.value_counts() df.quality.value_counts(normalize=True) sns.countplot(x='quality', data=df)
code
89139379/cell_13
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/wine-quality-dataset/WineQT.csv') df.shape df.isnull().sum() df.describe()
code
89139379/cell_33
[ "text_plain_output_1.png" ]
from sklearn.preprocessing import MinMaxScaler import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/wine-quality-dataset/WineQT.csv') df.shape df.isnull().sum() df.Id.nunique() df.Id.unique() df = df.drop('Id', axis=1) df.quality.unique() df.quality.value_counts() df.quality.value_counts(normalize=True) scaler = MinMaxScaler() norm_df = scaler.fit_transform(df.drop('quality', axis=1)) norm_df = pd.DataFrame(norm_df, columns=df.columns[:-1]) X = norm_df y = df.quality X.shape y.shape y.value_counts()
code
89139379/cell_20
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/wine-quality-dataset/WineQT.csv') df.shape df.isnull().sum() df.Id.nunique() df.Id.unique() df = df.drop('Id', axis=1) df.quality.unique() df.quality.value_counts() df.quality.value_counts(normalize=True)
code
89139379/cell_29
[ "text_html_output_1.png" ]
from sklearn.preprocessing import MinMaxScaler import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/wine-quality-dataset/WineQT.csv') df.shape df.isnull().sum() df.Id.nunique() df.Id.unique() df = df.drop('Id', axis=1) df.quality.unique() df.quality.value_counts() df.quality.value_counts(normalize=True) scaler = MinMaxScaler() norm_df = scaler.fit_transform(df.drop('quality', axis=1)) norm_df = pd.DataFrame(norm_df, columns=df.columns[:-1]) X = norm_df y = df.quality X.shape y.shape
code
89139379/cell_11
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/wine-quality-dataset/WineQT.csv') df.shape df.info()
code
89139379/cell_19
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/wine-quality-dataset/WineQT.csv') df.shape df.isnull().sum() df.Id.nunique() df.Id.unique() df = df.drop('Id', axis=1) df.quality.unique() df.quality.value_counts()
code
89139379/cell_1
[ "text_plain_output_1.png" ]
import os import numpy as np import pandas as pd import os for dirname, _, filenames in os.walk('/kaggle/input'): for filename in filenames: print(os.path.join(dirname, filename))
code
89139379/cell_7
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/wine-quality-dataset/WineQT.csv') df.head(7)
code
89139379/cell_18
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/wine-quality-dataset/WineQT.csv') df.shape df.isnull().sum() df.Id.nunique() df.Id.unique() df = df.drop('Id', axis=1) df.quality.unique()
code
89139379/cell_32
[ "text_plain_output_1.png" ]
from sklearn.preprocessing import MinMaxScaler import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/wine-quality-dataset/WineQT.csv') df.shape df.isnull().sum() df.Id.nunique() df.Id.unique() df = df.drop('Id', axis=1) df.quality.unique() df.quality.value_counts() df.quality.value_counts(normalize=True) scaler = MinMaxScaler() norm_df = scaler.fit_transform(df.drop('quality', axis=1)) norm_df = pd.DataFrame(norm_df, columns=df.columns[:-1]) X = norm_df y = df.quality X.shape y.shape X.shape
code
89139379/cell_15
[ "text_plain_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/wine-quality-dataset/WineQT.csv') df.shape df.isnull().sum() df.Id.nunique() df.Id.unique()
code
89139379/cell_24
[ "text_plain_output_1.png", "image_output_1.png" ]
from sklearn.preprocessing import MinMaxScaler import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/wine-quality-dataset/WineQT.csv') df.shape df.isnull().sum() df.Id.nunique() df.Id.unique() df = df.drop('Id', axis=1) df.quality.unique() df.quality.value_counts() df.quality.value_counts(normalize=True) scaler = MinMaxScaler() norm_df = scaler.fit_transform(df.drop('quality', axis=1)) norm_df = pd.DataFrame(norm_df, columns=df.columns[:-1]) norm_df.head()
code
89139379/cell_14
[ "text_html_output_1.png" ]
import pandas as pd import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) df = pd.read_csv('/kaggle/input/wine-quality-dataset/WineQT.csv') df.shape df.isnull().sum() df.Id.nunique()
code