content
stringlengths
22
815k
id
int64
0
4.91M
def pick_an_experiment(i): """ Input: { (repo_uoa) - experiment repository name (defaults to hackathon_local_repo, but can be overridden by '*') (extra_tags) - extra tags to filter } Output: { return - return code = 0, if successful > 0, if error (error) - error text if return > 0 } """ repo_uoa = i.get('repo_uoa', hackathon_local_repo) extra_tags = i.get('extra_tags') list_exp_adict = { 'action': 'list_experiments', 'module_uoa': work['self_module_uoa'], 'repo_uoa': repo_uoa, 'extra_tags': extra_tags, } r=ck.access( list_exp_adict ) if r['return']>0: return r if len(r['lst'])==0: return {'return':1, 'error':'No experiments to choose from - please relax your filters'} all_experiment_names = [ '{repo_uoa}:{module_uoa}:{data_uoa}'.format(**entry_dict) for entry_dict in r['lst']] number_of_experiments = len(all_experiment_names) select_adict = {'action': 'select_string', 'module_uoa': 'misc', 'options': all_experiment_names, 'default': str(number_of_experiments-1), 'question': 'Please select the experiment entry', } r=ck.access( select_adict ) if r['return']>0: return r else: cid = r['selected_value'] return {'return':0, 'cid': cid}
800
def run(args, image: str) -> str: """ Run docker image and mount user-provided folder with C++ files. Parameters ---------- args : dict-like User provided arguments parsed by argparse.ArgumentParser instance. image : str Name of image from which container is run Returns ------- str: Name of created container. Consist of torchlambda prefix and random string """ def _add_components(args): return ( '"' + ";".join(args.aws_components) + '"' if args.aws_components else '"core"' ) def _compilation(args): return '"' + args.compilation + '"' if args.compilation else "" container_name = "torchlambda-" + str(uuid.uuid4()) source_directory = pathlib.Path(args.source).absolute() if source_directory.is_dir(): command = "docker {} run {} -v {}:/usr/local/user_code --name {} {} {} ".format( *general.parse_none( args.docker, args.docker_run, source_directory, container_name, image, _add_components(args), ) ) command += _compilation(args) general.run( command, operation="building inference AWS Lambda package.", silent=args.silent, ) return container_name print("torchlambda:: Provided source files are not directory, exiting.") exit(1)
801
def get_top_design_list(oProject): """ Returns a list of the names of the top-level designs. Parameters ---------- oProject : pywin32 COMObject The HFSS project in which the operation will be performed. designname : str Name of the design to insert. Returns ------- design_list : list of str The top-level design list. """ design_list = list(oProject.GetTopDesignList()) return map(str,design_list)
802
def gere_operation_unaire(op, valeur1): """Redirige vers pourcent, racine_carre, cosinus ou sinus.""" pass
803
def test_atomic_language_pattern_3_nistxml_sv_iv_atomic_language_pattern_4_5(mode, save_output, output_format): """ Type atomic/language is restricted by facet pattern with value ([a-zA-Z]{2}|[iI]-[a-zA-Z]+|[xX]-[a-zA-Z]{1,8})(-[a-zA-Z]{3})*. """ assert_bindings( schema="nistData/atomic/language/Schema+Instance/NISTSchema-SV-IV-atomic-language-pattern-4.xsd", instance="nistData/atomic/language/Schema+Instance/NISTXML-SV-IV-atomic-language-pattern-4-5.xml", class_name="NistschemaSvIvAtomicLanguagePattern4", version="1.1", mode=mode, save_output=save_output, output_format=output_format, structure_style="filenames", )
804
def test_amazon_review_dataset_distribution(): """ Feature: Test AmazonReviewDataset in distribution. Description: test in a distributed state. Expectation: the data is processed successfully. """ data = ds.AmazonReviewDataset(FULL_DIR, usage='test', shuffle=False, num_shards=2, shard_id=0) count = 0 for _ in data.create_dict_iterator(num_epochs=1, output_numpy=True): count += 1 assert count == 2
805
def chi01(param_name: Union[str, None], yval: float, **kwargs) -> Dict[str, Any]: """Plot defaults for sweep_plotting.chi01""" kwargs["xlabel"] = kwargs.get("xlabel") or recast_name(param_name) kwargs["ylabel"] = kwargs.get("ylabel") or r"$\chi_{{01}}$ [{}]".format( units.get_units() ) kwargs["title"] = kwargs.get("title") or r"$\chi_{{01}}=${:.4f} {}".format( yval, units.get_units() ) return kwargs
806
def cstring(*args, **kwargs): """Return a colored string. Parameters ---------- args : iterable of str bold : bool color : str, {'HEADER', 'LIGHTBLUE', 'LIGHTGREEN', 'WARNING', 'FAIL', 'ENDC', 'BOLD', 'UNDERLINE' 'BLACK', 'RED', 'GREEN', 'YELLOW', 'BLUE', 'MAGENTA', 'CYAN', 'WHITE'} Terminal color to use. """ args, kwargs = _colorize(*args, **kwargs) cstr = " ".join(args) return cstr
807
def create_app(): """Construct the core application.""" app = Flask(__name__, instance_relative_config=False) app.config.from_object('config.Config') db.init_app(app) admin.init_app(app) basic_auth.init_app(app) with app.app_context(): from . import routes # Import routes db.create_all() # Create sql tables for our data models admin.add_view(ArticleView(Articles, db.session)) return app
808
def bytes_index(x: bytes, sub: bytes, start: int, end: int) -> int: """Where is the first location of a subsequence within a given slice of a bytes object? Compiling bytes.index compiles this function, when sub is a bytes object. This function is only intended to be executed in this compiled form. Args: x: The bytes object in which to search. sub: The subsequence to look for. start: Beginning of slice of x. Interpreted as slice notation. end: End of slice of x. Interpreted as slice notation. Returns: Lowest index of match within slice of x. Raises: ValueError: If sub is not found. """ ret = bytes_find(x, sub, start, end) if ret == -1: raise ValueError("subsection not found") return ret
809
def pickup_path(start_path, filename, default=None): """pickupping the config file path start path = "/foo/bar/boo", filename = "config.ini" finding candidates are ["/foo/bar/boo/config.ini", "/foo/bar/config.ini", "/foo/config.ini", "/config.ini"] """ start_point = os.path.normpath(os.path.abspath(start_path)) current = start_point candidates = [] while True: candidates.append(os.path.join(current, filename)) if current == "/": break current, dropped = os.path.split(current) for path in candidates: if os.path.exists(path): return path return default
810
def uniform(minimum, maximum, shape=[]): """uniform(minimum, maximum, shape=[]) returns array of given shape of random reals in given range""" if shape == []: shape = None return mt.uniform(minimum, maximum, shape)
811
def unquote_to_bytes(urlencoded_string): """Replace %xx escapes by their single-character equivalent, using the “iso-8859-1” encoding to decode all 8-bit values. """ return bytes( unquote(urlencoded_string, encoding='iso-8859-1'), encoding='iso-8859-1' )
812
def plot_history(history): """Plots training historical training and validation accuracies and losses Args: history (dict): training and validation losses and accuracies history. {'train': {'loss': [], 'acc': []}, 'valid': {'loss': [], 'acc': []}} """ fig, ax1 = plt.subplots() # Correctly number epochs starting from 1 epochs = np.arange(1, len(history['train']['loss']) + 1) # Plot losses tl, = ax1.plot(epochs, history['train']['loss'], 'g-', label='Training Loss') vl, = ax1.plot(epochs, history['valid']['loss'], 'b-', label='Validation Loss') ax1.set_xlabel('Training Epoch') ax1.set_ylabel('Loss') leg1 = ax1.legend(loc='lower right') # Plot accuracies ax2 = ax1.twinx() ta, = ax2.plot(epochs, history['train']['acc'], 'y-') va, = ax2.plot(epochs, history['valid']['acc'], 'r-') ax2.set_ylabel('Accuracy') leg2 = ax1.legend([ta, va], ['Training Accuracy','Validation Accuracy'], loc='upper right') ax1.add_artist(leg1) plt.legend(frameon=False) plt.show()
813
def qualifiedName(item): """Return the full name of an item, including any projects that it's in. If the item does not have a name, return ``None``. XXX: Doesn't include folders. """ names = [] # Note: assumes that the presence of a single null name in the parent tree # means that the item is not properly named. for i in iterParents(item): name = i.name() if name is None: return None names.append(name) return " / ".join(reversed(names))
814
def assign_columns_of_sector_levels(df_load): """ Add additional column capturing the sector level in the two columns :param df_load: df with at least on sector column :param ambiguous_sector_assignment: if there are sectors that can be assigned to multiple sector lengths (e.g., for government or household sectors), option to specify which sector assignment to keep. :return: df with new column for sector length """ df = replace_NoneType_with_empty_cells(df_load) # load cw with column of sector levels cw = load_sector_length_cw_melt() # merge df assigning sector lengths for s in ['Produced', 'Consumed']: df = df.merge(cw, how='left', left_on=f'Sector{s}By', right_on='Sector').drop(columns=['Sector']).rename( columns={'SectorLength': f'Sector{s}ByLength'}) df[f'Sector{s}ByLength'] = df[f'Sector{s}ByLength'].fillna(0) # There are cases where non-traditional sectors (non naics) have # multiple naics assignments. If there is a non-zero value in the other # sector length column, keep that row because sector lengths must always # match. # subset df into two dfs, one where one sector column length has a zero # value and the second where both sector length columns have non-zero # values df1 = df[(df['SectorProducedByLength'] == 0) | (df['SectorConsumedByLength'] == 0)] df2 = df[(df['SectorProducedByLength'] != 0) & (df['SectorConsumedByLength'] != 0)] # only keep rows where the values are equal df2e = df2[df2['SectorProducedByLength'] == df2['SectorConsumedByLength']] # concat dfs dfc = pd.concat([df1, df2e], ignore_index=True) # check for duplicates. Rows might be duplicated if a sector is the same # for multiple sector lengths duplicate_cols = [e for e in dfc.columns if e not in [ 'SectorProducedByLength', 'SectorConsumedByLength']] duplicate_df = dfc[dfc.duplicated(subset=duplicate_cols, keep=False)].reset_index(drop=True) if len(duplicate_df) > 0: log.warning('There are duplicate rows caused by ambiguous sectors.') dfc = dfc.sort_values(['SectorProducedByLength', 'SectorConsumedByLength']).reset_index(drop=True) return dfc
815
def add_matrices(matrix_a, matrix_b): """Add two n x n matrices """ return [[x + y for x, y in zip(matrix_a[i], matrix_b[i])] for i in range(len(matrix_a))]
816
def dataset() -> Generator[Dataset, None, None]: """Fetches a consistent view of the rows to be serialized. Serializers may further filter this list down if they wish.""" with transaction.atomic(): ds = Dataset() # The sheer width of the number of columns being pulled out of # the database is a significant fractino of the time (~5s/6s) # to run the query. Limiting the columns to just those that # are necessary accalerates this significantly -- with the # caveat that if any /other/ column is requested, it adds O(n) # additional queries, at significant cost! ds.locations = ( models.Location.objects.filter(state__abbreviation="CA", soft_deleted=False) .exclude( dn_latest_non_skip_report__planned_closure__lt=datetime.date.today() ) .select_related("dn_latest_non_skip_report__appointment_tag") .select_related("county") .select_related("location_type") .select_related("provider") .prefetch_related("dn_latest_non_skip_report__availability_tags") ).only( "public_id", "name", "county__name", "full_address", "latitude", "longitude", "location_type__name", "vaccinefinder_location_id", "vaccinespotter_location_id", "google_places_id", "county__vaccine_reservations_url", "dn_latest_non_skip_report__appointment_tag__slug", "dn_latest_non_skip_report__appointment_details", "dn_latest_non_skip_report__location_id", "dn_latest_non_skip_report__created_at", "dn_latest_non_skip_report__public_notes", "website", "provider__name", "provider__appointments_url", ) ds.counties = ( models.County.objects.filter(state__abbreviation="CA") .annotate( locations_with_reports=Count( "locations", filter=Q(locations__dn_latest_non_skip_report_id__isnull=False), ) ) .annotate( locations_with_latest_yes=Count( "locations", filter=Q( locations__dn_latest_non_skip_report_id=F( "locations__dn_latest_yes_report_id" ), ), ) ) ) ds.providers = ( models.Provider.objects.all() .select_related("provider_type") .prefetch_related("phases") ) yield ds
817
def create_error_handlers(blueprint): """Create error handlers on blueprint.""" blueprint.errorhandler(PIDInvalidAction)(create_api_errorhandler( status=403, message='Invalid action' )) records_rest_error_handlers(blueprint)
818
def assert_allclose( actual: int, desired: int, rtol: float, err_msg: Literal["ngroupsfailed"] ): """ usage.statsmodels: 1 """ ...
819
def no_pretrain_inner_speech(subject): """This function aims at training a model without pretraining by training only on the inner speech condition of a sigle subject :return: metric history for every of the n k-folds :rtype: list of dictonaries """ ###### DATA data, events = dp.load_data(subjects=[subject], filter_action=True) # shuffle data and labels data, events = sklearn.utils.shuffle(data, events) # save memory by converting from 64bit to 32bit floats data = data.astype(np.float32) # filter out only the inner speech condition data, events = dp.choose_condition(data, events, 'inner speech') # select the column containing directions (up, down, left, right) events = events[:, 1] # one-hot event data events = np_utils.to_categorical(events, 4) # zscore normalize the data data = scipy.stats.zscore(data, axis=2) # reshape data = data.reshape(*data.shape, 1) print("Data Prepared.") ###### MODEL gpus = tf.config.list_logical_devices('GPU') mirrored_strategy = tf.distribute.MirroredStrategy(gpus) with mirrored_strategy.scope(): # create EEGNet (source: https://github.com/vlawhern/arl-eegmodels) model = EEGNet(nb_classes=4, Chans=data.shape[1], Samples=data.shape[2], dropoutRate=DROPOUT, kernLength=KERNEL_LENGTH, F1=8, D=2, F2=16, dropoutType='Dropout') # adam optimizer optimizer = tf.keras.optimizers.Adam() # compile model model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy']) model.build(input_shape=(BATCH_SIZE, *data.shape[1:])) path = './models/saved_models/no_pretrain_inner_speech' model.save(path) del model ###### KFOLD TRAINING history_accumulator = [] for _ in range(N_CHECKS): history = kfold_training(data, events, path, BATCH_SIZE, EPOCHS) history_accumulator += history print(history_accumulator) print("Subject", subject, " Mean Accuracy:", np.mean([h['val_accuracy'][-1] for h in history_accumulator])) return history_accumulator
820
async def _expect_io(): """Wait until a line of text comes in from the EQ log.""" try: with eqlog.tap() as t: await t.next_line() except asyncio.CancelledError: pass
821
def main(): """Entrypoint""" parser = argparse.ArgumentParser(description=__doc__) parser.add_argument( '--cpu-arch', metavar='ARCH', default=platform.architecture()[0], choices=('64bit', '32bit'), help=('Filter build outputs by a target CPU. ' 'This is the same as the "arch" key in FILES.cfg. ' 'Default (from platform.architecture()): %(default)s')) args = parser.parse_args() build_outputs = Path('out/Default') output = Path('../ungoogled-chromium_{}-{}_windows.zip'.format(get_chromium_version(), get_release_revision())) files_generator = buildkit.filescfg.filescfg_generator( Path('chrome/tools/build/win/FILES.cfg'), build_outputs, args.cpu_arch) buildkit.filescfg.create_archive(files_generator, tuple(), build_outputs, output)
822
def build_put_big_decimal_negative_decimal_request(**kwargs: Any) -> HttpRequest: """Put big decimal value -99999999.99. See https://aka.ms/azsdk/python/protocol/quickstart for how to incorporate this request builder into your code flow. :keyword json: The default value is -99999999.99. Note that overriding this default value may result in unsupported behavior. :paramtype json: float :return: Returns an :class:`~azure.core.rest.HttpRequest` that you will pass to the client's `send_request` method. See https://aka.ms/azsdk/python/protocol/quickstart for how to incorporate this response into your code flow. :rtype: ~azure.core.rest.HttpRequest """ content_type = kwargs.pop("content_type", None) # type: Optional[str] json = kwargs.pop("json", -99999999.99) # type: float accept = "application/json" # Construct URL url = "/number/big/decimal/-99999999.99" # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] if content_type is not None: header_parameters["Content-Type"] = _SERIALIZER.header("content_type", content_type, "str") header_parameters["Accept"] = _SERIALIZER.header("accept", accept, "str") return HttpRequest(method="PUT", url=url, headers=header_parameters, json=json, **kwargs)
823
def handle_record_end(): """Forward internal bus message to external bus.""" LOG.info("End Recording...") context = {'client_name': 'mycroft_listener', 'source': 'audio', 'destination': ["skills"]} bus.emit(Message('recognizer_loop:record_end', context=context))
824
def make_subplots( rows=1, cols=1, shared_xaxes=False, shared_yaxes=False, start_cell="top-left", print_grid=False, horizontal_spacing=None, vertical_spacing=None, subplot_titles=None, column_widths=None, row_heights=None, specs=None, insets=None, column_titles=None, row_titles=None, x_title=None, y_title=None, figure=None, **kwargs, ) -> go.Figure: """ Return an instance of plotly.graph_objs.Figure with predefined subplots configured in 'layout'. Parameters ---------- rows: int (default 1) Number of rows in the subplot grid. Must be greater than zero. cols: int (default 1) Number of columns in the subplot grid. Must be greater than zero. shared_xaxes: boolean or str (default False) Assign shared (linked) x-axes for 2D cartesian subplots - True or 'columns': Share axes among subplots in the same column - 'rows': Share axes among subplots in the same row - 'all': Share axes across all subplots in the grid. shared_yaxes: boolean or str (default False) Assign shared (linked) y-axes for 2D cartesian subplots - 'columns': Share axes among subplots in the same column - True or 'rows': Share axes among subplots in the same row - 'all': Share axes across all subplots in the grid. start_cell: 'bottom-left' or 'top-left' (default 'top-left') Choose the starting cell in the subplot grid used to set the domains_grid of the subplots. - 'top-left': Subplots are numbered with (1, 1) in the top left corner - 'bottom-left': Subplots are numbererd with (1, 1) in the bottom left corner print_grid: boolean (default True): If True, prints a string representation of the plot grid. Grid may also be printed using the `Figure.print_grid()` method on the resulting figure. horizontal_spacing: float (default 0.2 / cols) Space between subplot columns in normalized plot coordinates. Must be a float between 0 and 1. Applies to all columns (use 'specs' subplot-dependents spacing) vertical_spacing: float (default 0.3 / rows) Space between subplot rows in normalized plot coordinates. Must be a float between 0 and 1. Applies to all rows (use 'specs' subplot-dependents spacing) subplot_titles: list of str or None (default None) Title of each subplot as a list in row-major ordering. Empty strings ("") can be included in the list if no subplot title is desired in that space so that the titles are properly indexed. specs: list of lists of dict or None (default None) Per subplot specifications of subplot type, row/column spanning, and spacing. ex1: specs=[[{}, {}], [{'colspan': 2}, None]] ex2: specs=[[{'rowspan': 2}, {}], [None, {}]] - Indices of the outer list correspond to subplot grid rows starting from the top, if start_cell='top-left', or bottom, if start_cell='bottom-left'. The number of rows in 'specs' must be equal to 'rows'. - Indices of the inner lists correspond to subplot grid columns starting from the left. The number of columns in 'specs' must be equal to 'cols'. - Each item in the 'specs' list corresponds to one subplot in a subplot grid. (N.B. The subplot grid has exactly 'rows' times 'cols' cells.) - Use None for a blank a subplot cell (or to move past a col/row span). - Note that specs[0][0] has the specs of the 'start_cell' subplot. - Each item in 'specs' is a dictionary. The available keys are: * type (string, default 'xy'): Subplot type. One of - 'xy': 2D Cartesian subplot type for scatter, bar, etc. - 'scene': 3D Cartesian subplot for scatter3d, cone, etc. - 'polar': Polar subplot for scatterpolar, barpolar, etc. - 'ternary': Ternary subplot for scatterternary - 'mapbox': Mapbox subplot for scattermapbox - 'domain': Subplot type for traces that are individually positioned. pie, parcoords, parcats, etc. - trace type: A trace type which will be used to determine the appropriate subplot type for that trace * secondary_y (bool, default False): If True, create a secondary y-axis positioned on the right side of the subplot. Only valid if type='xy'. * colspan (int, default 1): number of subplot columns for this subplot to span. * rowspan (int, default 1): number of subplot rows for this subplot to span. * l (float, default 0.0): padding left of cell * r (float, default 0.0): padding right of cell * t (float, default 0.0): padding right of cell * b (float, default 0.0): padding bottom of cell - Note: Use 'horizontal_spacing' and 'vertical_spacing' to adjust the spacing in between the subplots. insets: list of dict or None (default None): Inset specifications. Insets are subplots that overlay grid subplots - Each item in 'insets' is a dictionary. The available keys are: * cell (tuple, default=(1,1)): (row, col) index of the subplot cell to overlay inset axes onto. * type (string, default 'xy'): Subplot type * l (float, default=0.0): padding left of inset in fraction of cell width * w (float or 'to_end', default='to_end') inset width in fraction of cell width ('to_end': to cell right edge) * b (float, default=0.0): padding bottom of inset in fraction of cell height * h (float or 'to_end', default='to_end') inset height in fraction of cell height ('to_end': to cell top edge) column_widths: list of numbers or None (default None) list of length `cols` of the relative widths of each column of suplots. Values are normalized internally and used to distribute overall width of the figure (excluding padding) among the columns. For backward compatibility, may also be specified using the `column_width` keyword argument. row_heights: list of numbers or None (default None) list of length `rows` of the relative heights of each row of subplots. If start_cell='top-left' then row heights are applied top to bottom. Otherwise, if start_cell='bottom-left' then row heights are applied bottom to top. For backward compatibility, may also be specified using the `row_width` kwarg. If specified as `row_width`, then the width values are applied from bottom to top regardless of the value of start_cell. This matches the legacy behavior of the `row_width` argument. column_titles: list of str or None (default None) list of length `cols` of titles to place above the top subplot in each column. row_titles: list of str or None (default None) list of length `rows` of titles to place on the right side of each row of subplots. If start_cell='top-left' then row titles are applied top to bottom. Otherwise, if start_cell='bottom-left' then row titles are applied bottom to top. x_title: str or None (default None) Title to place below the bottom row of subplots, centered horizontally y_title: str or None (default None) Title to place to the left of the left column of subplots, centered vertically figure: go.Figure or None (default None) If None, a new go.Figure instance will be created and its axes will be populated with those corresponding to the requested subplot geometry and this new figure will be returned. If a go.Figure instance, the axes will be added to the layout of this figure and this figure will be returned. If the figure already contains axes, they will be overwritten. Examples -------- Example 1: >>> # Stack two subplots vertically, and add a scatter trace to each >>> from plotly.subplots import make_subplots >>> import plotly.graph_objects as go >>> fig = make_subplots(rows=2) This is the format of your plot grid: [ (1,1) xaxis1,yaxis1 ] [ (2,1) xaxis2,yaxis2 ] >>> fig.add_scatter(y=[2, 1, 3], row=1, col=1) # doctest: +ELLIPSIS Figure(...) >>> fig.add_scatter(y=[1, 3, 2], row=2, col=1) # doctest: +ELLIPSIS Figure(...) or see Figure.append_trace Example 2: >>> # Stack a scatter plot >>> fig = make_subplots(rows=2, shared_xaxes=True) This is the format of your plot grid: [ (1,1) xaxis1,yaxis1 ] [ (2,1) xaxis2,yaxis2 ] >>> fig.add_scatter(y=[2, 1, 3], row=1, col=1) # doctest: +ELLIPSIS Figure(...) >>> fig.add_scatter(y=[1, 3, 2], row=2, col=1) # doctest: +ELLIPSIS Figure(...) Example 3: >>> # irregular subplot layout (more examples below under 'specs') >>> fig = make_subplots(rows=2, cols=2, ... specs=[[{}, {}], ... [{'colspan': 2}, None]]) This is the format of your plot grid: [ (1,1) xaxis1,yaxis1 ] [ (1,2) xaxis2,yaxis2 ] [ (2,1) xaxis3,yaxis3 - ] >>> fig.add_trace(go.Scatter(x=[1,2,3], y=[2,1,2]), row=1, col=1) # doctest: +ELLIPSIS Figure(...) >>> fig.add_trace(go.Scatter(x=[1,2,3], y=[2,1,2]), row=1, col=2) # doctest: +ELLIPSIS Figure(...) >>> fig.add_trace(go.Scatter(x=[1,2,3], y=[2,1,2]), row=2, col=1) # doctest: +ELLIPSIS Figure(...) Example 4: >>> # insets >>> fig = make_subplots(insets=[{'cell': (1,1), 'l': 0.7, 'b': 0.3}]) This is the format of your plot grid: [ (1,1) xaxis1,yaxis1 ] With insets: [ xaxis2,yaxis2 ] over [ (1,1) xaxis1,yaxis1 ] >>> fig.add_scatter(x=[1,2,3], y=[2,1,1]) # doctest: +ELLIPSIS Figure(...) >>> fig.add_scatter(x=[1,2,3], y=[2,1,2], xaxis='x2', yaxis='y2') # doctest: +ELLIPSIS Figure(...) Example 5: >>> # include subplot titles >>> fig = make_subplots(rows=2, subplot_titles=('Plot 1','Plot 2')) This is the format of your plot grid: [ (1,1) x1,y1 ] [ (2,1) x2,y2 ] >>> fig.add_scatter(x=[1,2,3], y=[2,1,2], row=1, col=1) # doctest: +ELLIPSIS Figure(...) >>> fig.add_bar(x=[1,2,3], y=[2,1,2], row=2, col=1) # doctest: +ELLIPSIS Figure(...) Example 6: Subplot with mixed subplot types >>> fig = make_subplots(rows=2, cols=2, ... specs=[[{'type': 'xy'}, {'type': 'polar'}], ... [{'type': 'scene'}, {'type': 'ternary'}]]) >>> fig.add_traces( ... [go.Scatter(y=[2, 3, 1]), ... go.Scatterpolar(r=[1, 3, 2], theta=[0, 45, 90]), ... go.Scatter3d(x=[1, 2, 1], y=[2, 3, 1], z=[0, 3, 5]), ... go.Scatterternary(a=[0.1, 0.2, 0.1], ... b=[0.2, 0.3, 0.1], ... c=[0.7, 0.5, 0.8])], ... rows=[1, 1, 2, 2], ... cols=[1, 2, 1, 2]) # doctest: +ELLIPSIS Figure(...) """ return _sub.make_subplots( rows, cols, shared_xaxes, shared_yaxes, start_cell, print_grid, horizontal_spacing, vertical_spacing, subplot_titles, column_widths, row_heights, specs, insets, column_titles, row_titles, x_title, y_title, figure, **kwargs, )
825
def op_table(name): """Get the symbol `name' as an int8_t[].""" return gdb.parse_and_eval("&'" + name + "'").cast(T('int8_t').pointer())
826
def add_pyramid_paths( spec, route_name, request=None, request_method=None, operations=None, autodoc=True, **kwargs ): """ Adds a route and view info to spec :param spec: ApiSpec object :param route_name: Route name to inspect :param request: Request object, if `None` then `get_current_request()` will be used :param request_method: Request method predicate :param operations: Operations dict that will be used instead of introspection :param autodoc: Include information about endpoints without markdown docstring :param kwargs: Additional kwargs for predicate matching :return: """ if request is None: request = get_current_request() registry = request.registry introspector = registry.introspector route = introspector.get("routes", route_name) introspectables = introspector.related(route) ignored_view_names = kwargs.pop("ignored_view_names", None) # needs to be rewritten to internal name if request_method: kwargs["request_methods"] = request_method for maybe_view in introspectables: # skip excluded views/non-views if ( not is_view(maybe_view) or not check_methods_matching(maybe_view, **kwargs) or should_ignore_view(maybe_view, ignored_views=ignored_view_names) ): continue pattern = route["pattern"] pattern = reformat_pattern(pattern) if maybe_view.get("match_param"): # replace route patterns that are specified in the view's match_param argument, # so that route URLs are unique and accurate match_params = MatchParamPredicate(maybe_view["match_param"], None) for key, value in match_params.reqs: pattern = pattern.replace("{%s}" % key, value) spec.path( pattern, operations=get_operations(maybe_view, operations, autodoc=autodoc) )
827
def nf_masks_to_neurof_dict(binary_masks: np.ndarray, dataset_name: str) -> Dict[str, Any]: """ Take as input a tensor of binary mask and produces dict format for neurofinder Args: binary_masks: 3d ndarray (components x dimension 1 x dimension 2) dataset_filename: name of the dataset Returns: dset: dict dataset in neurofinder format to be saved in json """ regions = [] for m in binary_masks: coords = [[int(x), int(y)] for x, y in zip(*np.where(m))] regions.append({"coordinates": coords}) dset = {"regions": regions, "dataset": dataset_name} return dset
828
def get_domain_machine_command(): """Retrieves a collection of Machines that have communicated to or from a given domain address. Returns: (str, dict, dict). Human readable, context, raw response """ headers = ['ID', 'ComputerDNSName', 'OSPlatform', 'LastIPAddress', 'LastExternalIPAddress', 'HealthStatus', 'RiskScore', 'ExposureLevel'] domain = demisto.args().get('domain') response = get_domain_machines_request(domain) machines_list = get_machines_list(response) human_readable = tableToMarkdown(f'Machines that have communicated with {domain} domain:', machines_list, headers=headers, removeNull=True) context_output = { 'Domain': domain, 'Machines': machines_list } entry_context = { 'MicrosoftATP.DomainMachine(val.Domain === obj.Domain)': context_output } return human_readable, entry_context, response
829
def flatten_dict(source_dict, name_delimiter='_', inner_name=False): """ flatten nest dict Parameters ---------- source_dict : nest dict name_delimiter : flatten name delimiter(non-use when inner_name is True) inner_name : False, use innermost name as retrun dict key or not Returns ------- flatten dict Examples -------- >>> from tidyframe import flatten_dict >>> nest_dict = { ... 'a': 1, ... 'b': [1, 2], ... 'c': { ... 'cc1': 3, ... 'cc2': 4 ... }, ... 'd': { ... 'd1': 5, ... 'd2': { ... 'dd1': 6, ... 'dd2': 7 ... } ... } ... } >>> flatten_dict(nest_dict) {'a': 1, 'b': [1, 2], 'c_cc1': 3, 'c_cc2': 4, 'd_d1': 5, 'd_d2_dd1': 6, 'd_d2_dd2': 7} >>> flatten_dict(nest_dict, inner_name=True) {'a': 1, 'b': [1, 2], 'cc1': 3, 'cc2': 4, 'd1': 5, 'dd1': 6, 'dd2': 7} """ assert isinstance(source_dict, dict), "import source_dict is not dict" json_name = {} for key in source_dict.keys(): if isinstance(get_in(source_dict, [key]), dict): val = [True, [key]] json_name.update({key: val}) else: val = [False, [key]] json_name.update({key: val}) while True: key_inner = list(filter(lambda x: json_name.get(x)[0], json_name)) if key_inner: for x in key_inner: dict_to_update_json_name = {} val = json_name.get(x)[1] for key in get_in(source_dict, val).keys(): val_in = copy(val) val_in.append(key) if isinstance(get_in(source_dict, val_in), dict): dict_to_update = { reduce(lambda x, y: x + name_delimiter + y, val_in): [True, val_in] } else: dict_to_update = { reduce(lambda x, y: x + name_delimiter + y, val_in): [False, val_in] } dict_to_update_json_name.update(dict_to_update) json_name.update(dict_to_update_json_name) json_name.pop(x) else: break if inner_name: return { json_name.get(x)[1][-1]: get_in(source_dict, json_name.get(x)[1]) for x in json_name.keys() } else: return { x: get_in(source_dict, json_name.get(x)[1]) for x in json_name.keys() }
830
def matrix_multiply(A, B): """ Multiply two matrices A and B. :param A: the right matrix :param B: the left matrix :return: A * B """ # define m and n for the matrix as well as l, the connecting dimension between A and B m, l, n = len(A), len(A[0]), len(B[0]) # initialize an all zeros matrix C = [[0.0 for _ in range(len(B[0]))] for _ in range(len(A))] # iterative over the rows of C for i in range(m): # iterative over the columns of C for j in range(n): # set C[i][j] to the dot product of ith row of A and the jth column of B C[i][j] = sum(A[i][k] * B[k][j] for k in range(l)) # return the matrix C = A @ B return C
831
def create_normalized_frequency_files(scenario, character_set, letter_files, bigram_files): """ Filters the given frequency files with respect to the given character set and normalizes the frequencies such that they sum up to 1. Takes care of combined characters and distributing the frequencies accordingly. Then writes them to a file for later use. Both contain the frequencies of both, letters and characters (+ fixed characters), as well as letter-character and character-character pairs The letters and characters that have no frequency available, get zero frequency. At the end writes the frequencies to the corresponding file in the input folder. Parameters: scenario: the scenario to obtain the fixed characters char_set: the name of the character set to filter for letter_files: a list of file names that should be filtered for letter frequencies bigram_files: a list of file names that should be filtered for bigram frequencies """ if scenario != "" and character_set != "": set_scenario_files(scenario, character_set) # character, fixed character, letters all_chars = get_characters() + get_letters() + list(get_fixed_mapping().keys()) # characters that should be replaced by others in the frequency table because they represent the same character # according to our understanding replace = get_replace_characters() # 1. read the frequencies from the corresponding files as they are for letter_file in letter_files: name_addition = "_"+letter_file.split("_")[-1][:-4] p_single_all = pd.read_csv(letter_file, sep=" ", encoding="utf-8", index_col=0, quoting=3) p_single_all = p_single_all.dropna() p_single_all = p_single_all.to_dict()[u'frequency'] p_single = {c: 0 for c in all_chars} # -------------- SINGLE ------------------------ # Go through all symbols in the given frequency list. # If the symbol is in the character list, add its frequency to the one in the probability list. If not check if it is a # composed character. If yes and the diacritic mark is in the character list, add its frequency to the frequency # of the corresponding characters (character + diacritic mark) for c, v in p_single_all.items(): if c in replace: c = replace[c] c = correct_diacritic(c) # in case this is a wrong form of a "d" annotated diacritic if c in p_single.keys(): p_single[c] += v else: c_dec = decompose(c) if len(c_dec) > 1: # it's a composed character, take it apart and add the frequency to the frequency of its components if c_dec[1] in unicode_diacritic.keys(): diacritic = unicode_diacritic[c_dec[1]] if diacritic in p_single.keys(): p_single[diacritic] += v letter = c_dec[0] if letter in p_single.keys(): p_single[letter] += v elif c in diacritic_unicode.keys(): # it's a single form of the diacritic mark, e.g. ~. Add frequency to diacritic and to space but only if # it's not available in the characterset if not c in all_chars: diacritic = unicode_diacritic[diacritic_unicode[c]] if diacritic in all_chars: p_single[diacritic] += v p_single["space"] += v # else it's a character we don't care about # Check if any of the values remained 0: for c, v in p_single.items(): if v == 0: print(u"No frequency for %s" % c) # Normalize again s = np.sum(list(p_single.values())) p_single_normalized = {c: v / float(s) for c, v in p_single.items()} # Write LETTERS to file f = codecs.open("input/frequencies/frequency_letters" + name_addition + "_" + character_set + ".txt", 'w', encoding="utf-8") f.write("letter frequency\n") for c, v in p_single_normalized.items(): f.write("%s %s" % (c, repr(v))) f.write("\n") f.close() # -------------- BIGRAM ------------------------ # 3. go through bigrams and correct them according to the given characters, # that is letter pairs with accented characters need to be distributed to other letter pairs accoridng to the # keypresses that needed to be made. for bigram_file in bigram_files: name_addition = "_"+bigram_file.split("_")[-1][:-4] p_bigrams_all = _read_tuple_list_to_dict(bigram_file) p_bigrams = {(c1, c2): 0 for c1 in all_chars for c2 in all_chars} for (c1, c2), v in p_bigrams_all.items(): c1 = correct_diacritic(c1) c2 = correct_diacritic(c2) if c1 in replace: c1 = replace[c1] if c2 in replace: c2 = replace[c2] # decompose first character c_c1 = [] if len(c1) == 0: print(c1, c2, v) if c1 in all_chars: # to-be-mapped character c_c1 = [c1] elif c1[0] in diacritic_unicode.keys(): # single form of the diacritic mark, e.g. ~, which needs to be produced by the bigram ~ + space diacritic = unicode_diacritic[diacritic_unicode[c1[0]]] # get the right diacritic if diacritic in all_chars: c_c1 = [diacritic, "space"] else: c1_d = decompose(c1) if len(c1_d) > 1: # composed character, otherwise its a character we don't care about c1_1 = get_unicode_diacritic(c1_d[1]) # decompose give diacritic and letter in wrong order c1_2 = get_unicode_diacritic(c1_d[0]) if c1_1 in all_chars and c1_2 in all_chars: c_c1 = [c1_1, c1_2] # decompose second character c_c2 = [] if c2 in all_chars: # to-be-mapped character c_c2 = [c2] elif c2[0] in diacritic_unicode.keys(): # single form of the diacritic mark, e.g. ~, which needs to be produced by the bigram ~ + space diacritic = unicode_diacritic[diacritic_unicode[c2[0]]] # get the right diacritic if diacritic in all_chars: c_c2 = [diacritic, "space"] else: c2_d = decompose(c2) if len(c2_d) > 1: # composed character, otherwise its a character we don't care about c2_1 = get_unicode_diacritic(c2_d[1]) # decompose give diacritic and letter in wrong order c2_2 = get_unicode_diacritic(c2_d[0]) if c2_1 in all_chars and c2_2 in all_chars: c_c2 = [c2_1, c2_2] # now add the frequency to the corresponding bigrams # c_c1 and c_c2 can contain 0, 1, or 2 letters. If 0 ignore the bigram. if len(c_c1) > 0 and len(c_c2) > 0: # add bigram for decomposed c1 if len(c_c1) == 2: p_bigrams[(c_c1[0], c_c1[1])] += v # add bigram for decomposed c2 if len(c_c2) == 2: p_bigrams[(c_c2[0], c_c2[1])] += v # add bigram for transition from c1 to c2 p_bigrams[(c_c1[-1], c_c2[0])] += v # normalize s = np.sum(list(p_bigrams.values())) p_bigrams_normalized = {(c1, c2): v / float(s) for (c1, c2), v in p_bigrams.items()} # Write BIGRAMS to file f = codecs.open("input/frequencies/frequency_bigrams" + name_addition + "_" + character_set + ".txt", 'w', encoding="utf-8") for (c1, c2), v in p_bigrams_normalized.items(): f.write("%s %s %s" % (c1, c2, repr(float(v)))) f.write("\n") f.close()
832
def hard_light(image1, image2): """ Superimposes two videos on top of each other using the Hard Light algorithm :rtype: :py:class:`~PIL.Image.Image` """ image1.load() image2.load() return image1._new(image1.im.chop_hard_light(image2.im))
833
def carveThumbs(offset, length, thumbfile, thumbname, width, height, export): """ :param offset: Offset in thumbnails.data for thumbnail :param length: Lenght of data to carve for thumbnail in thumbnails.data :param thumbfile: Source thumbnails.data file to carve from :param thumbname: Name of the file that has the thumbnail :param export: Either output directory in single plugin mode or mac_info object :return: Nothing """ if length is not None: # Parse via mac_info if type(export) is not str: handle = openDeadbox(thumbfile, export) # Parse via single plugin else: handle = openSingle(thumbfile) # Seek and read thumbnails.data from offsets and lengths found in the index.sqlite handle.seek(offset) thumb = handle.read(length) handle.close() # Use the Pillow Library Image to parse and export files as images imgSize = (width, height) img = Image.frombytes('RGBA', imgSize, thumb, decoder_name='raw') # Parse via mac_info if type(export) is not str: export_folder = os.path.join(export.output_params.export_path, __Plugin_Name, "Thumbnails") # Parse via single plugin else: export_folder = os.path.join(export, __Plugin_Name, "Thumbnails") # Create output directory if doesn't exist if not os.path.exists(export_folder): os.makedirs(export_folder) # Set up output file with png extension attached export_file = os.path.join(export_folder, thumbname + " - " + str(width) + "x" + str(height) + ".png") log.debug("Attempting to copy out thumbnail to file: " + export_file) img.save(export_file)
834
def show(*actors, **options): """ Create on the fly an instance of class ``Plotter`` and show the object(s) provided. Allowed input objects types are: ``str``, ``Mesh``, ``Volume``, ``Picture``, ``Assembly`` ``vtkPolyData``, ``vtkActor``, ``vtkActor2D``, ``vtkImageActor``, ``vtkAssembly`` or ``vtkVolume``. If filename is given, its type is guessed based on its extension. Supported formats are: `vtu, vts, vtp, ply, obj, stl, 3ds, xml, neutral, gmsh, pcd, xyz, txt, byu, tif, slc, vti, mhd, png, jpg`. :param int at: number of the renderer to plot to, if more than one exists :param list shape: Number of sub-render windows inside of the main window. Specify two across with ``shape=(2, 1)`` and a two by two grid with ``shape=(2, 2)``. By default there is only one renderer. Can also accept a shape as string descriptor. E.g.: - shape="3|1" means 3 plots on the left and 1 on the right, - shape="4/2" means 4 plots on top of 2 at bottom. :param int axes: set the type of axes to be shown - 0, no axes - 1, draw three gray grid walls - 2, show cartesian axes from (0,0,0) - 3, show positive range of cartesian axes from (0,0,0) - 4, show a triad at bottom left - 5, show a cube at bottom left - 6, mark the corners of the bounding box - 7, draw a 3D ruler at each side of the cartesian axes - 8, show the ``vtkCubeAxesActor`` object - 9, show the bounding box outLine - 10, show three circles representing the maximum bounding box - 11, show a large grid on the x-y plane - 12, show polar axes - 13, draw a simple ruler at the bottom of the window Axis type-1 can be fully customized by passing a dictionary ``axes=dict()`` where: Check ``addons.Axes()`` for the full list of options. :param float azimuth/elevation/roll: move camera accordingly :param str viewup: either ['x', 'y', 'z'] or a vector to set vertical direction :param bool resetcam: re-adjust camera position to fit objects :param dict camera: Camera parameters can further be specified with a dictionary assigned to the ``camera`` keyword (E.g. `show(camera={'pos':(1,2,3), 'thickness':1000,})`) - pos, `(list)`, the position of the camera in world coordinates - focalPoint `(list)`, the focal point of the camera in world coordinates - viewup `(list)`, the view up direction for the camera - distance `(float)`, set the focal point to the specified distance from the camera position. - clippingRange `(float)`, distance of the near and far clipping planes along the direction of projection. - parallelScale `(float)`, scaling used for a parallel projection, i.e. the height of the viewport in world-coordinate distances. The default is 1. Note that the "scale" parameter works as an "inverse scale", larger numbers produce smaller images. This method has no effect in perspective projection mode. - thickness `(float)`, set the distance between clipping planes. This method adjusts the far clipping plane to be set a distance 'thickness' beyond the near clipping plane. - viewAngle `(float)`, the camera view angle, which is the angular height of the camera view measured in degrees. The default angle is 30 degrees. This method has no effect in parallel projection mode. The formula for setting the angle up for perfect perspective viewing is: angle = 2*atan((h/2)/d) where h is the height of the RenderWindow (measured by holding a ruler up to your screen) and d is the distance from your eyes to the screen. :param bool interactive: pause and interact with window (True) or continue execution (False) :param float rate: maximum rate of `show()` in Hertz :param int interactorStyle: set the type of interaction - 0 = TrackballCamera [default] - 1 = TrackballActor - 2 = JoystickCamera - 3 = JoystickActor - 4 = Flight - 5 = RubberBand2D - 6 = RubberBand3D - 7 = RubberBandZoom - 8 = Context - 9 = 3D - 10 = Terrain - 11 = Unicam :param bool q: force program to quit after `show()` command returns. :param bool new: if set to `True`, a call to ``show`` will instantiate a new ``Plotter`` object (a new window) instead of reusing the first created. :return: the current ``Plotter`` class instance. .. note:: With multiple renderers, keyword ``at`` can become a `list`, e.g. .. code-block:: python from vedo import * s = Sphere() c = Cube() p = Paraboloid() show(s, c, at=[0, 1], shape=(3,1)) show(p, at=2, interactive=True) # # is equivalent to: plt = Plotter(shape=(3,1)) s = Sphere() c = Cube() p = Paraboloid() plt.show(s, at=0) plt.show(p, at=1) plt.show(c, at=2, interactive=True) """ at = options.pop("at", None) shape = options.pop("shape", (1, 1)) N = options.pop("N", None) pos = options.pop("pos", (0, 0)) size = options.pop("size", "auto") screensize = options.pop("screensize", "auto") title = options.pop("title", "") bg = options.pop("bg", "white") bg2 = options.pop("bg2", None) axes = options.pop("axes", settings.defaultAxesType) interactive = options.pop("interactive", None) offscreen = options.pop("offscreen", False) sharecam = options.pop("sharecam", True) resetcam = options.pop("resetcam", True) zoom = options.pop("zoom", None) viewup = options.pop("viewup", "") azimuth = options.pop("azimuth", 0) elevation = options.pop("elevation", 0) roll = options.pop("roll", 0) camera = options.pop("camera", None) interactorStyle = options.pop("interactorStyle", 0) q = options.pop("q", False) newPlotter = options.pop("new", False) if len(options): for op in options: printc("Warning: unknown keyword in show():", op, c='y') if len(actors) == 0: actors = None elif len(actors) == 1: actors = actors[0] else: actors = utils.flatten(actors) if settings.plotter_instance and not newPlotter: # Plotter exists plt = settings.plotter_instance else: # Plotter must be created if utils.isSequence(at): # user passed a sequence for "at" if not utils.isSequence(actors): printc("show() Error: input must be a list.", c='r') raise RuntimeError() if len(at) != len(actors): printc("show() Error: lists 'input' and 'at', must have equal lengths.", c='r') raise RuntimeError() if len(at) > 1 and (shape == (1, 1) and N is None): N = max(at) + 1 elif at is None and (N or shape != (1, 1)): if not utils.isSequence(actors): printc('show() Error: N or shape is set, but input is not a sequence.', c='r') printc(' you may need to specify e.g. at=0', c='r') raise RuntimeError() at = list(range(len(actors))) plt = Plotter( shape=shape, N=N, pos=pos, size=size, screensize=screensize, title=title, axes=axes, sharecam=sharecam, resetcam=resetcam, interactive=interactive, offscreen=offscreen, bg=bg, bg2=bg2, ) # use _plt_to_return because plt.show() can return a k3d/panel plot _plt_to_return = None if utils.isSequence(at): for i, a in enumerate(actors): _plt_to_return = plt.show( a, at=i, zoom=zoom, resetcam=resetcam, viewup=viewup, azimuth=azimuth, elevation=elevation, roll=roll, camera=camera, interactive=False, interactorStyle=interactorStyle, bg=bg, bg2=bg2, axes=axes, q=q, ) plt.interactive = interactive if interactive or len(at)==N \ or (isinstance(shape[0],int) and len(at)==shape[0]*shape[1]): # note that shape can be a string if not offscreen: plt.interactor.Start() else: _plt_to_return = plt.show( actors, at=at, zoom=zoom, resetcam=resetcam, viewup=viewup, azimuth=azimuth, elevation=elevation, roll=roll, camera=camera, interactive=interactive, interactorStyle=interactorStyle, bg=bg, bg2=bg2, axes=axes, q=q, ) return _plt_to_return
835
def assert_allclose( actual: numpy.ndarray, desired: numpy.ndarray, rtol: float, err_msg: Literal["dx=3 k=0"], ): """ usage.scipy: 1 """ ...
836
def compute_on_cpu(): """Compute all run configurations over a sigle CPU.""" sweep_config = OmegaConf.load("tools/benchmarking/benchmark_params.yaml") for run_config in get_run_config(sweep_config.grid_search): model_metrics = sweep(run_config, 0, sweep_config.seed) write_metrics(model_metrics, sweep_config.writer)
837
def convert_book(book): """ Attempt to convert any books of type in `CONVERTIBLE_MIMETYPES` to .mobi, in the same folder as the given temporary path. """ tmp_path = book.get_tmp_pathname(u'send_books') mobi_tmp_path = convert_to_mobi_path(tmp_path) if mobi_tmp_path is None: return None log.info(u"Converting book for user id {0}".format(book.user_id)) try: subprocess.check_output(['ebook-convert', tmp_path, mobi_tmp_path], timeout=CONVERSION_TIMEOUT) except subprocess.CalledProcessError as e: return e.output except subprocess.TimeoutExpired as e: return "Timed out converting book" except Exception as e: return e.message
838
def set_loggers_level(names, level=logging.CRITICAL): """ Set a log level on multiple loggers. Arguments: names (list): A list of logger names to set level. Keyword Arguments: level (integer): Logging level to set on all given logger names. Default to value from ``logging.CRITICAL``. """ for item in names: logging.getLogger(item).setLevel(level)
839
def get_followup_question_list(intent: str) -> List[str]: """ Get all imported followup questions for this intent as a list * `intent`: name-parameter of the yml-section with which the followup questions were imported **Returns:** None if no followup questions are known for this intent, otherwise list of followup questions for this intent """ return None if not qa.get(intent) else qa.get(intent).followup_questions
840
def event_train_test_split( evs: np.ndarray, n_evs: int, train_split: float, random_seed: int=1 ) -> Tuple[np.ndarray, np.ndarray]: """[summary] Args: n_evs (int): [description] train_split (float): [description] random_seed (int, optional): [description]. Defaults to 1. Returns: Tuple[np.ndarray, np.ndarray]: [description] """ # some basic checks assert 0 < train_split < 1, "Variable train_split (ts) must be 0<ts<1." assert n_evs > 1, "Need more than 1 event to split." # set the random state locally r = np.random.RandomState(random_seed) # compute the number of test and train samples train_samples = int(np.round(train_split * n_evs, 0)) test_samples = int(n_evs - train_samples) # split the events train_events = r.choice(evs, train_samples, replace=False) test_events = evs[~np.isin(evs, train_events)] # make sure they add up to the total number! assert len(train_events) + len(test_events) == n_evs return train_events, test_events
841
def get_cd(wcs, n=1): """ Get the value of the change in world coordinate per pixel across a linear axis. Defaults to wcs.wcs.cd if present. Does not support rotated headers (e.g., with nonzero CDm_n where m!=n) """ if hasattr(wcs.wcs,'cd'): if wcs.wcs.cd[n-1,n-1] != 0: return wcs.wcs.cd[n-1,n-1] else: return wcs.wcs.get_cdelt()[n-1]
842
def mock_clear(): """Clear MOCK_DATA_HEAP""" MOCK_DATA_HEAP.clear() return ""
843
def cls_merge_type(classification): """ classification type이 2가지일 때 합쳐주는 함수 Parameters ---------- classification: cls classification 리스트 Returns ------- list of cls 변환된 classification 리스트 """ cls_type = {'instant' if cls.get('instant_datetime') else 'not_instant' for cls in classification } if len(cls_type) == 2: for cls in classification: instant_datetime = cls.get('instant_datetime') if instant_datetime: year = instant_datetime.year start_datetime = datetime.datetime(year, 1, 1) # 해당년도 1월 1일로 설정 end_datetime = instant_datetime cls['instant_datetime'] = None cls['start_datetime'] = start_datetime cls['end_datetime'] = end_datetime return classification
844
def complete_source_space_info(this): """Add more info on surface """ # Main triangulation print '\tCompleting triangulation info...' this['tri_area'] = np.zeros(this['ntri']) r1 = this['rr'][this['tris'][:, 0], :] r2 = this['rr'][this['tris'][:, 1], :] r3 = this['rr'][this['tris'][:, 2], :] this['tri_cent'] = (r1 + r2 + r3) / 3.0 this['tri_nn'] = np.cross((r2-r1), (r3-r1)) for p in range(this['ntri']): # XXX : can do better size = sqrt(np.sum(this['tri_nn'][p,:] * this['tri_nn'][p,:])) this['tri_area'][p] = size / 2.0 this['tri_nn'][p,:] = this['tri_nn'][p,:] / size print '[done]' # Selected triangles print '\tCompleting selection triangulation info...' if this['nuse_tri'] > 0: r1 = this['rr'][this['use_tris'][:, 0],:] r2 = this['rr'][this['use_tris'][:, 1],:] r3 = this['rr'][this['use_tris'][:, 2],:] this['use_tri_cent'] = (r1 + r2 + r3) / 3.0 this['use_tri_nn'] = np.cross((r2-r1), (r3-r1)) for p in range(this['nuse_tri']): # XXX can do better this['use_tri_area'][p] = sqrt(np.sum(this['use_tri_nn'][p,:] * this['use_tri_nn'][p,:])) / 2.0 print '[done]'
845
def duplicate_detector(gate_orders: list[tuple[str]]) -> int: """Detects any schematics that have an identical combination of gates.""" difference = len(gate_orders) - len(list(set(gate_orders))) # List - list with no duplicates return difference
846
def permutations(x): """Return all permutations of x""" def fn(i): if i == len(x): ans.append(x.copy()) for k in range(i, len(x)): x[i], x[k] = x[k], x[i] fn(i+1) x[i], x[k] = x[k], x[i] ans = [] fn(0) return ans
847
def _checkFile(path,suffix=''): """ 检查该路径是否存在,同时检查路径后缀是否等于suffix :param path: 文件的路径 :suffix: 文件的后缀,默认为空。当path路径后缀不为suffix的后缀的时候,会报错 """ if path==None: raise FileNotFoundError('path路径为空,请设置查找路径!!!') path = str(path) if path == "": raise FileNotFoundError('path路径为空,请设置查找路径!!!') if not os.path.exists(path): raise FileNotFoundError('文件:'+path+'。不存在该文件,请检查路径正确。') if suffix!='' and not path.endswith(suffix): raise TypeError('数据类型错误,要求类型为:'+suffix+'。但是文件:'+path+"不是该类型")
848
def _add_cobertura_package(packages, package_name, package_data): # type: (SubElement, str, t.Dict[str, t.Dict[str, int]]) -> t.Tuple[int, int] """Add a package element to the given packages element.""" elem_package = SubElement(packages, 'package') elem_classes = SubElement(elem_package, 'classes') total_lines_hit = 0 total_line_count = 0 for path, results in package_data.items(): lines_hit = len([True for hits in results.values() if hits]) line_count = len(results) total_lines_hit += lines_hit total_line_count += line_count elem_class = SubElement(elem_classes, 'class') class_name = os.path.splitext(os.path.basename(path))[0] if class_name.startswith("Ansible.ModuleUtils"): class_name = class_name[20:] content_root = data_context().content.root filename = path if filename.startswith(content_root): filename = filename[len(content_root) + 1:] elem_class.attrib.update({ 'branch-rate': '0', 'complexity': '0', 'filename': filename, 'line-rate': str(round(lines_hit / line_count, 4)) if line_count else "0", 'name': class_name, }) SubElement(elem_class, 'methods') elem_lines = SubElement(elem_class, 'lines') for number, hits in results.items(): elem_line = SubElement(elem_lines, 'line') elem_line.attrib.update( hits=str(hits), number=str(number), ) elem_package.attrib.update({ 'branch-rate': '0', 'complexity': '0', 'line-rate': str(round(total_lines_hit / total_line_count, 4)) if total_line_count else "0", 'name': package_name, }) return total_lines_hit, total_line_count
849
def encode(model, text, out_file=None, topic_priors=None, prior_weight=1.0): """ Perform text-to-image encoding. Parameters ---------- model : :obj:`gclda.model.Model` Model object needed for decoding. text : :obj:`str` or :obj:`list` Text to encode into an image. out_file : :obj:`str`, optional If not None, writes the encoded image to a file. topic_priors : :obj:`numpy.ndarray` of :obj:`float`, optional A 1d array of size (n_topics) with values for topic weighting. If None, no weighting is done. Default is None. prior_weight : :obj:`float`, optional The weight by which the prior will affect the encoding. Default is 1. Returns ------- img : :obj:`nibabel.Nifti1Image` The encoded image. topic_weights : :obj:`numpy.ndarray` of :obj:`float` The weights of the topics used in encoding. Notes ----- ====================== ============================================================== Notation Meaning ====================== ============================================================== :math:`v` Voxel :math:`t` Topic :math:`w` Word type :math:`h` Input text :math:`p(v|t)` Probability of topic given voxel (``p_topic_g_voxel``) :math:`\\tau_{t}` Topic weight vector (``topic_weights``) :math:`p(w|t)` Probability of word type given topic (``p_word_g_topic``) :math:`\omega` 1d array from input image (``input_values``) ====================== ============================================================== 1. Compute :math:`p(v|t)` (``p_voxel_g_topic``). - From :obj:`gclda.model.Model.get_spatial_probs()` 2. Compute :math:`p(t|w)` (``p_topic_g_word``). 3. Vectorize input text according to model vocabulary. 4. Reduce :math:`p(t|w)` to only include word types in input text. 5. Compute :math:`p(t|h)` (``p_topic_g_text``) by multiplying :math:`p(t|w)` by word counts for input text. 6. Sum topic weights (:math:`\\tau_{t}`) across words. - :math:`\\tau_{t} = \sum_{i}{p(t|h_{i})}` 7. Compute voxel weights. - :math:`p(v|h) \propto p(v|t) \cdot \\tau_{t}` 8. The resulting array (``voxel_weights``) reflects arbitrarily scaled voxel weights for the input text. 9. Unmask and reshape ``voxel_weights`` into brain image. """ if isinstance(text, list): text = " ".join(text) # Assume that words in word_labels are underscore-separated. # Convert to space-separation for vectorization of input string. vocabulary = [term.replace("_", " ") for term in model.dataset.word_labels] max_len = max([len(term.split(" ")) for term in vocabulary]) vectorizer = CountVectorizer( vocabulary=model.dataset.word_labels, ngram_range=(1, max_len) ) word_counts = np.squeeze(vectorizer.fit_transform([text]).toarray()) keep_idx = np.where(word_counts > 0)[0] text_counts = word_counts[keep_idx] n_topics_per_word_token = np.sum(model.n_word_tokens_word_by_topic, axis=1) p_topic_g_word = ( model.n_word_tokens_word_by_topic / n_topics_per_word_token[:, None] ) p_topic_g_word = np.nan_to_num(p_topic_g_word, 0) p_topic_g_text = p_topic_g_word[keep_idx] # p(T|W) for words in text only prod = p_topic_g_text * text_counts[:, None] # Multiply p(T|W) by words in text topic_weights = np.sum(prod, axis=0) # Sum across words if topic_priors is not None: weighted_priors = weight_priors(topic_priors, prior_weight) topic_weights *= weighted_priors _, p_voxel_g_topic = model.get_spatial_probs() voxel_weights = np.dot(p_voxel_g_topic, topic_weights) img = unmask(voxel_weights, model.dataset.mask_img) if out_file is not None: img.to_filename(out_file) return img, topic_weights
850
def clean_string(s: str) -> str: """Cleans and returns an input string >>> clean_string(" xYz ") 'XYZ' """ return str(s).strip().upper()
851
def get_unique_region_cov_df(unique_region_dict, fuzzer_names): """Returns a DataFrame where the two columns are fuzzers and the number of unique regions covered.""" fuzzers = collections.defaultdict(int) for region in unique_region_dict: for fuzzer in unique_region_dict[region]: fuzzers[fuzzer] += 1 dict_to_transform = {'fuzzer': [], 'unique_regions_covered': []} for fuzzer in fuzzer_names: covered_num = fuzzers[fuzzer] dict_to_transform['fuzzer'].append(fuzzer) dict_to_transform['unique_regions_covered'].append(covered_num) return pd.DataFrame(dict_to_transform)
852
def load_continuous_dataset( root: str, name: str, raw: bool = False, random_state: Optional[RandomState] = None ) -> Union[ Tuple[np.ndarray, np.ndarray, np.ndarray], Tuple[UnsupervisedDataset, UnsupervisedDataset, UnsupervisedDataset] ]: """ Load a continuous dataset. All the datasets are preprocessed as in the original MAF paper repository. See https://github.com/gpapamak/maf/tree/master/datasets for details. :param root: The datasets root directory. :param name: The name of the dataset. :param raw: Whether to return unpreprocessed Numpy arrays instead of Torch Datasets. Torch Datasets will have standardization as data transformation. :param random_state: The random state to use for shuffling and transforming the data. It can be either None, a seed integer or a Numpy RandomState. :return: The train, validation and test dataset splits. :raise ValueError: If the continuous dataset name is not known. """ # Check the random state random_state = check_random_state(random_state) directory = os.path.join(root, name) if name == 'power': # Load the dataset data = np.load(os.path.join(directory, 'data.npy')) random_state.shuffle(data) n_samples = len(data) data = np.delete(data, [1, 3], axis=1) # Add noise as in original datasets preprocessing (MAF paper) voltage_noise = 0.01 * random_state.rand(n_samples, 1) gap_noise = 0.001 * random_state.rand(n_samples, 1) sm_noise = random_state.rand(n_samples, 3) time_noise = np.zeros(shape=(n_samples, 1)) data = data + np.hstack([gap_noise, voltage_noise, sm_noise, time_noise]) # Split the dataset n_test = int(0.1 * len(data)) data_test = data[-n_test:] data = data[:-n_test] n_valid = int(0.1 * len(data)) data_valid = data[-n_valid:] data_train = data[:-n_valid] elif name == 'gas': # Load the dataset data = pd.read_pickle(os.path.join(directory, 'ethylene_CO.pickle')) data.drop(['Meth', 'Eth', 'Time'], axis=1, inplace=True) # Remove uninformative features uninformative_idx = (data.corr() > 0.98).to_numpy().sum(axis=1) while np.any(uninformative_idx > 1): col_to_remove = np.where(uninformative_idx > 1)[0][0] data.drop(data.columns[col_to_remove], axis=1, inplace=True) uninformative_idx = (data.corr() > 0.98).to_numpy().sum(axis=1) data = data.to_numpy() random_state.shuffle(data) # Split the dataset n_test = int(0.1 * len(data)) data_test = data[-n_test:] data = data[:-n_test] n_valid = int(0.1 * len(data)) data_valid = data[-n_valid:] data_train = data[:-n_valid] elif name == 'hepmass': # Load the dataset data_train = pd.read_csv(os.path.join(directory, "1000_train.csv"), index_col=False) data_test = pd.read_csv(os.path.join(directory, "1000_test.csv"), index_col=False) # Gets rid of any background noise examples i.e. class label 0. data_train = data_train[data_train[data_train.columns[0]] == 1] data_train = data_train.drop(data_train.columns[0], axis=1) data_test = data_test[data_test[data_test.columns[0]] == 1] data_test = data_test.drop(data_test.columns[0], axis=1) data_test = data_test.drop(data_test.columns[-1], axis=1) data_train, data_test = data_train.to_numpy(), data_test.to_numpy() # Remove any features that have too many re-occurring real values. features_to_remove = [] for i, feature in enumerate(data_train.T): c = Counter(feature) max_count = next(v for k, v in sorted(c.items())) if max_count > 5: features_to_remove.append(i) features_to_keep = [i for i in range(data_train.shape[1]) if i not in features_to_remove] data_train = data_train[:, features_to_keep] data_test = data_test[:, features_to_keep] random_state.shuffle(data_train) # Split the train dataset n_valid = int(len(data_train) * 0.1) data_valid = data_train[-n_valid:] data_train = data_train[:-n_valid] elif name == 'miniboone': # Load the dataset data = np.load(os.path.join(directory, 'data.npy')) random_state.shuffle(data) # Split the dataset n_test = int(0.1 * len(data)) data_test = data[-n_test:] data = data[:-n_test] n_valid = int(0.1 * len(data)) data_valid = data[-n_valid:] data_train = data[:-n_valid] elif name == 'BSDS300': # Load the dataset with h5py.File(os.path.join(directory, 'BSDS300.hdf5'), 'r') as file: data_train = file['train'][:] data_valid = file['validation'][:] data_test = file['test'][:] else: raise ValueError("Unknown continuous dataset called {}".format(name)) # Return raw Numpy arrays, if specified if raw: return data_train, data_valid, data_test # Instantiate the standardize transform mean = torch.tensor(np.mean(data_train, axis=0), dtype=torch.float32) std = torch.tensor(np.std(data_train, axis=0), dtype=torch.float32) transform = Normalize(mean, std) # Wrap and return the datasets data_train = UnsupervisedDataset(data_train, transform) data_valid = UnsupervisedDataset(data_valid, transform) data_test = UnsupervisedDataset(data_test, transform) return data_train, data_valid, data_test
853
def plot_emo_num(emo_num, server = "local"): """plot distribution of emotion categoriy. Args: emo_num(list): list of unique emotion server(str): local - plot emotion distribution; ssh - without plotting. Return: save (or plot) emotion categoriy plot. """ fig, ax = plt.subplots(figsize=(10,7)) index = np.arange(len(emo_num)) bar_width = 0.5 rects = ax.bar(index, list(emo_num.values()), bar_width) ax.set_xlabel('Emotion') ax.set_ylabel('Count') ax.set_title('Distribution of Emotions') ax.set_xticks(index) ax.set_xticklabels(list(emo_num.keys())) labels = list(emo_num.values()) for rect, label in zip(rects, labels): height = rect.get_height() ax.text(rect.get_x() + rect.get_width() / 2, height, label, ha='center', va='bottom') fig.tight_layout() fig.savefig("./figures/emotion_distribution.png") if server =="local": plt.show() elif server =="ssh": pass else: raise ValueError("server not defined.")
854
def display_generation_hit_results(hit_info, hit_results): """Displays the results of a generation HIT Parameters ---------- hit_info : GenerationHITInfo HITInfo object storing information regarding the HIT hit_results : GenerationResults HIT results object storing the results of the relevant HIT Returns ------- bool returns True """ dec_string = format_decomposition_string(hit_results.decomposition) print( 'HIT ID: {hit_id}' '\nAssignment ID: {assignment_id}' '\nHIT Type: Generation' '\n' '\nResults' '\n=======' '\nAnnotation ID: {annotation_id}' '\nQuestion ID: {question_id}' '\nQuestion Text: {question_text}' '\nDecomposition: {decomposition}'.format( hit_id=hit_results.hit_id, assignment_id=hit_results.assignment_id, annotation_id=hit_info.annotation_id, question_id=hit_info.question_id, question_text=hit_info.question_text, decomposition=dec_string)) return True
855
def sub_command_one(): """Example Sub Command""" click.echo("{{cookiecutter.project_slug}} sub_command_one")
856
def check_help_all_output(pkg, subcommand=None): """test that `python -m PKG --help-all` works""" cmd = [sys.executable, '-m', pkg] if subcommand: cmd.extend(subcommand) cmd.append('--help-all') out, err, rc = get_output_error_code(cmd) nt.assert_equal(rc, 0, err) nt.assert_not_in("Traceback", err) nt.assert_in("Options", out) nt.assert_in("Class parameters", out) return out, err
857
def install_consul(): """ install Consul """ if env.host == env.consul_host and not exists("/usr/bin/consul"): run("rm -f consul.zip consul") run("curl -L --silent {} -o consul.zip".format(CONSUL_URL)) run("unzip consul.zip") run("chmod +x consul") sudo("mv consul /usr/bin/consul") run("rm -f consul.zip") ipv4_address = get_addressv4_address() ctx = { "consul_dir": '/usr/bin', "ip_address": ipv4_address } upload_template(filename='consul.conf', destination='/etc/init/consul.conf', template_dir=TEMPLATES, context=ctx, use_sudo=True, use_jinja=True) sudo("service consul start") time.sleep(2) consul_address = env.cluster_addresss[env.consul_host] append("/etc/default/docker", 'DOCKER_OPTS="--kv-store=consul:{}:8500"'.format(consul_address), use_sudo=True) sudo("service docker restart") time.sleep(5)
858
def XOR(v1, v2): """ XOR operation element by element from 2 lists :param v1: [1, 0, 1, 0, 0, 1] :param v2: [1, 1, 0, 0, 1, 1] :return: [0, 1, 1, 0, 1, 0] """ return [a ^ b for a, b in zip(v1, v2)]
859
def linearly_spaced_combinations(bounds, num_samples): """ Return 2-D array with all linearly spaced combinations with the bounds. Parameters ---------- bounds : sequence of tuples The bounds for the variables, [(x1_min, x1_max), (x2_min, x2_max), ...] num_samples : integer or array_likem Number of samples to use for every dimension. Can be a constant if the same number should be used for all, or an array to fine-tune precision. Total number of data points is num_samples ** len(bounds). Returns ------- combinations : 2-d array A 2-d arrray. If d = len(bounds) and l = prod(num_samples) then it is of size l x d, that is, every row contains one combination of inputs. """ bounds = np.atleast_2d(bounds) num_vars = len(bounds) num_samples = np.broadcast_to(num_samples, num_vars) # Create linearly spaced test inputs inputs = [np.linspace(b[0], b[1], n) for b, n in zip(bounds, num_samples)] # Convert to 2-D array return combinations(inputs)
860
def flatten_expressions_tree( expression: Optional[Expression]) -> Tuple[Expression, ...]: """ Flatten expressions tree into a list. """ if not expression: return tuple() expressions = [expression] for arg in expression.arguments: if is_expression(arg): expressions.extend(flatten_expressions_tree(arg)) return tuple(expressions)
861
def workorder( ctx: typer.Context, path_in: Path = typer.Argument( ..., help="Path to the job file(s).", ), path_out: Path = typer.Argument( "./tmp", help="Parent path for saving the new workorder, will be prepended to --file-name.", ), format_id: FormatChoices = typer.Option( FormatChoices.json, "-f", "--format-id", show_choices=True, help="Output file format.", ), file_name: Path = typer.Option( "workorders/${ewo_iso_date_time}/workorder-${ewo_uid}", "-n", "--file-name", help=( "File name for the new workorder. Can include directories, " "and the file type suffix will be added based on --format-id if necessary." ), ), ewo_path: Optional[Path] = typer.Option( None, "-w", "--existing-work-order", help="Path to an existing workorder.", ), ): """Create a workorder, and add existing jobs to it. Can also add jobs to an existing Workorder. """ runner: EveEsiJobs = ctx.obj["runner"] if not path_in.exists(): raise typer.BadParameter(f"{path_in} does not exist.") if path_in.is_file(): maybe_jobs = [path_in] else: maybe_jobs = [*path_in.glob("*.json"), *path_in.glob("*.yaml")] loaded_jobs = [] for maybe_job in maybe_jobs: try: loaded_job = runner.deserialize_job(file_path=maybe_job) except Exception as ex: raise typer.BadParameter(f"Error decoding job at {maybe_job}, msg:{ex}") loaded_jobs.append(loaded_job) if not loaded_jobs: raise typer.BadParameter(f"No jobs found at {path_in}") if ewo_path is None: ewo = get_default_workorder() else: try: ewo = runner.deserialize_workorder(file_path=ewo_path) except Exception as ex: raise typer.BadParameter( f"Error decoding workorder string. {ex.__class__.__name__}, {ex}" ) ewo.jobs.extend(loaded_jobs) output_path = path_out / file_name out_template = Template(str(output_path)) file_path = Path(out_template.substitute(ewo.attributes())) try: saved_path, _ = runner.serialize_workorder( workorder=ewo, file_path=file_path, data_format=format_id ) typer.echo(f"Workorder saved to {saved_path}") report_finished_task(ctx) except Exception as ex: raise typer.BadParameter( f"Error saving workorder to {path_out}. {ex.__class__.__name__}, {ex}" )
862
def prepare_trans_list_update(): """ Prepares the translation_stats table for a translation list update. For all translations, available is set to false. The translations that are currently available will later be set to true. """ cur.execute("UPDATE translation_stats SET available = 0;") _conn.commit()
863
def main(): """Main script function.""" info = collect_info() sort_info(info, "Участник:NapalmBot/файлы")
864
def add_tags(recipe_data, recipe_id): """Add entries for Tag and RecipeTags and delete removed tags.""" newTags = recipe_data.get("newTags", {}) for tagname, category in newTags.items(): tagname = tagname.lower().strip() tag = Tag(tagname=tagname, parent=TagCategory.get(TagCategory.categoryname == category)) tag.save() # Get existing tags for recipe existing_tags_rows = RecipeTags.select().join(Tag, pw.JOIN.LEFT_OUTER).where((RecipeTags.recipeID == recipe_id)) existing_tags = [] for row in existing_tags_rows: row_dict = model_to_dict(row) if row_dict.get("tagID", {}).get("tagname"): existing_tags.append(row_dict.get("tagID", {}).get("tagname")) # Add tags if they don't exist already tags = recipe_data.get("tags", []) for tagname in tags: tagname = tagname.lower().strip() if tagname not in existing_tags: recipetags = RecipeTags(recipeID=Recipe.get(Recipe.id == recipe_id), tagID=Tag.get(Tag.tagname == tagname)) recipetags.save() # Delete removed tags for tagname in existing_tags: if tagname not in tags: recipetags = RecipeTags.get(RecipeTags.recipeID == recipe_id, RecipeTags.tagID == Tag.get(Tag.tagname == tagname).id) recipetags.delete_instance() # Remove this tag from Tag table if no other recipe uses it delete_abandoned_tag(in_tagname=tagname)
865
def policy_head(x, mode, params): """ The policy head attached after the residual blocks as described by DeepMind: 1. A convolution of 8 filters of kernel size 3 × 3 with stride 1 2. Batch normalisation 3. A rectifier non-linearity 4. A fully connected linear layer that outputs a vector of size 19²+1 = 362 corresponding to logit probabilities for all intersections and the pass move """ num_channels = params['num_channels'] num_samples = params['num_samples'] def _forward(x, is_recomputing=False): """ Returns the result of the forward inference pass on `x` """ y = batch_norm_conv2d(x, 'conv_1', (3, 3, num_channels, num_samples), mode, params, is_recomputing=is_recomputing) y = tf.nn.relu(y) y = tf.reshape(y, (-1, 361 * num_samples)) y = dense(y, 'linear_1', (361 * num_samples, 362), policy_offset_op, mode, params, is_recomputing=is_recomputing) return tf.cast(y, tf.float32) return recompute_grad(_forward)(x)
866
def _get_doors_gt_nsrts() -> Set[NSRT]: """Create ground truth NSRTs for DoorsEnv.""" robot_type, door_type, room_type = _get_types_by_names( CFG.env, ["robot", "door", "room"]) InRoom, InDoorway, InMainRoom, TouchingDoor, DoorIsOpen, DoorInRoom, \ DoorsShareRoom = _get_predicates_by_names(CFG.env, ["InRoom", "InDoorway", "InMainRoom", "TouchingDoor", "DoorIsOpen", "DoorInRoom", "DoorsShareRoom"]) MoveToDoor, OpenDoor, MoveThroughDoor = _get_options_by_names( CFG.env, ["MoveToDoor", "OpenDoor", "MoveThroughDoor"]) nsrts = set() # MoveToDoorFromMainRoom # This operator should only be used on the first step of a plan. robot = Variable("?robot", robot_type) room = Variable("?room", room_type) door = Variable("?door", door_type) parameters = [robot, room, door] option_vars = [robot, door] option = MoveToDoor preconditions = { LiftedAtom(InRoom, [robot, room]), LiftedAtom(InMainRoom, [robot, room]), LiftedAtom(DoorInRoom, [door, room]), } add_effects = { LiftedAtom(TouchingDoor, [robot, door]), LiftedAtom(InDoorway, [robot, door]) } delete_effects = {LiftedAtom(InMainRoom, [robot, room])} side_predicates: Set[Predicate] = set() move_to_door_nsrt = NSRT("MoveToDoorFromMainRoom", parameters, preconditions, add_effects, delete_effects, side_predicates, option, option_vars, null_sampler) nsrts.add(move_to_door_nsrt) # MoveToDoorFromDoorWay robot = Variable("?robot", robot_type) start_door = Variable("?start_door", door_type) end_door = Variable("?end_door", door_type) parameters = [robot, start_door, end_door] option_vars = [robot, end_door] option = MoveToDoor preconditions = { LiftedAtom(InDoorway, [robot, start_door]), LiftedAtom(DoorsShareRoom, [start_door, end_door]), } add_effects = { LiftedAtom(TouchingDoor, [robot, end_door]), LiftedAtom(InDoorway, [robot, end_door]) } delete_effects = {LiftedAtom(InDoorway, [robot, start_door])} side_predicates = set() move_to_door_nsrt = NSRT("MoveToDoorFromDoorWay", parameters, preconditions, add_effects, delete_effects, side_predicates, option, option_vars, null_sampler) nsrts.add(move_to_door_nsrt) # OpenDoor robot = Variable("?robot", robot_type) door = Variable("?door", door_type) parameters = [door, robot] option_vars = [door, robot] option = OpenDoor preconditions = { LiftedAtom(TouchingDoor, [robot, door]), LiftedAtom(InDoorway, [robot, door]), } add_effects = {LiftedAtom(DoorIsOpen, [door])} delete_effects = { LiftedAtom(TouchingDoor, [robot, door]), } side_predicates = set() # Allow protected access because this is an oracle. Used in the sampler. env = get_or_create_env(CFG.env) assert isinstance(env, DoorsEnv) get_open_door_target_value = env._get_open_door_target_value # pylint: disable=protected-access # Even though this option does not need to be parameterized, we make it so, # because we want to match the parameter space of the option that will # get learned during option learning. This is useful for when we want # to use sampler_learner = "oracle" too. def open_door_sampler(state: State, goal: Set[GroundAtom], rng: np.random.Generator, objs: Sequence[Object]) -> Array: del rng, goal # unused door, _ = objs assert door.is_instance(door_type) # Calculate the desired change in the doors "rotation" feature. # Allow protected access because this is an oracle. mass = state.get(door, "mass") friction = state.get(door, "friction") target_rot = state.get(door, "target_rot") target_val = get_open_door_target_value(mass=mass, friction=friction, target_rot=target_rot) current_val = state.get(door, "rot") delta_rot = target_val - current_val # The door always changes from closed to open. delta_open = 1.0 return np.array([delta_rot, delta_open], dtype=np.float32) open_door_nsrt = NSRT("OpenDoor", parameters, preconditions, add_effects, delete_effects, side_predicates, option, option_vars, open_door_sampler) nsrts.add(open_door_nsrt) # MoveThroughDoor robot = Variable("?robot", robot_type) start_room = Variable("?start_room", room_type) end_room = Variable("?end_room", room_type) door = Variable("?door", door_type) parameters = [robot, start_room, door, end_room] option_vars = [robot, door] option = MoveThroughDoor preconditions = { LiftedAtom(InRoom, [robot, start_room]), LiftedAtom(InDoorway, [robot, door]), LiftedAtom(DoorIsOpen, [door]), LiftedAtom(DoorInRoom, [door, start_room]), LiftedAtom(DoorInRoom, [door, end_room]), } add_effects = { LiftedAtom(InRoom, [robot, end_room]), } delete_effects = { LiftedAtom(InRoom, [robot, start_room]), } side_predicates = set() move_through_door_nsrt = NSRT("MoveThroughDoor", parameters, preconditions, add_effects, delete_effects, side_predicates, option, option_vars, null_sampler) nsrts.add(move_through_door_nsrt) return nsrts
867
def _get_word_ngrams(n, sentences): """Calculates word n-grams for multiple sentences. """ assert len(sentences) > 0 assert n > 0 words = sum(sentences, []) return _get_ngrams(n, words)
868
def untag_domain( domain_arn: str, tags: t.List[str], client: "botocore.client.BaseClient" = None, ) -> None: """Remove tags from a domain. Args: domain_arn: domain AWS ARN tags: tags (keys) to remove client: SWF client """ client = _common.ensure_client(client) client.untag_resource(resourceArn=domain_arn, tagKeys=tags)
869
def override_list(base_list: List, dynamic_key: str, val): """ Customize the base list by updating with the dynamic_key and val. Parameters ---------- base: dict Dictionary or List to be customized with dynamic args dynamic_key: str Key to identify the location the value should be updated. Nested with DOT like "custom.key_0.key_1.key_2.0.0.key_4" val: str or float or int or dict or list Value to be set Returns ------- dict Updated base_list based on the key-value pairs in dynamic_args Notes ----- This will be called recursively with override_dict. If dynamic_key is not a number, then we try to match on `name` field in the list of dictionaries. """ def find_root_key_index(base_list, root_key): if root_key.isdigit(): # If array index root_key = int(root_key) else: # If string, then match on `name` for root_key_i in range(len(base_list)): if root_key == base_list[root_key_i][NAME]: root_key = root_key_i break if not isinstance(root_key, int): raise KeyError("{} not found in List".format(root_key)) return root_key if DOT in dynamic_key: # Compute root and subtree keys root_key = find_root_key_index(base_list, dynamic_key.split(DOT)[0]) subtree_key = DOT.join(dynamic_key.split(DOT)[1:]) # Extract subtree subtree = base_list[root_key] if isinstance(subtree, dict): root_val = override_dict(base_dict=subtree, dynamic_key=subtree_key, val=val) elif isinstance(subtree, list): root_val = override_list(base_list=subtree, dynamic_key=subtree_key, val=val) else: raise ValueError( "Unsupported subtree type. Must be one of list or dict") else: # End of nested dynamic key root_key = find_root_key_index(base_list, dynamic_key) root_val = val base_list[root_key] = root_val return base_list
870
def c_components(DAG): """Return a list of the maximal c-component node sets in DAG.""" G = nx.Graph(); G.add_nodes_from(observable_nodes(DAG)) G.add_edges_from([(u,v) for u,v in observable_pairs(DAG) if has_confounded_path(DAG, u, v)]) return list(nx.connected_components(G))
871
def wss_over_number_of_clusters(data, algorithm='kmeans', max_iter=100, num_repeats = 5, max_num_clusters = 12, plot_file = None): """ Calculates the within-sum-of-squares (WSS) for different numbers of clusters, averaged over several iterations. Parameters ---------- data : float array Trajectory data [frames,frame_data] algorithm : string The algorithm to use for the clustering. Options: kmeans, rspace. Default: kmeans max_iter : int, optional Maximum number of iterations. Default: 100. num_repeats : int, optional Number of times to run the clustering for each number of clusters. Default: 5. max_num_clusters : int, optional Maximum number of clusters for k-means clustering. Default: 12. plot_file : str, optional Name of the file to save the plot. Returns ------- all_wss : float array WSS values for each number of clusters (starting at 2). std_wss : float array Standard deviations of the WSS. """ # Initialize lists all_wss = [] std_wss = [] # Loop over the number of clusters for nc in range(1,max_num_clusters): rep_wss = [] # Run each clustering several times. for repeat in range(num_repeats): # Get clusters and WSS for this repetition. cc = obtain_clusters(data, algorithm=algorithm, max_iter=max_iter, num_clusters=nc, plot=False) cidx, wss, centroids = cc rep_wss.append(wss) # Calculate mean and standard deviation for this number of clusters. all_wss.append(np.mean(rep_wss)) std_wss.append(np.std(rep_wss)) # Plot the WSS over the number of clusters fig, ax = plt.subplots(1,1, figsize=[4,3], dpi=300) ax.errorbar(np.arange(len(all_wss))+2,np.array(all_wss),yerr=np.array(std_wss)/np.sqrt(num_repeats)) ax.set_xlabel('number of clusters') ax.set_ylabel('total WSS') fig.tight_layout() # Save the plot to file. if plot_file: fig.savefig(plot_file) return all_wss, std_wss
872
def AptInstall(vm): """Installs the mysql package on the VM.""" vm.RemoteCommand('echo "mysql-server-5.5 mysql-server/root_password password ' '%s" | sudo debconf-set-selections' % MYSQL_PSWD) vm.RemoteCommand('echo "mysql-server-5.5 mysql-server/root_password_again ' 'password %s" | sudo debconf-set-selections' % MYSQL_PSWD) vm.InstallPackages('mysql-server')
873
def plot_original_image(filepath): """Plot full-color version of original image""" plt.imshow(cv2.imread(filepath)) plt.title("Original Image") plt.xticks([]) plt.yticks([]) plt.show()
874
def __main__(): """Parse the cmd lne options""" parser = optparse.OptionParser() parser.add_option("-i", "--input", default=None, dest="input", help="The input file") parser.add_option("-p", "--ptt", default=None, dest="ptt", help="The output ptt file") parser.add_option("-r", "--rnt", default=None, dest="rnt", help="The output rnt file") (options, args) = parser.parse_args() if not options.input: parser.error("Need to specify the input genbank file") if not options.ptt: parser.error("Need to specify the output ptt file") if not options.rnt: parser.error("Need to specify the output rnt file") proteins = [] rnas = [] header = {} coldetail={"Location":"", "Strand":"", "Length":"", "PID":"", "Gene":"", "Synonym":"", "Code":"", "COG":"", "Product":""} with open(options.input, "r") as handle: for entry in SeqIO.parse(handle, "genbank"): #the header header["description"] = entry.description header["proteins"] = 0 header["rna"] = 0 for feature in entry.features: if "translation" in feature.qualifiers.keys(): #print(feature.__dict__) header["proteins"] = header["proteins"] + 1 #Figure out the strandedness and save the location(position) if feature.location.strand > 0: coldetail["Location"] = "%i..%i" % (feature.location._start, feature.location._end) coldetail["Strand"] = "+" else: coldetail["Location"] = "%i..%i" % (feature.location._end, feature.location._start) coldetail["Strand"] = "-" #Calculate the feature length coldetail["Length"] = str(int(feature.location._end) - int(feature.location._start)) #PID try: coldetail["PID"] = feature.qualifiers["protein_id"][0] except KeyError: coldetail["PID"] = feature.qualifiers["locus_tag"][0] #Gene try: coldetail["Gene"] = feature.qualifiers["gene"][0] except KeyError: coldetail["Gene"] = "-" #Synonym coldetail["Synonym"] = feature.qualifiers["locus_tag"][0] #Code coldetail["Code"] = "-" #COG coldetail["COG"] = "-" #Product coldetail["Product"] = feature.qualifiers["product"][0] proteins.append(copy.deepcopy(coldetail)) #print("\n") if feature.type == "tRNA" or feature.type == "rRNA": #working with RNA here header["rna"] = header["rna"] + 1 #Figure out the strandedness and save the location(position) if feature.location.strand > 0: coldetail["Location"] = "%i..%i" % (feature.location._start, feature.location._end) coldetail["Strand"] = "+" else: coldetail["Location"] = "%i..%i" % (feature.location._end, feature.location._start) coldetail["Strand"] = "-" #Calculate the feature length coldetail["Length"] = str(int(feature.location._end) - int(feature.location._start)) #PID try: coldetail["PID"] = feature.qualifiers["protein_id"][0] except KeyError: coldetail["PID"] = feature.qualifiers["locus_tag"][0] #Gene try: coldetail["Gene"] = feature.qualifiers["gene"][0] except KeyError: coldetail["Gene"] = "-" #Synonym coldetail["Synonym"] = feature.qualifiers["locus_tag"][0] #Code coldetail["Code"] = "-" #COG coldetail["COG"] = "-" #Product coldetail["Product"] = feature.qualifiers["product"][0] #print("\n") rnas.append(copy.deepcopy(coldetail)) with open(options.ptt, "w") as handle: handle.write(header["description"] + "\n") handle.write("%s proteins\n" % header["proteins"]) #header_line = [key for key in entry.keys()] handle.write("Location\tStrand\tLength\tPID\tGene\tSynonym\tCode\tCOG\tProduct\n") for entry in proteins: handle.write("%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\n" % (entry["Location"], entry["Strand"], entry["Length"], entry["PID"], entry["Gene"], entry["Synonym"], entry["Code"], entry["COG"], entry["Product"])) with open(options.rnt, "w") as handle: handle.write(header["description"] + "\n") handle.write("%s RNAs\n" % header["rna"]) #header_line = [key for key in entry.keys()] handle.write("Location\tStrand\tLength\tPID\tGene\tSynonym\tCode\tCOG\tProduct\n") for entry in rnas: handle.write("%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\n" % (entry["Location"], entry["Strand"], entry["Length"], entry["PID"], entry["Gene"], entry["Synonym"], entry["Code"], entry["COG"], entry["Product"]))
875
def test_toy_example_collapse_points(): """Test on a toy example of three points that should collapse We build a simple example: two points from the same class and a point from a different class in the middle of them. On this simple example, the new (transformed) points should all collapse into one single point. Indeed, the objective is 2/(1 + exp(d/2)), with d the euclidean distance between the two samples from the same class. This is maximized for d=0 (because d>=0), with an objective equal to 1 (loss=-1.). """ rng = np.random.RandomState(42) input_dim = 5 two_points = rng.randn(2, input_dim) X = np.vstack([two_points, two_points.mean(axis=0)[np.newaxis, :]]) y = [0, 0, 1] class LossStorer: def __init__(self, X, y): self.loss = np.inf # initialize the loss to very high # Initialize a fake NCA and variables needed to compute the loss: self.fake_nca = NeighborhoodComponentsAnalysis() self.fake_nca.n_iter_ = np.inf self.X, y, _ = self.fake_nca._validate_params(X, y) self.same_class_mask = y[:, np.newaxis] == y[np.newaxis, :] def callback(self, transformation, n_iter): """Stores the last value of the loss function""" self.loss, _ = self.fake_nca._loss_grad_lbfgs( transformation, self.X, self.same_class_mask, -1.0 ) loss_storer = LossStorer(X, y) nca = NeighborhoodComponentsAnalysis(random_state=42, callback=loss_storer.callback) X_t = nca.fit_transform(X, y) print(X_t) # test that points are collapsed into one point assert_array_almost_equal(X_t - X_t[0], 0.0) assert abs(loss_storer.loss + 1) < 1e-10
876
def separate_classes(x: np.ndarray, y: np.ndarray) -> List[Tuple[int, np.ndarray]]: """Separate samples by classes into a list. Args: x (np.ndarray): Samples. y (np.ndarray): Target labels (classes). Returns: List[Tuple[int, np.ndarray]]: List in the format [(class, samples),...] """ classes = np.unique(y) l = [] for clss in classes: l.append((clss, x[y==clss])) return l
877
def monitor_threads(threads, arguments): """ Monitor the threads. Parameters ---------- threads: dict The threads to monitor. arguments: namespace The parsed command line. # --GT-- not used, kept to avoid to break the function call. Returns ------- int 0 """ try: # exit and let systemd restart the process to avoid issues with # potential memory leaks time.sleep(60 * 60 * 2) except Exception: # the sleep was interrupted pass for th in threads.keys(): threads[th].stop() # give up to 30 seconds for threads to exit cleanly timeout = datetime.now() + timedelta(seconds=30) while timeout > datetime.now(): thread_running = False for th in threads.keys(): if threads[th].is_alive(): thread_running = True if not thread_running: break return 0
878
def fetch_cfr_parts(notice_xml): """ Sometimes we need to read the CFR part numbers from the notice XML itself. This would need to happen when we've broken up a multiple-effective-date notice that has multiple CFR parts that may not be included in each date. """ parts = [] for cfr_elm in notice_xml.xpath('//CFR'): parts.extend(notice_cfr_p.parseString(cfr_elm.text).cfr_parts) return list(sorted(set(parts)))
879
def get_dayofweek(date): """ Returns day of week in string format from date parameter (in datetime format). """ return date.strftime("%A")
880
def add_model_output(modelIn, mode=None, num_add=None, activation=None): """ This function modifies the last dense layer in the passed keras model. The modification includes adding units and optionally changing the activation function. Parameters ---------- modelIn : keras model Keras model to be modified. mode : string Mode to modify the layer. It could be: 'abstain' for adding an arbitrary number of units for the abstention optimization strategy. 'qtl' for quantile regression which needs the outputs to be tripled. 'het' for heteroscedastic regression which needs the outputs to be doubled. (current implicit default: 'het') num_add : integer Number of units to add. This only applies to the 'abstain' mode. activation : string String with keras specification of activation function (e.g. 'relu', 'sigomid', 'softmax', etc.) Return ---------- modelOut : keras model Keras model after last dense layer has been modified as specified. If there is no mode specified it returns the same model. """ if mode is None: return modelIn numlayers = len(modelIn.layers) # Find last dense layer i = -1 while 'dense' not in (modelIn.layers[i].name) and ((i+numlayers) > 0): i -= 1 # Minimal verification about the validity of the layer found assert ((i + numlayers) >= 0) assert ('dense' in modelIn.layers[i].name) # Compute new output size if mode is 'abstain': assert num_add is not None new_output_size = modelIn.layers[i].output_shape[-1] + num_add elif mode is 'qtl': # for quantile UQ new_output_size = 3 * modelIn.layers[i].output_shape[-1] else: # for heteroscedastic UQ new_output_size = 2 * modelIn.layers[i].output_shape[-1] # Recover current layer options config = modelIn.layers[i].get_config() # Update number of units config['units'] = new_output_size # Update activation function if requested if activation is not None: config['activation'] = activation # Create new Dense layer reconstructed_layer = Dense.from_config(config) # Connect new Dense last layer to previous one-before-last layer additional = reconstructed_layer(modelIn.layers[i-1].output) # If the layer to replace is not the last layer, add the remainder layers if i < -1: for j in range(i+1, 0): config_j = modelIn.layers[j].get_config() aux_j = layers.deserialize({'class_name': modelIn.layers[j].__class__.__name__, 'config': config_j}) reconstructed_layer = aux_j.from_config(config_j) additional = reconstructed_layer(additional) modelOut = Model(modelIn.input, additional) return modelOut
881
def parse(f): """Parse ASDL from the given file and return a Module node describing it.""" parser = ASDLParser() return parser.parse(f)
882
def _assert_put_and_patch(usage_examples: UsageExamples, web_app: WebApp): """Test PUT and PATH requests.""" info_name = usage_examples.__class__.__name__ test_params = [ ('PUT', usage_examples.put_requests), ('PATCH', usage_examples.patch_requests), ] for http_method, examples_method in test_params: send = PutPatchRequestsTester(web_app, usage_examples, http_method.lower()) if examples_method: with usage_examples.send_function(send): examples_method() if http_method not in usage_examples.allowed_methods: assert send.calls_count == 0, '{} sends {} requests to resource'.format(info_name, http_method) continue assert send.calls_count > 0, '{} has not any {} requests'.format(info_name, http_method) etag = usage_examples.resource.get_etag() if etag: # if 'HEAD' in resource_examples.allowed_methods: # params, headers = resource_examples.authorize_request(None, None, None) # head_res = web_app.head(resource_examples.resource_url, params=params, headers=headers) # etag = head_res.headers['ETag'] resource = usage_examples.resource parent = resource.__parent__ if parent and 'GET' in usage_examples.allowed_methods: # Get a new resource instance with refreshed internal state etag = parent[resource.__name__].get_etag().serialize() else: # WARNING: This value of etag may be obsolete etag = etag.serialize() if not send.was_if_match: send( headers={'If-Match': '"__bad_etag__"'}, exception=HTTPPreconditionFailed({'etag': etag}), ) if not send.was_if_none_match: send( headers={'If-None-Match': etag}, exception=HTTPPreconditionFailed({'etag': etag}), )
883
def distance(xyz, lattice, PBC=[1,2,3]): """ Returns the Euclidean distance from the origin for a fractional displacement vector. Takes into account the lattice metric and periodic boundary conditions, including up to one non-periodic axis. Args: xyz: a fractional 3d displacement vector. Can be obtained by subtracting one fractional vector from another lattice: a 3x3 matrix describing a unit cell's lattice vectors PBC: the axes, if any, which are periodic. 1, 2, and 3 correspond to x, y, and z respectively. Returns: a scalar for the distance of the point from the origin """ xyz = filtered_coords(xyz, PBC=PBC) matrix = create_matrix(PBC=PBC) matrix += xyz matrix = np.dot(matrix, lattice) return np.min(cdist(matrix,[[0,0,0]]))
884
def main(): """Do the main thing here""" print("\n** Jamf computer group upload script") print("** Creates a computer group in Jamf Pro.") # parse the command line arguments args, cli_custom_keys = get_args() verbosity = args.verbose # grab values from a prefs file if supplied jamf_url, _, _, _, enc_creds = api_connect.get_creds_from_args(args) # import computer group from file and replace any keys in the XML with open(args.template, "r") as file: template_contents = file.read() # substitute user-assignable keys template_contents = actions.substitute_assignable_keys( template_contents, cli_custom_keys, verbosity, xml_escape=True ) # set a list of names either from the CLI args or from the template if no arg provided if args.names: names = args.names else: names = [get_computergroup_name(template_contents, verbosity)] # now process the list of names for computergroup_name in names: # where a group name was supplied via CLI arg, replace this in the template if args.names: template_contents = replace_computergroup_name( computergroup_name, template_contents, verbosity ) # check for existing group print("\nChecking '{}' on {}".format(computergroup_name, jamf_url)) obj_id = api_get.get_api_obj_id_from_name( jamf_url, "computer_group", computergroup_name, enc_creds, verbosity ) if obj_id: print( "Computer Group '{}' already exists: ID {}".format( computergroup_name, obj_id ) ) if args.replace: upload_computergroup( jamf_url, enc_creds, computergroup_name, template_contents, cli_custom_keys, verbosity, obj_id, ) else: print( "Not replacing existing Computer Group. Use --replace to enforce." ) else: print( "Computer Group '{}' not found - will create".format(computergroup_name) ) upload_computergroup( jamf_url, enc_creds, computergroup_name, template_contents, cli_custom_keys, verbosity, ) print()
885
def dobro(n=0, formato=False): """ Dobrar número :param n: número a ser dobrado :param formato: (opicional) mostrar o moeda :return: resultado """ n = float(n) n += n return moeda(n) if formato else n
886
def f_q2d(n, m): """Lowercase f term for 2D-Q polynomials. oe-20-3-2483 Eq. (A.18b). Parameters ---------- n : int radial order m : int azimuthal order Returns ------- float f """ if n == 0: return np.sqrt(F_q2d(n=0, m=m)) else: return np.sqrt(F_q2d(n, m) - g_q2d(n-1, m) ** 2)
887
def binary_search(data, target, low, high): """Return position if target is found in indicated portion of a python list and -1 if target is not found. """ if low > high: return -1 mid = (low + high) // 2 if target == data[mid]: return mid elif target < data[mid]: # recur on the portion left of the middle return binary_search(data, target, low, mid - 1) else: # recur on the portion right of the middle return binary_search(data, target, mid + 1, high)
888
def delete_position(id): """Delete a post. Ensures that the post exists and that the logged in user is the author of the post. """ db = get_db() db.execute('DELETE FROM gatekeeping WHERE id = ?', (id,)) db.commit() return jsonify(status='ok')
889
def read_string(stream, length): """read data from the file and return as a text string """ text = struct.unpack('{}s'.format(length), stream.read(length)) try: result = str(text[0], encoding='utf-8') except UnicodeDecodeError: result = str(text[0], encoding='latin-1') return result.rstrip('\x00')
890
def generate_gate_y_hamiltonian_vec() -> np.ndarray: """Return the vector representation for the Hamiltonian of a Y gate with respect to the orthonormal Hermitian matrix basis with the normalized identity matrix as the 0th element. The result is a real vector with size 4. Parameters ---------- Returns ---------- np.ndarray The real vector representation of the Hamiltonian of the gate. """ dim = 2 coeff = 0.5 * math.pi * np.sqrt(2) vec = np.zeros(dim * dim, dtype=np.float64) vec[0] = -coeff vec[2] = coeff return vec
891
def _semi_implicit_midpoint(ode_fun, jac_fun, y_olds, t_old, f_old, dt, args, solver_parameters, J00, I): """ Calculate solution at t_old+dt using the semi-implicit midpoint formula. Based on equations IV.9.16a-b of Ref II. """ y_older, y_old = y_olds je_tot=0 if(y_older is None): # Use Euler to get starting value return _semi_implicit_euler(ode_fun, jac_fun, y_olds, t_old, f_old, dt, args, solver_parameters, J00, I) if(f_old is None): f_yj = ode_fun(*(y_old,t_old)+args) fe_tot = 1 else: # We already computed it and can just reuse it f_yj = f_old fe_tot=0 b = np.dot(-(I+dt*J00),(y_old-y_older)) + 2*dt*f_yj A = I-dt*J00 if(solver_parameters['initialGuess']): # Use Euler for initial guess x0, f_yj, fe_tot_,je_tot=_explicit_euler(ode_fun, jac_fun, y_olds, t_old, f_yj, dt, args, solver_parameters) fe_tot += fe_tot_ else: x0=None dy = linear_solve(A, b, iterative=solver_parameters['iterative'], tol=solver_parameters['min_tol'], x0=x0) y_new = y_old + dy return (y_new, f_yj, fe_tot, je_tot)
892
def test_create_property_etters_inner_fns(): """ Test BaseStyle.create_domain_mode_etters Method """ ## Creates a MockFeature and a BaseStyle Object f = MockFeature() s = pmk.BaseStyle(f) ## Set up MagicMock for clear_cache method s.clear_cache = MagicMock() ## Setup style tree for no domain domain_name = None mode_name = 'mode' prop_name = 'color' prop_value1 = 'orange' prop_value2 = 'green' s.add_domain(domain_name) s.add_mode(mode_name, domain_name) s.add_property(prop_name, prop_value1, mode_name, domain_name) s.set_mode(mode_name, domain_name) ## Call target function f.set_color(prop_value2) ## Make assertions assert s.managed_properties[prop_name] == prop_value2 s.clear_cache.assert_called_once() s.clear_cache.reset_mock() ## Setup style tree for bingo domain domain_name = 'bingo' mode_name = 'mode1' prop_name = 'myprop' prop_value1 = 'val1' prop_value2 = 'val2' s.add_domain(domain_name) s.add_mode(mode_name, domain_name) s.add_property(prop_name, prop_value1, mode_name, domain_name) s.set_mode(mode_name, domain_name) ## Call target function f.set_bingo_myprop(prop_value2) ## Make assertions assert s.managed_properties[domain_name + '_' + prop_name] == prop_value2 s.clear_cache.assert_called_once() ''' Test Getters ''' assert s.get_color() == s.managed_properties['color'] assert f.get_color() == s.managed_properties['color'] assert s.get_bingo_myprop() == s.managed_properties['bingo_myprop'] assert f.get_bingo_myprop() == s.managed_properties['bingo_myprop']
893
async def test_list_failure(mock_datagram_client): """Test the wifi_list command failing.""" with mock_datagram_client: with pytest.raises(CommandError) as err: async with Client("192.168.1.100") as client: _ = await client.wifi.list() assert str(err.value) == ( "wifi_list command failed (response: {'command': 38, 'status': 'error'})" )
894
def freeze_session(session, keep_var_names=None, output_names=None, clear_devices=True): """ Freezes the state of a session into a pruned computation graph. Creates a new computation graph where variable nodes are replaced by constants taking their current value in the session. The new graph will be pruned so subgraphs that are not necessary to compute the requested outputs are removed. @param session The TensorFlow session to be frozen. @param keep_var_names A list of variable names that should not be frozen, or None to freeze all the variables in the graph. @param output_names Names of the relevant graph outputs. @param clear_devices Remove the device directives from the graph for better portability. @return The frozen graph definition. """ from tensorflow.python.framework.graph_util import ( convert_variables_to_constants, remove_training_nodes, ) graph = session.graph with graph.as_default(): freeze_var_names = list( set(v.op.name for v in tf.global_variables()).difference( keep_var_names or [])) output_names = output_names or [] output_names += [v.op.name for v in tf.global_variables()] # Graph -> GraphDef ProtoBuf input_graph_def = graph.as_graph_def() if clear_devices: for node in input_graph_def.node: node.device = "" frozen_graph = convert_variables_to_constants( session, input_graph_def, output_names, freeze_var_names) frozen_graph = remove_training_nodes(frozen_graph) return frozen_graph
895
def test_regular_method_used( assert_errors, parse_ast_tree, method, default_options, ): """Testing that other methods are working fine.""" tree = parse_ast_tree(magic_method.format(method)) visitor = WrongClassVisitor(default_options, tree=tree) visitor.run() assert_errors(visitor, [])
896
def get_system_cpu_times(): """Return system CPU times as a namedtuple.""" user, nice, system, idle = _psutil_osx.get_system_cpu_times() return _cputimes_ntuple(user, nice, system, idle)
897
def Mce1(m, q, ξ, *, p=0): """ v = Mce1(m, q, ξ, *, p=0) Compute the value of the even Radial Mathieu function of the first kind Mce⁽¹⁾ₘ(q, ξ). Parameters ---------- m : array_like interger order of the Mathieu function q : array_like positive parameter in the Mathieu differential equation ξ : array like ``radial'' coordinate in the Elliptic coordinates p : 0 or 1 or 2 (default 0) 0 for the function, 1 for the first derivative 2 for the second derivative Returns ------- v : array like value of Mce⁽¹⁾ₘ(q, ξ) or Mce⁽¹⁾ₘ′(q, ξ) or Mce⁽¹⁾ₘ′´(q, ξ) """ if p == 0: return mathieu_modcem1(m, q, ξ)[0] if p == 1: return mathieu_modcem1(m, q, ξ)[1] if p == 2: return (mathieu_a(m, q) - (2 * q) * cosh(2 * ξ)) * mathieu_modcem1(m, q, ξ)[0] raise ValueError("The value p must be 0, 1, or 2.")
898
def exec_sync( cmd ): """ exec command line. """ print( cmd ) p = subprocess.Popen(cmd, shell=True) ret = p.wait() print('')
899