content
stringlengths
22
815k
id
int64
0
4.91M
def list_ga4_entities(admin_api): """Get a dictionary of GA4 entity settings based on type. Args: admin_api: The Admin API object. Returns: A dictionary of GA4 entity setting lists. """ entities = { 'ga4_account_summaries': [], 'ga4_accounts': [], 'ga4_properties': [], 'ga4_data_streams': [], 'ga4_measurement_protocol_secrets': [], 'ga4_conversion_events': [], 'ga4_custom_dimensions': [], 'ga4_custom_metrics': [], 'ga4_dv360_link_proposals': [], 'ga4_dv360_links': [], 'ga4_firebase_links': [], 'ga4_google_ads_links': [] } for account_summary in admin_api.list_account_summaries(): a_dict = { 'name': account_summary.name, 'display_name': account_summary.display_name, 'account': account_summary.account, 'property_summaries': [] } for property_summary in account_summary.property_summaries: p_dict = { 'property': property_summary.property, 'display_name': property_summary.display_name } a_dict['property_summaries'].append(p_dict) entities['ga4_account_summaries'].append(a_dict) time.sleep(REQUEST_DELAY) for account in admin_api.list_accounts(): account_dict = { 'name': account.name, 'display_name': account.display_name, 'create_time': account.create_time, 'update_time': account.update_time, 'region_code': account.region_code, 'deleted': account.deleted } entities['ga4_accounts'].append(account_dict) time.sleep(REQUEST_DELAY) for account_summary in entities['ga4_account_summaries']: prop_request = ListPropertiesRequest( filter=f"parent:{account_summary['account']}") for prop in admin_api.list_properties(prop_request): time.sleep(REQUEST_DELAY) data_retention_settings = admin_api.get_data_retention_settings( name=(prop.name + '/dataRetentionSettings')) time.sleep(REQUEST_DELAY) google_signals_settings = admin_api.get_google_signals_settings( name=(prop.name + '/googleSignalsSettings')) ic_enum = prop.industry_category sl_enum = prop.service_level gss_state_enum = google_signals_settings.state gss_consent_enum = google_signals_settings.consent edr_enum = data_retention_settings.event_data_retention prop_dict = { 'name': prop.name, 'create_time': prop.create_time, 'update_time': prop.update_time, 'parent': prop.parent, 'display_name': prop.display_name, 'industry_category': IndustryCategory(ic_enum).name, 'time_zone': prop.time_zone, 'currency_code': prop.currency_code, 'service_level': ServiceLevel(sl_enum).name, 'delete_time': prop.delete_time, 'expire_time': prop.expire_time, 'account': account_summary['account'], 'data_sharing_settings': { 'name': data_retention_settings.name, 'event_data_retention': (DataRetentionSettings .RetentionDuration(edr_enum).name), 'reset_user_data_on_new_activity': data_retention_settings.reset_user_data_on_new_activity }, 'google_signals_settings': { 'name': google_signals_settings.name, 'state': GoogleSignalsState(gss_state_enum).name, 'consent': GoogleSignalsConsent(gss_consent_enum).name } } entities['ga4_properties'].append(prop_dict) for property_summary in account_summary['property_summaries']: time.sleep(REQUEST_DELAY) for data_stream in admin_api.list_data_streams( parent=property_summary['property']): data_stream_dict = { 'name': data_stream.name, 'type': DataStream.DataStreamType(data_stream.type_).name, 'display_name': data_stream.display_name, 'create_time': data_stream.create_time, 'update_time': data_stream.update_time, 'property': property_summary['property'], 'property_display_name': property_summary['display_name'] } if data_stream.web_stream_data != None: data_stream_dict['web_stream_data'] = { 'measurment_id': data_stream.web_stream_data.measurement_id, 'firebase_app_id': data_stream.web_stream_data.firebase_app_id, 'default_uri': data_stream.web_stream_data.default_uri } time.sleep(REQUEST_DELAY) for mps in admin_api.list_measurement_protocol_secrets( parent=data_stream.name): mps_dict = { 'name': mps.name, 'display_name': mps.display_name, 'secret_value': mps.secret_value, 'stream_name': data_stream.name, 'type': DataStream.DataStreamType(data_stream.type_).name, 'property': property_summary['property'], 'property_display_name': property_summary['display_name'] } entities['ga4_measurement_protocol_secrets'].append(mps_dict) if data_stream.android_app_stream_data != None: data_stream_dict['android_app_stream_data'] = { 'firebase_app_id': (data_stream .android_app_stream_data.firebase_app_id), 'package_name': data_stream.android_app_stream_data.package_name } time.sleep(REQUEST_DELAY) for mps in admin_api.list_measurement_protocol_secrets( parent=data_stream.name): mps_dict = { 'name': mps.name, 'display_name': mps.display_name, 'secret_value': mps.secret_value, 'stream_name': data_stream.name, 'type': DataStream.DataStreamType(data_stream.type_).name, 'property': property_summary['property'], 'property_display_name': property_summary['display_name'] } entities['ga4_measurement_protocol_secrets'].append(mps_dict) if data_stream.ios_app_stream_data != None: data_stream_dict['ios_app_stream_data'] = { 'firebase_app_id': data_stream.ios_app_stream_data.firebase_app_id, 'bundle_id': data_stream.ios_app_stream_data.bundle_id } time.sleep(REQUEST_DELAY) for mps in admin_api.list_measurement_protocol_secrets( parent=data_stream.name): mps_dict = { 'name': mps.name, 'display_name': mps.display_name, 'secret_value': mps.secret_value, 'stream_name': data_stream.name, 'type': DataStream.DataStreamType(data_stream.type_).name, 'property': property_summary['property'], 'property_display_name': property_summary['display_name'] } entities['ga4_measurement_protocol_secrets'].append(mps_dict) entities['ga4_data_streams'].append(data_stream_dict) time.sleep(REQUEST_DELAY) for event in admin_api.list_conversion_events( parent=property_summary['property']): event_dict = { 'name': event.name, 'event_name': event.event_name, 'create_time': event.create_time, 'deletable': event.deletable, 'custom': event.custom, 'property': property_summary['property'], 'property_display_name': property_summary['display_name'] } entities['ga4_conversion_events'].append(event_dict) time.sleep(REQUEST_DELAY) for cd in admin_api.list_custom_dimensions( parent=property_summary['property']): cd_dict = { 'name': cd.name, 'parameter_name': cd.parameter_name, 'display_name': cd.display_name, 'description': cd.description, 'scope': cd.scope, 'disallow_ads_personalization': cd.disallow_ads_personalization, 'property': property_summary['property'], 'property_display_name': property_summary['display_name'] } entities['ga4_custom_dimensions'].append(cd_dict) time.sleep(REQUEST_DELAY) for cm in admin_api.list_custom_metrics( parent=property_summary['property']): cm_dict = { 'name': cm.name, 'parameter_name': cm.parameter_name, 'display_name': cm.display_name, 'description': cm.description, 'scope': cm.scope, 'measurement_unit': cm.measurement_unit, 'property': property_summary['property'], 'property_display_name': property_summary['display_name'] } entities['ga4_custom_metrics'].append(cm_dict) time.sleep(REQUEST_DELAY) for link in admin_api.list_google_ads_links( parent=property_summary['property']): link_dict = { 'name': link.name, 'customer_id': link.customer_id, 'can_manage_clients': link.can_manage_clients, 'ads_personalization_enabled': link.ads_personalization_enabled, 'create_time': link.create_time, 'update_time': link.update_time, 'creator_email_address': link.creator_email_address, 'property': property_summary['property'], 'property_display_name': property_summary['display_name'] } entities['ga4_google_ads_links'].append(link_dict) time.sleep(REQUEST_DELAY) for link in admin_api.list_firebase_links( parent=property_summary['property']): link_dict = { 'name': link.name, 'project': link.project, 'create_time': link.create_time, 'property': property_summary['property'], 'property_display_name': property_summary['display_name'] } entities['ga4_firebase_links'].append(link_dict) time.sleep(REQUEST_DELAY) for link in admin_api.list_display_video360_advertiser_links( parent=property_summary['property']): link_dict = { 'name': link.name, 'advertiser_id': link.advertiser_id, 'advertiser_display_name': link.advertiser_display_name, 'ads_personalization_enabled': link.ads_personalization_enabled, 'campaign_data_sharing_enabled': link.campaign_data_sharing_enabled, 'cost_data_sharing_enabled': link.cost_data_sharing_enabled, 'property': property_summary['property'], 'property_display_name': property_summary['display_name'] } entities['ga4_dv360_links'].append(link_dict) time.sleep(REQUEST_DELAY) for proposal in ( admin_api.list_display_video360_advertiser_link_proposals( parent=property_summary['property'])): lpip_enum = (proposal.link_proposal_status_details .link_proposal_initiating_product) lps_enum = (proposal.link_proposal_status_details .link_proposal_state) proposals_dict = { 'name': proposal.name, 'advertiser_id': proposal.adveriser_id, 'link_proposal_status_details': { 'link_proposal_initiating_product': LinkProposalInitiatingProduct(lpip_enum).name, 'requestor_email': proposal.link_proposal_status_details.requestor_email, 'link_proposal_state': LinkProposalState(lps_enum).name }, 'advertiser_display_name': proposal.advertiser_display_name, 'validation_email': proposal.validation_email, 'ads_personalization_enabled': proposal.ads_personalization_enabled, 'campaign_data_sharing_enabled': proposal.campaign_data_sharing_enabled, 'cost_data_sharing_enabled': proposal.cost_data_sharing_enabled, 'property': property_summary['property'], 'property_display_name': property_summary['display_name'] } entities['ga4_dv360_link_proposals'].append(proposal_dict) return entities
5,358,900
def text_detection_background(text, background=None, hsize=15, vsize=15): """ Given a string TEXT, generate a picture with text in it arguments: TEXT -- a string to be displayed HSIZE -- maximum number of characters in one line VSIZE -- maximum number of lines background -- a file for background. If None, then use white return: path to the desired photo, only one photo """ import textwrap img_hsize = int(hsize * 640 / 15) img_vsize = int(vsize * 480 / 15) if not background: img = Image.new('RGB', (img_hsize, img_vsize), color = "white") color = (0,0,0) else: img = Image.open(background) # width, height = img.size # left, top, right, bottom = (0, 0, min(width, img_hsize), min(height, img_vsize)) # img = img.crop((left, top, right, bottom)) img = img.resize((img_hsize, img_vsize)) color = decide_font_color(background, pos=(30,30)) # Uses this font, can change to others if needed fnt = ImageFont.truetype(os.path.join(FONT_SRC, "Times_CE_Regular.ttf"), 30) d = ImageDraw.Draw(img) para = textwrap.wrap(text, width=3*hsize) if len(para)<=0: para = [""] try: d.multiline_text((30, 30), '\n'.join(para), fill=color, font=fnt) except: d.multiline_text((30, 30), '\n'.join(para), fill=(0), font=fnt) # d.text((30,30), text, font=fnt, fill=(0,0,0)) filename = os.path.join(TEXT_SRC, text+strftime("-%Y-%m-%d-%H-%M-%S.png", gmtime())) img.save(filename) return [filename]
5,358,901
def print_sig(expr): """ Arguments: - `expr`: """ return "{0!s} × {1!s}".format(expr.dom, expr.body)
5,358,902
def is_grounded_concept(c: Concept) -> bool: """ Check if a concept is grounded """ return ( "UN" in c.db_refs and c.db_refs["UN"][0][0].split("/")[1] != "properties" )
5,358,903
def _get_form(app, parent_form, factory_method, force_disable_csrf=False): """Create and fill a form.""" class AForm(parent_form): pass with app.test_request_context(): extra = _update_with_csrf_disabled() if force_disable_csrf else {} RF = factory_method(AForm) rf = RF(**extra) rf.profile.username.data = "my username" rf.profile.full_name.data = "My full name" rf.validate() return rf
5,358,904
def get_root_disk_size(): """ Get size of the root disk """ context = pyudev.Context() rootfs_node = get_rootfs_node() size_gib = 0 for device in context.list_devices(DEVTYPE='disk'): # /dev/nvmeXn1 259 are for NVME devices major = device['MAJOR'] if (major == '8' or major == '3' or major == '253' or major == '259'): devname = device['DEVNAME'] if devname == rootfs_node: try: size_gib = parse_fdisk(devname) except Exception as e: LOG.error("Could not retrieve disk size - %s " % e) # Do not break config script, just return size 0 break break return size_gib
5,358,905
def convert_to_premultiplied_png(file): """ http://stackoverflow.com/questions/6591361/method-for-converting-pngs-to-premultiplied-alpha """ logger.info("converting to premultiplied alpha") im = Img.open(file).convert('RGBA') a = numpy.fromstring(im.tobytes(), dtype=numpy.uint8) a = a.astype(numpy.float64) alpha_layer = a[3::4] / 255.0 a[::4] *= alpha_layer a[1::4] *= alpha_layer a[2::4] *= alpha_layer im = Img.frombytes("RGBA", im.size, a.astype(numpy.uint8).tostring()) f = BytesIO() im.save(f, 'png') f.seek(0) return f
5,358,906
def DSQuery(dstype, objectname, attribute=None): """DirectoryServices query. Args: dstype: The type of objects to query. user, group. objectname: the object to query. attribute: the optional attribute to query. Returns: If an attribute is specified, the value of the attribute. Otherwise, the entire plist. Raises: DSException: Cannot query DirectoryServices. """ ds_path = '/%ss/%s' % (dstype.capitalize(), objectname) cmd = [_DSCL, '-plist', '.', '-read', ds_path] if attribute: cmd.append(attribute) (stdout, stderr, returncode) = RunProcess(cmd) if returncode: raise DSException('Cannot query %s for %s: %s' % (ds_path, attribute, stderr)) plist = NSString.stringWithString_(stdout).propertyList() if attribute: value = None if 'dsAttrTypeStandard:%s' % attribute in plist: value = plist['dsAttrTypeStandard:%s' % attribute] elif attribute in plist: value = plist[attribute] try: # We're copying to a new list to convert from NSCFArray return value[:] except TypeError: # ... unless we can't return value else: return plist
5,358,907
def main(cfg: DictConfig) -> None: """ This is a main function for `arachne.driver.cli`. """ logger.info(OmegaConf.to_yaml(cfg)) # Check the specified tool is valid tools = list(cfg.tools.keys()) try: assert len(tools) == 1 except AssertionError as err: logger.exception("You must specify only one tool") raise err tool = tools[0] # Setup the input DNN model if not cfg.model_file and not cfg.model_dir: raise RuntimeError("User must specify either model_file or model_dir.") if cfg.model_file and cfg.model_dir: raise RuntimeError("User must specify either model_file or model_dir.") input_model: Model if cfg.model_file: input_model = init_from_file(to_absolute_path(cfg.model_file)) else: input_model = init_from_dir(to_absolute_path(cfg.model_dir)) if cfg.model_spec_file: # if a YAML file describing the model specification is provided, overwrite input_model.spec input_model.spec = load_model_spec(to_absolute_path(cfg.model_spec_file)) output_model = ToolFactory.get(tool).run(input=input_model, cfg=cfg.tools.get(tool)) save_model( model=output_model, output_path=to_absolute_path(cfg.output_path), tvm_cfg=cfg.tools.get(tool), )
5,358,908
def calculate_offset(lon, first_element_value): """ Calculate the number of elements to roll the dataset by in order to have longitude from within requested bounds. :param lon: longitude coordinate of xarray dataset. :param first_element_value: the value of the first element of the longitude array to roll to. """ # get resolution of data res = lon.values[1] - lon.values[0] # calculate how many degrees to move by to have lon[0] of rolled subset as lower bound of request diff = lon.values[0] - first_element_value # work out how many elements to roll by to roll data by 1 degree index = 1 / res # calculate the corresponding offset needed to change data by diff offset = int(round(diff * index)) return offset
5,358,909
def plot_instcat_dists(phosim_file, figsize=(12, 12)): """ Create a multipanel plot of histograms of various columns in the phosim instance catalog. Parameters ---------- phosim_file: str Instance catalog file containing includeobj references for each object type. figsize: tuple [(9, 12)] Figure dimensions in x, y inches """ instcat_dir = os.path.split(phosim_file)[0] hist_array = HistArray(title=phosim_file, figsize=figsize) object_files = [] with open(phosim_file) as phosim_input: for line in phosim_input: if line.startswith('includeobj'): object_files.append(line.strip().split()[-1]) ra = defaultdict(list) dec = defaultdict(list) magnorm = defaultdict(list) major_axis = defaultdict(list) minor_axis = defaultdict(list) pa = defaultdict(list) sersic_index = defaultdict(list) num_zero_major = 0 num_zero_minor = 0 axis_ratio = defaultdict(list) redshift = defaultdict(list) gamma1 = defaultdict(list) gamma2 = defaultdict(list) kappa = defaultdict(list) for item in object_files: with gzip.open(os.path.join(instcat_dir, item), 'r') as objects: for line in objects: tokens = line.split() ra[item].append(float(tokens[2])) dec[item].append(float(tokens[3])) if float(tokens[4]) < 1000: magnorm[item].append(float(tokens[4])) if float(tokens[6]) > 0: redshift[item].append(float(tokens[6])) if 'sersic2d' in str(line): major_axis[item].append(float(tokens[13])) minor_axis[item].append(float(tokens[14])) if major_axis[item][-1] <= 0: num_zero_major += 1 if minor_axis[item][-1] <= 0: num_zero_minor += 1 else: axis_ratio[item].append(major_axis[item][-1]/ minor_axis[item][-1]) if axis_ratio[item][-1] > 1000: print(line.strip()) pa[item].append(float(tokens[15])) sersic_index[item].append(float(tokens[16])) gamma1[item].append(float(tokens[7])) gamma2[item].append(float(tokens[8])) kappa[item].append(float(tokens[9])) hist_array.plot_hists(ra, xlabel='RA (degrees)') hist_array.plot_hists(dec, xlabel='Dec (degrees)') hist_array.plot_hists(magnorm, xlabel='magnorm') hist_array.plot_hists(redshift, xlabel='redshift') hist_array.plot_hists(major_axis, xlabel='sersic2d major axis (arcsec)') hist_array.plot_hists(minor_axis, xlabel='sersic2d minor axis (arcsec)') hist_array.plot_hists(axis_ratio, xlabel='major/minor (#<=0:{} major, {} minor)'.format(num_zero_major, num_zero_minor)) hist_array.plot_hists(pa, xlabel='sersic2d position angle (degrees)') hist_array.plot_hists(sersic_index, xlabel='sersic index') hist_array.plot_hists(gamma1, xlabel='gamma1') hist_array.plot_hists(gamma2, xlabel='gamma2') hist_array.plot_hists(kappa, xlabel='kappa') plt.tight_layout()
5,358,910
def min_mean_col(m: ma.MaskedArray) -> int: """Calculate the index of the column with the smallest mean. """ if ma.count_masked(m) == m.size: return -1 col_mean = np.nanmean(m, axis=0) return np.argmin(col_mean)
5,358,911
def load_simclrv2(init_args): """ Load pretrained SimCLR-v2 model. """ ckpt_file = init_args["ckpt_file"] model_dir = init_args["model_dir"] # Load the resnet.py that comes with the SimCLR-v2's PyTorch converter sys.path.insert( 0, os.path.join( model_dir, "SimCLRv2-Pytorch", ), ) import resnet backbone, _ = resnet.get_resnet(depth=50, width_multiplier=1, sk_ratio=0) backbone.load_state_dict(torch.load(ckpt_file, "cpu")["resnet"]) def forward(x): # return the tensor obtained at the end of the network # prior to global average pooling return backbone(x, apply_fc=False) return backbone, forward
5,358,912
def minekey_read(request, mk_hmac, mk_fid, mk_fversion, mk_iid, mk_depth, mk_type, mk_ext, **kwargs): """ arguments: request, mk_hmac, mk_fid, mk_fversion, mk_iid, mk_depth, mk_type, mk_ext, **kwargs implements: GET /key/(MK_HMAC)/(MK_FID)/(MK_FVERSION)/(MK_IID)/(MK_DEPTH)/(MK_TYPE).(MK_EXT) returns: a suitable HttpResponse object """ if mk_type not in ('data', 'icon'): diag = 'bad minekey method for GET' Event.alert(request, 'minekey_read', diag=diag) return HttpResponseNotFound(diag) try: mk = MineKey(request, hmac=mk_hmac, fid=mk_fid, fversion=mk_fversion, iid=mk_iid, depth=mk_depth, type=mk_type, ext=mk_ext, enforce_hmac_check=True) except: diag = 'bad minekey validation' Event.alert(request, 'minekey_read', diag=diag) if settings.DEBUG: raise return HttpResponseNotFound(diag) try: Event.log(request, 'minekey_read', feed=mk.get_feed(), item=mk.get_item()) return mk.response() except Exception as e: Event.alert(request, 'minekey_read', diag=str(e)) raise
5,358,913
def get_file_metadata(folder, video_relative_path): """ """ # SAMPLE FILENAME: XXCam_01_20180517203949574.mp4 # XXXXX_XX_YYYYMMDDHHMMSSmmm.mp4 # 2019/01/01/XXCam-20180502-1727-34996.mp4 # XXCam-01-20180502-1727-34996.mp4 video_filename = os.path.basename(video_relative_path) sub_folder = os.path.dirname(video_relative_path) basename, extension = os.path.splitext(video_filename) filename_parts_u = basename.split('_') filename_parts_d = basename.split('-') if len(filename_parts_u) == 3 and filename_parts_u[2].isdigit() and len(filename_parts_u[2]) == 17: file_date = filename_parts_u[2][0:8] file_time1 = filename_parts_u[2][8:12] file_time2 = filename_parts_u[2][12:17] basename_new = '%s-%s-%s-%s' % (filename_parts_u[0], file_date, file_time1, file_time2) elif len(filename_parts_u) == 3 and filename_parts_u[2].isdigit() and len(filename_parts_u[2]) == 14: # July2019 firmware update on Reolink camera changed filename format, therefore simplify mine! file_date = filename_parts_u[2][0:8] file_time1 = filename_parts_u[2][8:14] # file_time2 = filename_parts_u[2][12:14] basename_new = '%s-%s-%s' % (filename_parts_u[0], file_date, file_time1) # ,file_time2) elif (len(filename_parts_d) == 4 and filename_parts_d[1].isdigit() and len(filename_parts_d[1]) == 8 and filename_parts_d[2].isdigit() and len(filename_parts_d[2]) == 4 and filename_parts_d[3].isdigit() and len(filename_parts_d[3]) == 5): basename_new = basename file_date = filename_parts_d[1] elif (len(filename_parts_d) == 5 and filename_parts_d[2].isdigit() and len(filename_parts_d[2]) == 8 and filename_parts_d[3].isdigit() and len(filename_parts_d[3]) == 4 and filename_parts_d[4].isdigit() and len(filename_parts_d[4]) == 5): basename_new = basename file_date = filename_parts_d[2] else: basename_new = basename file_date = 'NO_DATE' return {'original': video_filename, 'sub_folder': sub_folder, 'source_fullpath': os.path.join(folder, video_relative_path), 'filename_new': '%s%s' % (basename_new, extension), 'basename_new': basename_new, 'basename_original': basename, 'file_date': file_date }
5,358,914
def assert_array_almost_equal(x: numpy.ndarray, y: numpy.ndarray, decimal: int): """ usage.matplotlib: 4 usage.scipy: 260 usage.skimage: 14 usage.sklearn: 226 usage.statsmodels: 38 """ ...
5,358,915
def test_data_alignment(role_value, should_pass, check_model): """Test a custom model which returns a good and alignments from data(). qtmodeltest should capture this problem and fail when that happens. """ class MyModel(qt_api.QAbstractListModel): def rowCount(self, parent=qt_api.QtCore.QModelIndex()): return 1 if parent == qt_api.QtCore.QModelIndex() else 0 def data( self, index=qt_api.QtCore.QModelIndex(), role=qt_api.QtCore.Qt.DisplayRole ): if role == qt_api.QtCore.Qt.TextAlignmentRole: return role_value elif role == qt_api.QtCore.Qt.DisplayRole: if index == self.index(0, 0): return "Hello" return None check_model(MyModel(), should_pass=should_pass)
5,358,916
def cov(a, b): """Return the sample covariance of vectors a and b""" a = flex.double(a) b = flex.double(b) n = len(a) assert n == len(b) resid_a = a - flex.mean(a) resid_b = b - flex.mean(b) return flex.sum(resid_a*resid_b) / (n - 1)
5,358,917
def beautify(soup: BeautifulSoup, rich_terminal: bool = True) -> str: """ Cleans up the raw HTML so it's more presentable. Parse BeautifulSoup HTML and return prettified string """ beautifiedText = str() for i in soup: if rich_terminal: term = Terminal() span_sub = r"{t.italic}\1{t.normal}".format(t=term) strong_sub = r"{t.bold}\1{t.normal}".format(t=term) else: span_sub = r"\1" strong_sub = r"\1" i = re.sub(r'<span class="\w+">(.+)</span>', span_sub, str(i),) i = re.sub(r"<strong>(.+)</strong>", strong_sub, str(i)) beautifiedText += " " + i # Remove leading whitespace. beautifiedText = re.sub(r"^\s+", "", beautifiedText) # Compress all whitespace to a single space. beautifiedText = re.sub(r"\s{2,}", " ", beautifiedText) # Trim whitespace immediately preceding common punctuation. beautifiedText = re.sub(r"\s+([,\)\].;:])", r"\g<1>", beautifiedText) # Trim whitespace immediately following common punctuation. beautifiedText = re.sub(r"([\(])\s+", r"\g<1>", beautifiedText) return beautifiedText
5,358,918
def design_complexity(design: Design) -> int: """Returns an approximation of the design's complexity to create.""" diversity = 3 * len(design.required) abundance = 2 * sum(design.required.values()) return diversity + abundance + design.additional
5,358,919
def approx_q_y(q_z, mu_lookup, logvar_lookup, k=10): """ refer to eq.13 in the paper """ q_z_shape = list(q_z.size()) # (b, z_dim) mu_lookup_shape = [mu_lookup.num_embeddings, mu_lookup.embedding_dim] # (k, z_dim) logvar_lookup_shape = [logvar_lookup.num_embeddings, logvar_lookup.embedding_dim] # (k, z_dim) if not mu_lookup_shape[0] == k: raise ValueError("mu_lookup_shape (%s) does not match the given k (%s)" % ( mu_lookup_shape, k)) if not logvar_lookup_shape[0] == k: raise ValueError("logvar_lookup_shape (%s) does not match the given k (%s)" % ( logvar_lookup_shape, k)) if not q_z_shape[1] == mu_lookup_shape[1]: raise ValueError("q_z_shape (%s) does not match mu_lookup_shape (%s) in dimension of z" % ( q_z_shape, mu_lookup_shape)) if not q_z_shape[1] == logvar_lookup_shape[1]: raise ValueError("q_z_shape (%s) does not match logvar_lookup_shape (%s) in dimension of z" % ( q_z_shape, logvar_lookup_shape)) # TODO: vectorization and don't use for loop batch_size = q_z_shape[0] log_q_y_logit = torch.zeros(batch_size, k).type(q_z.type()) for k_i in torch.arange(0, k): mu_k, logvar_k = mu_lookup(k_i), logvar_lookup(k_i) log_q_y_logit[:, k_i] = log_gauss(q_z, mu_k, logvar_k) + np.log(1 / k) q_y = torch.nn.functional.softmax(log_q_y_logit, dim=1) return log_q_y_logit, q_y
5,358,920
def check_net_numpy(net_ds, num_ds, currents): """ Check that an ambient.Profile object is created correctly and that the methods operate as expected. """ chem_names = net_ds.f_names chem_units = net_ds.f_units # Check the chemical names and units are correct for i in range(3): assert num_ds.f_names[i] == chem_names[i] assert num_ds.f_units[i] == chem_units[i] assert num_ds.nchems == 2 # Check the error criteria on the interpolator assert num_ds.err == 0.01 # Check the get_units method name_list = ['temperature', 'salinity', 'pressure'] + chem_names[0:3] unit_list = ['K', 'psu', 'Pa'] + chem_units[0:3] for i in range(3): assert num_ds.get_units(name_list[i])[0] == unit_list[i] units = num_ds.get_units(name_list) for i in range(3): assert units[i] == unit_list[i] # Check the interpolator function ... z = np.linspace(num_ds.z_min, num_ds.z_max, 100) # Next, check that the variables returned by the get_values function are # the variables we expect for depth in z: assert num_ds.get_values(depth, 'temperature') == \ net_ds.get_values(depth, 'temperature') assert num_ds.get_values(depth, 'salinity') == \ net_ds.get_values(depth, 'salinity') assert num_ds.get_values(depth, 'pressure') == \ net_ds.get_values(depth, 'pressure') # Test the append() method by inserting the temperature data as a new # profile, this time in degrees celsius using the variable name temp n0 = num_ds.nchems z = num_ds.data[:,0] T = num_ds.data[:,1] T_degC = T - 273.15 data = np.vstack((z, T_degC)).transpose() symbols = ['z', 'temp'] units = ['m', 'deg C'] comments = ['measured', 'identical to temperature, but in deg C'] num_ds.append(data, symbols, units, comments, 0) # Check that the data were inserted correctly Tnc = num_ds.data[:,num_ds.chem_names.index('temp')+7] assert_array_almost_equal(Tnc, T_degC, decimal = 6) assert num_ds.get_units('temp')[0] == 'deg C' # Check that get_values works correctly with vector inputs for depth Temps = num_ds.get_values(z, ['temperature', 'temp']) for i in range(len(z)): assert_approx_equal(Temps[i,0], Temps[i,1] + 273.15, significant = 6) # Make sure the units are returned correctly assert num_ds.get_units('temp')[0] == 'deg C' # Check that temp is now listed as a chemical assert num_ds.nchems == n0 + 1 assert num_ds.chem_names[-1] == 'temp' # Test the API for calculating the buoyancy frequency (note that we do # not check the result, just that the function call does not raise an # error) N_num = num_ds.buoyancy_frequency(z) N_net = num_ds.buoyancy_frequency(z) assert_array_almost_equal(N_num, N_net, decimal=6)
5,358,921
def svn_repos_get_logs2(*args): """ svn_repos_get_logs2(svn_repos_t repos, apr_array_header_t paths, svn_revnum_t start, svn_revnum_t end, svn_boolean_t discover_changed_paths, svn_boolean_t strict_node_history, svn_repos_authz_func_t authz_read_func, svn_log_message_receiver_t receiver, apr_pool_t pool) -> svn_error_t """ return apply(_repos.svn_repos_get_logs2, args)
5,358,922
def error_function(theta, X, y): """Error function J definition""" diff = np.dot(X, theta) - y return (1. / 2 * m) * np.dot(np.transpose(diff), diff)
5,358,923
def register(operation_name): """ Registers the decorated class as an Operation with the supplied operation name :param operation_name: The identifying name for the Operation """ def wrapper(clazz): if operation_name not in OPERATIONS: OPERATIONS[operation_name] = clazz return clazz return wrapper
5,358,924
def url_exists(video): """ check each source for a url for this video; return True as soon as one is found. If none are found, return False """ max_timeout = int(kodi.get_setting('source_timeout')) logger.log('Checking for Url Existence: |%s|' % (video), log_utils.LOGDEBUG) for cls in relevant_scrapers(video.video_type): if kodi.get_setting('%s-sub_check' % (cls.get_name())) == 'true': scraper_instance = cls(max_timeout) url = scraper_instance.get_url(video) if url: logger.log('Found url for |%s| @ %s: %s' % (video, cls.get_name(), url), log_utils.LOGDEBUG) return True logger.log('No url found for: |%s|' % (video), log_utils.LOGDEBUG) return False
5,358,925
def test(loader): """Evaluate images with best weights.""" net.eval() try: filename = osp.join(cfg.OUTPUT_DIR, 'best_val_acc_weights.pth') net.load_state_dict(torch.load(filename)) except FileNotFoundError: net.load_state_dict(torch.load(cfg.OPTIM_SNAPSHOT)) bar = tqdm(enumerate(loader)) for _, sample in bar: start = time.time() # TODO: Call the test routine for the net # outputs, id = routines.test_routine(sample) total_time = time.time() - start # TODO: Save porosity value here
5,358,926
def test_actions_explicit_get_collector_action_for_unexisting_terminal(): """ Test for situation when `get_collector` has an action for un-existing terminal. """ action = get_collector() @action def INT(context, value): return int(value) @action def STRING(context, value): return "#{}#".format(value) @action def STRING2(context, value): return "#{}#".format(value) grammar = Grammar.from_file(os.path.join(THIS_FOLDER, 'grammar.pg')) Parser(grammar, actions=action.all)
5,358,927
def log2_grad(orig, grad): """Returns [grad * 1 / (log(2) * x)]""" x = orig.args[0] ones = ones_like(x) two = const(2.0, dtype=x.checked_type.dtype) return [grad * ones / (log(two) * x)]
5,358,928
def test_anim_pairwise_maxmatch(): """Test generation of NUCmer pairwise comparison command with maxmatch. """ cmd = anim.construct_nucmer_cmdline("file1.fna", "file2.fna", maxmatch=True) assert_equal(cmd, "nucmer -maxmatch -p ./nucmer_output/file1_vs_file2 " + "file1.fna file2.fna") print(cmd)
5,358,929
def _stream_annotation(file_name, pn_dir): """ Stream an entire remote annotation file from Physionet. Parameters ---------- file_name : str The name of the annotation file to be read. pn_dir : str The PhysioNet directory where the annotation file is located. Returns ------- ann_data : ndarray The resulting data stream in numpy array format. """ # Full url of annotation file url = posixpath.join(config.db_index_url, pn_dir, file_name) # Get the content response = requests.get(url) # Raise HTTPError if invalid url response.raise_for_status() # Convert to numpy array ann_data = np.fromstring(response.content, dtype=np.dtype('<u1')) return ann_data
5,358,930
def get_scenarios(): """ Return a list scenarios and values for parameters in each of them :return: """ # Recover InteractiveSession isess = deserialize_isession_and_prepare_db_session() if isess and isinstance(isess, Response): return isess scenarios = get_scenarios_in_state(isess.state) return build_json_response(scenarios, 200)
5,358,931
def download() -> str: """ Returns a download of the active files. :return: the zip files needs to be downloaded. """ file_manager = utility.load_file_manager() response = make_response(file_manager.zip_active_files( "scrubbed_documents.zip")) # Disable download caching response.headers["Cache-Control"] = \ "max-age=0, no-cache, no-store, must-revalidate" response.headers["Expires"] = 0 response.headers["Pragma"] = "no-cache" return response
5,358,932
def evaluate_test_arff(model_path, test_arff_path, out_path): """ Obtain predictions of test_file using the trained model in model_path :param output_folder: :param output_name: :param model_path: :param test_file: """ # PREDICTIONS FILE HEADERS: INSTANCE, ACTUAL, PREDICTED, ERROR bash_file_path = "../../data/bash_scripts/explorer_test_model.sh " with open(out_path, 'w') as fi: fi.close() command = "".join([bash_file_path, test_arff_path, " ", model_path, " ", out_path]) print(command) subprocess.call(command, shell=True) remove_lines(out_path) # remove headers of prediction file df_participant = pd.read_csv(out_path, header=0, sep=",") return df_participant
5,358,933
def main(root_dir: str, train_dir: str, model_info_dir: str) -> None: """ Main function for receiving args, and passing them through to form recognizer training function Parameters ---------- root_dir: str Root datastore being used train_dir: str Path on blob containing training images and asset files model_info_dir: str Path to folder containing trained model information """ log.info("Form Recognizer Training Step") # get context of current run run = Run.get_context() model_info_dir = join(root_dir, model_info_dir) # set form recognizer credentials form_credentials = {"key": run.get_secret("formkey"), "endpoint": run.get_secret("formendpoint")} log.info("Training Custom Form Recognizer Model...") train_results = train_model( form_credentials=form_credentials, root_dir=root_dir, source_directory=train_dir, sas_uri=run.get_secret("formtrainsasuri") ) # get model info and save results to JSON model_info = train_results["modelInfo"] if model_info is not None: filename = "model.json" write_model_info(model_info_dir, filename, model_info) log.info("Model info saved to model.json") else: log.info("Model information empty. Skipping write model information.") # Log metrics if "trainResult" in train_results: if "errors" in train_results["trainResult"] and len(train_results["trainResult"]["errors"]) > 0: log.error("Error training the model") log.error(f"train_results: \n{json.dumps(train_results, indent=4)}") return log.info("Logging metrics") avg_accuracy = train_results["trainResult"]["averageModelAccuracy"] run.parent.log(name="avg_accuracy", value=avg_accuracy) metrics = train_results["trainResult"]["fields"] for element in metrics: target = element["fieldName"] accuracy = element["accuracy"] run.parent.log(name=f"{target}_accuracy", value=accuracy) else: log.error("Error, could not find any metrics to log")
5,358,934
def load_from_pickle_file(filepath): """ Loads a pickle file into a python variable """ with open(filepath, "rb") as f: python_obj = pickle.load(f) return python_obj
5,358,935
def download_y(id:str, table): """ 下载数据,主要放在线程里面跑,可以理解成每个线程单独跑一个 :param id: 股票代码 :param table: mongo里面的数据表 :return: """ date = datetime.datetime.now().strftime("%Y%m%d") # date = "20200228" ndate = datetime.datetime.now().strftime("%Y-%m-%d") # ndate = "2020-02-28" if id.startswith("0"): nid = id+".SZ" elif id.startswith("3"): nid = id +".SZ" else: nid = id +".SH" df = pro.daily(ts_code=nid, start_date=date, end_date=date) # df = ts.get_hist_data(id, start=date, end=date) y = df["pct_chg"].values if y >= 0.00: data = 1 else: data = 0 dic = {"today_updown": data} values = {"$set": dic} myquery = {"code": id, "date": ndate} table.update_many(myquery, values)
5,358,936
def generate_inputs_pw(fixture_code, generate_structure, generate_kpoints_mesh, generate_upf_data): """Generate default inputs for a `PwCalculation.""" def _generate_inputs_pw(): """Generate default inputs for a `PwCalculation.""" from aiida.orm import Dict from aiida_quantumespresso.utils.resources import get_default_options inputs = { 'code': fixture_code('quantumespresso.pw'), 'structure': generate_structure(), 'kpoints': generate_kpoints_mesh(2), 'parameters': Dict(dict={ 'CONTROL': { 'calculation': 'scf' }, 'SYSTEM': { 'ecutrho': 240.0, 'ecutwfc': 30.0 } }), 'pseudos': { 'Si': generate_upf_data('Si') }, 'metadata': { 'options': get_default_options() } } return inputs return _generate_inputs_pw
5,358,937
def test_private_access_through_caller_object(enable_accessify): """ Case: access to private member, which do not follow naming conv., through member's class object in another class. Expect: inaccessible due to its protection level error message. """ tesla = Tesla() expected_error_message = INACCESSIBLE_DUE_TO_ITS_PROTECTION_LEVEL_EXCEPTION_MESSAGE.format( class_name=CarWithPrivateEngine.__name__, class_method_name='start_engine', ) with pytest.raises(InaccessibleDueToItsProtectionLevelException) as error: tesla.run() assert expected_error_message == error.value.message
5,358,938
def connected_components(edge_index, num_nodes=None): """Find the connected components of a given graph. Args: edge_index (LongTensor): Edge coordinate matrix. num_nodes (int, optional): Number of nodes. Defaults to None. Returns: LongTensor: Vector assigning each node to its component index. """ if num_nodes is None: num_nodes = edge_index.max().item() + 1 device = edge_index.device row, col = edge_index.cpu() out = cc_cpu.connected_components(row, col, num_nodes) return out.to(device)
5,358,939
def assembly2graph(path=DATA_PATH): """Convert assemblies (assembly.json) to graph format""" """Return a list of NetworkX graphs""" graphs = [] input_files = get_input_files(path) for input_file in tqdm(input_files, desc="Generating Graphs"): ag = AssemblyGraph(input_file) graph = ag.get_graph_networkx() graphs.append(graph) return graphs, input_files
5,358,940
def test_check_metadata_italic_style(): """ METADATA.pb font.style "italic" matches font internals ? """ from fontbakery.constants import MacStyle from fontbakery.profiles.googlefonts import (com_google_fonts_check_metadata_italic_style as check, family_metadata, font_metadata) # Our reference Merriweather Italic is known to good fontfile = TEST_FILE("merriweather/Merriweather-Italic.ttf") ttFont = TTFont(fontfile) family_directory = os.path.dirname(fontfile) family_meta = family_metadata(family_directory) font_meta = font_metadata(family_meta, fontfile) # So it must PASS: print ("Test PASS with a good font...") status, message = list(check(ttFont, font_meta))[-1] assert status == PASS # now let's introduce issues on the FULL_FONT_NAME entries # to test the "bad-fullfont-name" codepath: for i, name in enumerate(ttFont['name'].names): if name.nameID == NameID.FULL_FONT_NAME: backup = name.string ttFont['name'].names[i].string = "BAD VALUE".encode(name.getEncoding()) print ("Test FAIL with a bad NameID.FULL_FONT_NAME entry...") status, message = list(check(ttFont, font_meta))[-1] assert status == FAIL and message.code == "bad-fullfont-name" # and restore the good value: ttFont['name'].names[i].string = backup # And, finally, let's flip off that italic bit # and get a "bad-macstyle" FAIL (so much fun!): print ("Test FAIL with bad macstyle bit value...") ttFont['head'].macStyle &= ~MacStyle.ITALIC status, message = list(check(ttFont, font_meta))[-1] assert status == FAIL and message.code == "bad-macstyle"
5,358,941
def _get_default_backing(backing): """ _get_default_backing(backing) Returns the prefered backing store - if user provides a valid Backing object, use it - if there is a default_backing object instantiated, use it - if the user provided a configuration dict, use it to create a new default_backing object - otherwise, create a default_backing object using our defaults. """ # Probably they didn't mean to do this... global default_backing, default_backing_config if isinstance(backing, Backing): return backing if default_backing: return default_backing elif type(backing) is dict: default_backing = Backing(**backing) else: # create a new default backing default_backing = Backing(**default_backing_config) return default_backing
5,358,942
def slice(request, response, start, end=None): """Send a byte range of the response body :param start: The starting offset. Follows python semantics including negative numbers. :param end: The ending offset, again with python semantics and None (spelled "null" in a query string) to indicate the end of the file. """ content = resolve_content(response) response.content = content[start:end] return response
5,358,943
def pie(args): """Plots populational pie charts for desired groups""" # get basename of file for writing outputs name = [os.path.splitext(os.path.basename(args.file))[0]] # read file into anndata obj if args.verbose: print("Reading {}".format(args.file), end="") a = sc.read(args.file) if args.verbose: print(" - {} cells and {} genes".format(a.shape[0], a.shape[1])) # generate cluster_pie plot os.chdir(args.outdir) # set output directory for scanpy figures _ = cluster_pie(a, pie_by=args.pieby, groupby=args.groupby) if args.verbose: print( "Saving cluster pie charts to {}/{}_pie.png".format( args.outdir, "_".join(name) ) ) plt.savefig("{}/{}_pie.png".format(args.outdir, "_".join(name)))
5,358,944
def get_ps(sdfits, scan, ifnum=0, intnum=None, plnum=0, fdnum=0, method='vector', avgf_min=256): """ Parameters ---------- sdfits : scan : int Scan number. plnum : int Polarization number. method : {'vector', 'classic'}, optional Method used to compute the source temperature. If set to ``'vector'`` it will use Eq. (16) of Winkel et al. (2012). If set to ``'classic'`` it will use the same method as GBTIDL. The default is ``'vector'``. Returns ------- """ ps_scan = sdfits.get_scans(scan, ifnum=ifnum, intnum=intnum, plnum=plnum) rows = ps_scan.table obsmode = rows["OBSMODE"] last_on = rows["LASTON"] last_off = rows["LASTOFF"] procnum = rows["PROCSEQN"] source = np.unique(rows['OBJECT'])[0] tcal = np.average(rows['TCAL'], axis=0) procname, swstate, swtchsig = obsmode[0].split(':') if procname not in ["OffOn", "OnOff"]: warnings.warn(f"Selected scan is not OnOff or OffOn, it is: {procname}." f"Cannot get Tcal from this scan.") return None scan_on, scan_off = utils.get_ps_scan_pair(scan, procnum, procname) sou_on = sdfits.get_scans(scan_on, sig="T", cal="T", ifnum=ifnum, intnum=intnum, plnum=plnum) sou_off = sdfits.get_scans(scan_on, sig="T", cal="F", ifnum=ifnum, intnum=intnum, plnum=plnum) off_on = sdfits.get_scans(scan_off, sig="T", cal="T", ifnum=ifnum, intnum=intnum, plnum=plnum) off_off = sdfits.get_scans(scan_off, sig="T", cal="F", ifnum=ifnum, intnum=intnum, plnum=plnum) if method == 'vector': sou_on.average() sou_off.average() off_on.average() off_off.average() off_freq = off_off.freq sou_freq = sou_on.freq nchan = off_on.data.shape[0] facs = utils.factors(nchan) avgf = np.min(facs[facs >= avgf_min]) kappa_off = get_kappa(off_on.data, off_off.data, avgf=avgf) kappa_freq = off_freq.reshape(nchan//avgf, avgf).mean(axis=1) # Interpolate back to high frequency resolution. pt = np.argsort(kappa_freq) pi = np.argsort(sou_freq) kappa_interp = np.interp(sou_freq.to('Hz').value[pi], kappa_freq.to('Hz').value[pt], kappa_off) # Compute the source temperature (Eq. (16) in Winkel et al. 2012). tsou_on = (kappa_interp + 1.)*tcal*(sou_on.data - off_on.data)/off_on.data tsou_off = kappa_interp*tcal*(sou_off.data - off_off.data)/off_off.data # Average. tsou = 0.5*(tsou_on + tsou_off) elif method == 'gbtidl': # Eqs. (1) and (2) from Braatz (2009, GBTIDL calibration guide) # https://www.gb.nrao.edu/GBT/DA/gbtidl/gbtidl_calibration.pdf tsys = gbtidl_tsys(off_on.data, off_off.data, tcal) sig = 0.5*(sou_on.data + sou_off.data) ref = 0.5*(off_on.data + off_off.data) ta = gbtidl_sigref2ta(sig, ref, tsys) tint_sou = 0.5*(sou_on.table["EXPOSURE"] + sou_off.table["EXPOSURE"]) tint_off = 0.5*(off_on.table["EXPOSURE"] + off_off.table["EXPOSURE"]) tint = 0.5*(tint_sou + tint_off) dnu = np.mean(sou_on.table["CDELT1"]) tsou = np.average(ta, axis=0, weights=dnu*tint*np.power(tsys, -2.)) elif method == 'classic': tsys = classic_tsys(off_on.data, off_off.data, tcal) ta_on = (sou_on.data - off_on.data)/off_on.data*(tsys[:,np.newaxis] + tcal) ta_off = (sou_off.data - off_off.data)/off_off.data*(tsys[:,np.newaxis]) tint_sou = 0.5*(sou_on.table["EXPOSURE"] + sou_off.table["EXPOSURE"]) tint_off = 0.5*(off_on.table["EXPOSURE"] + off_off.table["EXPOSURE"]) tint = 0.5*(tint_sou + tint_off) dnu = np.mean(sou_on.table["CDELT1"]) ta_on = np.average(ta_on, axis=0, weights=dnu*tint_sou*np.power(tsys, -2.)) ta_off = np.average(ta_off, axis=0, weights=dnu*tint_off*np.power(tsys, -2.)) tsou = 0.5*(ta_on + ta_off) return tsou
5,358,945
def choiceprompt(variable: Variable) -> Binding: """Prompt to choose from several values for the given name.""" if not variable.choices: raise ValueError("variable with empty choices") choices = {str(number): value for number, value in enumerate(variable.choices, 1)} lines = [ f"Select {variable.name}:", *[f"{number} - {value}" for number, value in choices.items()], "Choose from {}".format(", ".join(choices.keys())), ] choice = click.prompt( "\n".join(lines), type=click.Choice(list(choices)), default="1", show_choices=False, ) return bind(variable, choices[choice])
5,358,946
def test_edge_betweenness_centrality_k_full( graph_file, directed, subset_size, normalized, weight, subset_seed, result_dtype, use_k_full, edgevals ): """Tests full edge betweenness centrality by using k = G.number_of_vertices() instead of k=None, checks that k scales properly""" sorted_df = calc_edge_betweenness_centrality( graph_file, directed=directed, normalized=normalized, k=subset_size, weight=weight, seed=subset_seed, result_dtype=result_dtype, use_k_full=use_k_full, edgevals=edgevals ) compare_scores(sorted_df, first_key="cu_bc", second_key="ref_bc")
5,358,947
def GetCLInfo(review_host, change_id, auth_cookie='', include_messages=False, include_detailed_accounts=False): """Get the info of the specified CL by querying the Gerrit API. Args: review_host: Base URL to the API endpoint. change_id: Identity of the CL to query. auth_cookie: Auth cookie if the API is not public. include_messages: Whether to pull and return the CL messages. include_detailed_accounts: Whether to pull and return the email of users in CL messages. Returns: An instance of `CLInfo`. Optional fields might be `None`. Raises: GitUtilException if error occurs while querying the Gerrit API. """ url = f'{review_host}/changes/{change_id}' params = [] if include_messages: params.append(('o', 'MESSAGES')) if include_detailed_accounts: params.append(('o', 'DETAILED_ACCOUNTS')) if params: url = url + '?' + urllib.parse.urlencode(params) pool_manager = PoolManager(ca_certs=certifi.where()) pool_manager.headers['Cookie'] = auth_cookie pool_manager.headers['Content-Type'] = 'application/json' pool_manager.headers['Connection'] = 'close' try: r = pool_manager.urlopen('GET', url) except urllib3.exceptions.HTTPError: raise GitUtilException(f'invalid url {url}') if r.status != http.client.OK: raise GitUtilException(f'request unsuccessfully with code {r.status}') try: # the response starts with a magic prefix line for preventing XSSI which # should be stripped. stripped_json = r.data.split(b'\n', 1)[1] json_data = json_utils.LoadStr(stripped_json) except Exception: raise GitUtilException('Response format Error: %r' % (r.data, )) def _ConvertGerritCLMessage(json_data): return CLMessage( json_data['message'], json_data['author']['email'] if include_detailed_accounts else None) try: return CLInfo(json_data['change_id'], json_data['_number'], _GERRIT_CL_STATUS_TO_CL_STATUS[json_data['status']], [_ConvertGerritCLMessage(x) for x in json_data['messages']] if include_messages else None) except Exception as ex: logging.debug('Unexpected Gerrit API response for CL info: %r', json_data) raise GitUtilException('failed to parse the Gerrit API response') from ex
5,358,948
def revoke_jti(jti): """Revoke the given jti""" revoked_token = RevokedToken(jti=jti) DB.session.add(revoked_token) DB.session.commit()
5,358,949
def rehash(file_path): """Return (hash, size) for a file with path file_path. The hash and size are used by pip to verify the integrity of the contents of a wheel.""" with open(file_path, 'rb') as file: contents = file.read() hash = base64.urlsafe_b64encode(hashlib.sha256(contents).digest()).decode('latin1').rstrip('=') size = len(contents) return hash, size
5,358,950
def set_token_auth(): """Set authorisation header for JWT token using the Bearer schema.""" global AUTH if not JWT_DISABLED: api_jwt = get_token(AUTH_API_ENDP, URI_API_USER, URI_API_PASS) AUTH = f'Bearer {api_jwt}'
5,358,951
def _magpie_update_services_conflict(conflict_services, services_dict, request_cookies): # type: (List[Str], ServicesSettings, AnyCookiesType) -> Dict[Str, int] """ Resolve conflicting services by name during registration by updating them only if pointing to different URL. """ magpie_url = get_magpie_url() statuses = dict() for svc_name in conflict_services: statuses[svc_name] = 409 svc_url_new = services_dict[svc_name]["url"] svc_url_db = "{magpie}/services/{svc}".format(magpie=magpie_url, svc=svc_name) svc_resp = requests.get(svc_url_db, cookies=request_cookies) svc_info = get_json(svc_resp).get(svc_name) svc_url_old = svc_info["service_url"] if svc_url_old != svc_url_new: svc_info["service_url"] = svc_url_new res_svc_put = requests.patch(svc_url_db, data=svc_info, cookies=request_cookies) statuses[svc_name] = res_svc_put.status_code print_log("[{url_old}] => [{url_new}] Service URL update ({svc}): {resp}" .format(svc=svc_name, url_old=svc_url_old, url_new=svc_url_new, resp=res_svc_put.status_code), logger=LOGGER) return statuses
5,358,952
def export_inference_model( model: TinyImageNetModel, out_path: str, tmpdir: str ) -> None: """ export_inference_model uses TorchScript JIT to serialize the TinyImageNetModel into a standalone file that can be used during inference. TorchServe can also handle interpreted models with just the model.py file if your model can't be JITed. """ print("exporting inference model") jit_path = os.path.join(tmpdir, "model_jit.pt") jitted = torch.jit.script(model) print(f"saving JIT model to {jit_path}") torch.jit.save(jitted, jit_path) model_name = "tiny_image_net" mar_path = os.path.join(tmpdir, f"{model_name}.mar") print(f"creating model archive at {mar_path}") subprocess.run( [ "torch-model-archiver", "--model-name", "tiny_image_net", "--handler", "torchx/examples/apps/lightning_classy_vision/handler/handler.py", "--version", "1", "--serialized-file", jit_path, "--export-path", tmpdir, ], check=True, ) remote_path = os.path.join(out_path, "model.mar") print(f"uploading to {remote_path}") fs, _, rpaths = fsspec.get_fs_token_paths(remote_path) assert len(rpaths) == 1, "must have single path" fs.put(mar_path, rpaths[0])
5,358,953
def configure_app(app, config): """read configuration""" app.config.from_object(DefaultConfig()) if config is not None: app.config.from_object(config) app.config.from_envvar('APP_CONFIG', silent=True)
5,358,954
def rtc_runner(rtc): """Resolved tool contract runner.""" return run_main(polish_chunks_pickle_file=rtc.task.input_files[0], sentinel_file=rtc.task.input_files[1], subreads_file=rtc.task.input_files[2], output_json_file=rtc.task.output_files[0], max_nchunks=rtc.task.max_nchunks)
5,358,955
def dict_to_json_str(o: Any) -> str: """ Converts a python object into json. """ json_str = json.dumps(o, cls=EnhancedJSONEncoder, sort_keys=True) return json_str
5,358,956
def paramid_to_paramname(paramid): """Turn a parameter id number into a parameter name""" try: return param_info[paramid]['n'] except KeyError: return "UNKNOWN_%s" % str(hex(paramid))
5,358,957
def write_left_aligned_text(text: str, parent_surface, font_size: int=FONT_SIZE, font_color: Color=FONT_COLOR) -> None: """Draw the given text at the left border of the parent surface.""" font = pygame.font.Font(pygame.font.match_font(FONT_NAME), font_size) text_surface = font.render(text, True, font_color) text_pos = text_surface.get_rect(center=( 0.5 * parent_surface.get_width(), 0.5 * parent_surface.get_height())) text_pos.left = 0 # Align text with left border parent_surface.blit(text_surface, text_pos)
5,358,958
def max_dist_comp(G, cc0, cc1): """ Maximum distance between components Parameters ---------- G : nx.graph Graph cc0 : list Component 0 cc1 : list Compoennt 1 Returns ------- threshold : float Maximum distance """ # Assertions assert isinstance(G, nx.Graph), "G is not a NetworkX graph" # Calculation threshold = 0 for n0 in cc0: for n1 in cc1: distance = metrics.distance_between_nodes(G, n0, n1) if distance > threshold: threshold = distance return threshold
5,358,959
def convert_examples_to_features( examples, label_list, max_seq_length, tokenizer, cls_token_at_end=False, cls_token="[CLS]", cls_token_segment_id=1, sep_token="[SEP]", sep_token_extra=False, pad_on_left=False, pad_token=0, pad_token_segment_id=0, pad_token_label_id=-100, sequence_a_segment_id=0, mask_padding_with_zero=True, ): """ Loads a data file into a list of `InputBatch`s `cls_token_at_end` define the location of the CLS token: - False (Default, BERT/XLM pattern): [CLS] + A + [SEP] + B + [SEP] - True (XLNet/GPT pattern): A + [SEP] + B + [SEP] + [CLS] `cls_token_segment_id` define the segment id associated to the CLS token (0 for BERT, 2 for XLNet) """ label_map = {label: i for i, label in enumerate(label_list)} features = [] for (ex_index, example) in enumerate(examples): if ex_index % 10000 == 0: logger.info("Writing example %d of %d", ex_index, len(examples)) tokens = [] label_ids = [] for word, label in zip(example.words, example.labels): word_tokens = tokenizer.tokenize(word) tokens.extend(word_tokens) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(word_tokens) - 1)) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. special_tokens_count = 3 if sep_token_extra else 2 if len(tokens) > max_seq_length - special_tokens_count: tokens = tokens[: (max_seq_length - special_tokens_count)] label_ids = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] segment_ids = [sequence_a_segment_id] * len(tokens) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: tokens = [cls_token] + tokens label_ids = [pad_token_label_id] + label_ids segment_ids = [cls_token_segment_id] + segment_ids input_ids = tokenizer.convert_tokens_to_ids(tokens) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. input_mask = [1 if mask_padding_with_zero else 0] * len(input_ids) # Zero-pad up to the sequence length. padding_length = max_seq_length - len(input_ids) if pad_on_left: input_ids = ([pad_token] * padding_length) + input_ids input_mask = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask segment_ids = ([pad_token_segment_id] * padding_length) + segment_ids label_ids = ([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(input_ids) == max_seq_length assert len(input_mask) == max_seq_length assert len(segment_ids) == max_seq_length assert len(label_ids) == max_seq_length if ex_index < 5: logger.info("*** Example ***") logger.info("guid: %s", example.guid) logger.info("tokens: %s", " ".join([str(x) for x in tokens])) logger.info("input_ids: %s", " ".join([str(x) for x in input_ids])) logger.info("input_mask: %s", " ".join([str(x) for x in input_mask])) logger.info("segment_ids: %s", " ".join([str(x) for x in segment_ids])) logger.info("label_ids: %s", " ".join([str(x) for x in label_ids])) features.append( InputFeatures(input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, label_ids=label_ids) ) return features
5,358,960
def upload(images, host): """Upload an image file or rehost an image URL.""" uploaded_urls = [] for img_url, del_url in upload_images(images, host): uploaded_urls.append(img_url) click.echo(f'{img_url}', nl=False) click.echo(f' | Delete: {del_url}' if del_url else '') if conf.copy_to_clipboard: pyperclip.copy(' '.join(uploaded_urls))
5,358,961
def sync_instrument(target_session, instruments): """ Inserts / updates all supplied instruments into the target database. Parameters ---------- target_session : sqlalchemy session The sqlalchemy session into which we will insert instruments. instrument : list The list of instruments that we wish to insert / update in the target database. returns: None """ for i in instruments: target_session.merge(i) target_session.commit()
5,358,962
def exp(var): """ Returns variable representing exp applied to the input variable var """ result = Var(np.exp(var.val)) result.parents[var] = var.children[result] = np.exp(var.val) return result
5,358,963
def format_now(frmt): """ Formats the current time according to the frmt string """ print(datetime.datetime.now().strftime(frmt)) return
5,358,964
def invalidate_cache( key: str = None, keys: List = [], obj: Any = None, obj_attr: str = None, namespace: str = None, ): """Invalidates a specific cache key""" if not namespace: namespace = HTTPCache.namespace if key: keys = [key] def wrapper(func: Callable): @wraps(func) async def inner(*args, **kwargs): try: # extracts the `id` attribute from the `obj_attr` giparameter passed to the `@cache` method _obj = kwargs.get(f"{obj}", None) _keys = await HTTPKeys.generate_keys( keys=keys, config=HTTPCache, obj=_obj, obj_attr=obj_attr ) _cache = HTTPCacheBackend( redis=HTTPCache.redis_client, namespace=namespace ) await _cache.invalidate_all(keys=_keys) _computed_response = await func(*args, **kwargs) return _computed_response except Exception as e: log_error(msg=f"Cache Error: {e}", e=e, method="cache") return await func(*args, **kwargs) return inner return wrapper
5,358,965
def read_dataset(filename): """Reads in the TD events contained in the N-MNIST/N-CALTECH101 dataset file specified by 'filename'""" # NMIST: 34×34 pixels big f = open(filename, 'rb') raw_data = np.fromfile(f, dtype=np.uint8) f.close() raw_data = np.uint32(raw_data) all_y = raw_data[1::5] all_x = raw_data[0::5] all_p = (raw_data[2::5] & 128) >> 7 #bit 7 all_ts = ((raw_data[2::5] & 127) << 16) | (raw_data[3::5] << 8) | (raw_data[4::5]) #Process time stamp overflow events time_increment = 2 ** 13 overflow_indices = np.where(all_y == 240)[0] for overflow_index in overflow_indices: all_ts[overflow_index:] += time_increment #Everything else is a proper td spike td_indices = np.where(all_y != 240)[0] events = np.stack([all_x[td_indices], all_y[td_indices], all_ts[td_indices], all_p[td_indices]], axis=1).astype(np.float32) # events[:,3] = 2*events[:,3]-1 return events
5,358,966
def prge_annotation(): """Returns an annotation with protein/gene entities (PRGE) identified. """ annotation = {"ents": [{"text": "p53", "label": "PRGE", "start": 0, "end": 0}, {"text": "MK2", "label": "PRGE", "start": 0, "end": 0}], "text": "p53 and MK2", "title": ""} return annotation
5,358,967
def inner_points_mask(points): """Mask array into `points` where ``points[msk]`` are all "inner" points, i.e. `points` with one level of edge points removed. For 1D, this is simply points[1:-1,:] (assuming ordered points). For ND, we calculate and remove the convex hull. Parameters ---------- points : nd array (npoints, ndim) Returns ------- msk : (npoints, ndim) Bool array. """ msk = np.ones((points.shape[0],), dtype=bool) if points.shape[1] == 1: assert (np.diff(points[:,0]) >= 0.0).all(), ("points not monotonic") msk[0] = False msk[-1] = False else: from scipy.spatial import Delaunay tri = Delaunay(points) edge_idx = np.unique(tri.convex_hull) msk.put(edge_idx, False) return msk
5,358,968
def array2list(X_train: Union[np.ndarray, torch.Tensor], y_train: Union[np.ndarray, torch.Tensor], X_test: Union[np.ndarray, torch.Tensor], y_test: Union[np.ndarray, torch.Tensor], batch_size: int, memory_alloc: float = 4 ) -> Union[Tuple[List[np.ndarray]], Tuple[List[torch.Tensor]]]: """ Splits train and test numpy arrays or torch tensors into lists of arrays/tensors of a specified size. The remainders are not included. """ all_data = [X_train, y_train, X_test, y_test] arrsize = sum([get_array_memsize(x) for x in all_data]) store_on_cpu = (arrsize / 1e9) > memory_alloc X_train = array2list_(X_train, batch_size, store_on_cpu) y_train = array2list_(y_train, batch_size, store_on_cpu) X_test = array2list_(X_test, batch_size, store_on_cpu) y_test = array2list_(y_test, batch_size, store_on_cpu) return X_train, y_train, X_test, y_test
5,358,969
def livecoding_redirect_view(request): """ livecoding oath2 fetch access token after permission dialog """ code = request.GET.get('code') if code is None: return HttpResponse("code param is empty/not found") try: url = "https://www.livecoding.tv/o/token/" data = dict(code=code, grant_type='authorization_code', redirect_uri=LIVECODING_REDIRECT_URI, client_id=LIVECODING_KEY, client_secret=LIVECODING_SECRET) response = requests.post(url, data=data) except urllib2.URLError as e: print(e) return HttpResponse("Failed to make POST request to fetch token") res = json.loads(response.content) print res access_token = res['access_token'] print(access_token) user = User.objects.get(username='admin') print user a, created = AccessToken.objects.get_or_create(user=user) print a, created a.access_token = access_token a.save() print(a) redirect = request.GET.get('redirect') if redirect is None: return HttpResponse(response.content) else: return HttpResponseRedirect(redirect)
5,358,970
def test_nonKeywordAfterKeywordSyntaxError(): """Source which has a non-keyword argument after a keyword argument should include the line number of the syntax error However these exceptions do not include an offset """ source = """\ foo(bar=baz, bax) """ sourcePath = make_temp_file(source) last_line = ' ^\n' if sys.version_info >= (3, 2) else '' column = '12:' if sys.version_info >= (3, 2) else '' assert_contains_errors( sourcePath, ["""\ %s:1:%s non-keyword arg after keyword arg foo(bar=baz, bax) %s""" % (sourcePath, column, last_line)])
5,358,971
def test_list_time_min_length_1_nistxml_sv_iv_list_time_min_length_2_5(mode, save_output, output_format): """ Type list/time is restricted by facet minLength with value 6. """ assert_bindings( schema="nistData/list/time/Schema+Instance/NISTSchema-SV-IV-list-time-minLength-2.xsd", instance="nistData/list/time/Schema+Instance/NISTXML-SV-IV-list-time-minLength-2-5.xml", class_name="NistschemaSvIvListTimeMinLength2", version="1.1", mode=mode, save_output=save_output, output_format=output_format, structure_style="filenames", )
5,358,972
def sort_dict(value): """Sort a dictionary.""" return OrderedDict((key, value[key]) for key in sorted(value))
5,358,973
def withdraw_worker(): """ Checks every address in database for withdrawals and executes them. Afterward burns assets """ while True: try: data = json.dumps({"password":publicserverpassword}) r = post(url + "get/withdrawdata", data).json() address_data = r["data"] for pair in address_data: raddress = pair[1] vaddress = pair[0] value_list = versum.getaddressbalances(vaddress) for asst in value_list: if asst["name"] == "BTC": value = float(asst["qty"]) if value > 0: data = json.dumps({"vaddress": vaddress,\ "password":publicserverpassword}) r = post(url + "del/withdrawdata", data).text if r == "Success": print btc.sendtoaddress(raddress, (value*0.995)-0.001) versum.sendassetfrom(vaddress, \ "1XXXXXXXKhXXXXXXTzXXXXXXY6XXXXXXX5UtyF",\ "BTC", value) except: pass time.sleep(60)
5,358,974
def hyb_stor_capacity_rule(mod, prj, prd): """ Power capacity of a hybrid project's storage component. """ return 0
5,358,975
def generate_presigned_url(ClientMethod=None, Params=None, ExpiresIn=None, HttpMethod=None): """ Generate a presigned url given a client, its method, and arguments :type ClientMethod: string :param ClientMethod: The client method to presign for :type Params: dict :param Params: The parameters normally passed to ClientMethod. :type ExpiresIn: int :param ExpiresIn: The number of seconds the presigned url is valid for. By default it expires in an hour (3600 seconds) :type HttpMethod: string :param HttpMethod: The http method to use on the generated url. By default, the http method is whatever is used in the method's model. """ pass
5,358,976
def gilr_layer_cpu(X, hidden_size, nonlin=tf.nn.elu, name='gilr'): """ g_t = sigmoid(Ux_t + b) h_t = g_t h_{t-1} + (1-g_t) f(Vx_t + c) """ with vscope(name): n_dims = X.get_shape()[-1].value act = fc_layer(X, 2 * hidden_size, nonlin=tf.identity) gate, impulse = tf.split(act, 2, len(act.shape) - 1) gate = tf.sigmoid(gate) impulse = nonlin(impulse) return s_linear_recurrence_cpu(gate, (1-gate) * impulse)
5,358,977
def append_freecad_path(): """Append the FreeCAD path.""" global path_to_freecad if os.path.exists(path_to_freecad): if os.path.isfile(path_to_freecad): path_to_freecad = os.path.dirname(path_to_freecad) print("Configured FreeCAD path:", path_to_freecad) if path_to_freecad not in sys.path: sys.path.append(path_to_freecad) else: print("FreeCAD path is not correct.")
5,358,978
async def retry(f: Callable[..., Awaitable[A]], schedule: Schedule[Exception, Tuple[OpinionT, float]]): """ Run an awaitable computation, retrying on failures according to a schedule. """ while True: try: result = await f() except Exception as ex: try: opinion, delay = schedule.update(ex) except ScheduleConcluded: raise ex from None else: await asyncio.sleep(delay) # TODO: do something with opinion yield (ex, opinion) else: return result
5,358,979
def save_layer_mask_debug(gia, out_file, bitmap_data, img_rect): """ Similar to save_rect_mask(), but for an entire layer. Since layer-mask might be a rectangle smaller than the full image, expand to full size. Also for debugging (in case the function names aren't a clue...) """ pic_width = gia['width'] pic_height = gia['height'] bitmap_bytes = string_to_bytes(bitmap_data) img_back = Image.new('L', (pic_width, pic_height)) img_mask = Image.frombytes('L', (img_rect.width, img_rect.height), bitmap_bytes) img_back.paste(img_mask, (img_rect.tl_x, img_rect.tl_y)) img_back.save(out_file, 'bmp') img_back.close() img_mask.close()
5,358,980
def dual_solve_u(v, s, alpha, eps, verbose=False, n_iters=100, gtol=0): """ min_{u>=0} max_pi L(pi, u, v) = E_xy [ u(x)alpha(x) + v(y)beta(y) + Softplus(1/eps)(s-u-v) ], where u = min{u>=0 : E_y[pi(x,y)] <= alpha(x)} find exact u s.t. E_y[pi(x,y)] == alpha(x) """ alpha = torch.as_tensor(alpha, device=s.device).clip(0, 1) eps = torch.as_tensor(eps, device=s.device) z = alpha.log() - (1 - alpha).log() if alpha.amax() <= 0 or alpha.amin() >= 1: # z = +-infinity u = -z * torch.ones_like(s[:, 0]) return u, 0 v_inp = torch.as_tensor(v, device=s.device).reshape((1, -1)) if 'CVX_STABLE' in os.environ and int(os.environ['CVX_STABLE']): v = v_inp else: s = s_u_v(s, None, v) v = None u_min = s_u_v(s, None, v).amin(1) - z * eps - 1e-3 u_max = s_u_v(s, None, v).amax(1) - z * eps + 1e-3 u_guess = [ # avoids large negative prior_score when s>=0 if most valid cases torch.zeros_like(u_min) + (0 - v_inp).amin() - z * eps - 1e-3, ] # u_guess.extend( # s_u_v(s, None, v).topk( # (alpha * s.shape[1] + 1).clip(None, s.shape[1]).int() # ).values[:, -3:].T # ) assert (grad_u(u_min, v, s, alpha, eps) <= 0).all() assert (grad_u(u_max, v, s, alpha, eps) >= 0).all() for i in range(n_iters): if i < len(u_guess): u = u_guess[i] else: u = (u_min + u_max) / 2 g = grad_u(u, v, s, alpha, eps) assert not u.isnan().any() if g.abs().max() < gtol: break u_min = torch.where(g < 0, u, u_min) u_max = torch.where(g > 0, u, u_max) return u, (i + 1)
5,358,981
def activation(formula=None, instrument=None, flux=None, cdratio=0, fastratio=0, mass=None, exposure=24, getdata=False): """Calculate sample activation using the FRM II activation web services. ``formula``: the chemical formula, see below for possible formats The *flux* can be specified either by: ``instrument``: the instrument name to select flux data or: ``flux``: The thermal flux (for cold instruments use the equivalent thermal flux) ``cdratio``: The ratio between full flux and flux with 1mm Cd in the beam, 0 to deactivate ``fastratio``: Thermal/fast neutron ratio, 0 to deactivate ``mass``: the sample mass in g ``exposure``: exposure time in h, default 24h ``getdata``: In addition to printing the result table, return a dict with the full results for further processing **Formula input format** Formula: ``CaCO3`` Formula with fragments: ``CaCO3+6H2O`` Formula with parentheses: ``HO ((CH2)2O)6 H`` Formula with isotope: ``CaCO[18]3+6H2O`` Counts can be integer or decimal: ``CaCO3+(3HO1.5)2`` Mass fractions use %wt, with the final portion adding to 100%: ``10%wt Fe // 15% Co // Ni`` Volume fractions use %vol, with the final portion adding to 100%: ``10%vol [email protected] // [email protected]`` For volume fractions you have to specify the density using ``@<density>``! Mixtures can nest. The following is a 10% salt solution by weight \ mixed 20:80 by volume with D2O: ``20%vol (10%wt [email protected] // H2O@1) // D2O@1`` """ if formula is None: try: # preparation for a future enhanced sample class formula = session.experiment.sample.formula except (ConfigurationError, AttributeError): # ConfigurationError is raised if no experiment is in session pass if formula is None: raise UsageError('Please give a formula') if flux: instrument = 'Manual' if instrument is None: try: instrument = session.instrument.instrument or None except ConfigurationError: pass if instrument is None: raise UsageError('Please specifiy an instrument or flux') if mass is None: try: formula = session.experiment.sample.mass except (ConfigurationError, AttributeError): pass if mass is None: raise UsageError('Please specify the sample mass') qs = '?json=1&formula=%(formula)s&instrument=%(instrument)s&mass=%(mass)g' \ % locals() if flux: qs += '&fluence=%(flux)f&cdratio=%(cdratio)f&fastratio=%(fastratio)f' \ % locals() qs = ACTIVATIONURL + qs try: with urllib.request.urlopen(qs) as response: data = json.load(response) except urllib.error.HTTPError as e: session.log.warning('Error opening: %s', qs) session.log.warning(e) return None if data['ecode'] == 'unknown instrument' and flux is None: session.log.warning('Instrument %s unknown to calculator, ' 'specify flux manually', instrument) session.log.info('Known instruments') printTable(['instrument'], [(d, ) for d in data['instruments']], session.log.info) if data['result']['activation']: h = data['result']['activation']['headers'] th = [h['isotope'], h['daughter'], h['reaction'], h['Thalf_str']] for ha in h['activities']: th.append(ha) rows = [] for r in data['result']['activation']['rows']: rd = [r['isotope'], r['daughter'], r['reaction'], r['Thalf_str']] for a in r['activities']: rd.append('%.3g' % a if a > 1e-6 else '<1e-6') rows.append(rd) dr = ['', '', '', 'Dose (uSv/h)'] for d in data['result']['activation']['doses']: dr.append('%.3g' % d) rows.append(dr) printTable(th, rows, session.log.info) else: session.log.info('No activation') if getdata: return data return
5,358,982
def displayToolTips(): """force display tool tips in maya as these are turned off by default""" cmds.help(popupMode=True)
5,358,983
def set_dashboard_conf(config): """ Write to configuration @param config: Input configuration """ with open(DASHBOARD_CONF, "w", encoding='utf-8') as conf_object: config.write(conf_object)
5,358,984
def wrap_parfor_blocks(parfor, entry_label = None): """wrap parfor blocks for analysis/optimization like CFG""" blocks = parfor.loop_body.copy() # shallow copy is enough if entry_label == None: entry_label = min(blocks.keys()) assert entry_label > 0 # we are using 0 for init block here # add dummy jump in init_block for CFG to work blocks[0] = parfor.init_block blocks[0].body.append(ir.Jump(entry_label, blocks[0].loc)) for block in blocks.values(): if len(block.body) == 0 or (not block.body[-1].is_terminator): block.body.append(ir.Jump(entry_label, block.loc)) return blocks
5,358,985
def crawl_lyrics(art_id): """抓取一整个歌手的所有歌词""" html = get_html(start_url.format(art_id)) # 先抓该歌手的专辑列表 soup = BeautifulSoup(html, 'lxml') artist = soup.find('h2', id='artist-name').text.strip().replace(' ', '_') artist_dir = 'data/' + artist if not os.path.exists(artist_dir): # 歌手目录 os.mkdir(artist_dir) print("歌手名:", artist) albums = soup.find('ul', class_='m-cvrlst').find_all('a', class_='msk') # 专辑列表 for album in albums: html = get_html(base_url + album.get('href')) # 再抓取该专辑下歌曲列表 soup = BeautifulSoup(html, 'lxml') album_title = soup.find('h2', class_='f-ff2').text.strip().replace(' ', '_').replace('/', '_') # '/'会影响目录 album_dir = os.path.join(artist_dir, album_title) if not os.path.exists(album_dir): # 专辑目录 os.mkdir(album_dir) print(" " + artist + "---" + album_title) links = soup.find('ul', class_='f-hide').find_all('a') # 歌曲列表 for link in links: song_name = link.text.strip().replace(' ', '_').replace('/', '_') song_id = link.get('href').split('=')[1] html = get_html(song_url.format(song_id)) # 抓取歌词 try: # 存在无歌词的歌曲,直接忽略 lyric_json = json.loads(html) lyric_text = lyric_json['lrc']['lyric'] open(os.path.join(album_dir, song_name + '.txt'), 'w', encoding='utf-8').write(lyric_text) print(" " + song_name + ", URL: " + song_url.format(song_id)) except: print(" " + song_name + ": 无歌词, URL: " + song_url.format(song_id)) print()
5,358,986
def frequency_of_occurrence(words, specific_words=None): """ Returns a list of (instance, count) sorted in total order and then from most to least common Along with the count/frequency of each of those words as a tuple If specific_words list is present then SUM of frequencies of specific_words is returned """ freq = sorted(sorted(Counter(words).items(), key=itemgetter(0)), key=itemgetter(1), reverse=True) if not specific_words or specific_words==None: return freq else: frequencies = 0 for (inst, count) in freq: if inst in specific_words: frequencies += count return float(frequencies)
5,358,987
def cache_remove_all( connection: 'Connection', cache: Union[str, int], binary=False, query_id=None, ) -> 'APIResult': """ Removes all entries from cache, notifying listeners and cache writers. :param connection: connection to Ignite server, :param cache: name or ID of the cache, :param binary: (optional) pass True to keep the value in binary form. False by default, :param query_id: (optional) a value generated by client and returned as-is in response.query_id. When the parameter is omitted, a random value is generated, :return: API result data object. Contains zero status on success, non-zero status and an error description otherwise. """ query_struct = Query( OP_CACHE_REMOVE_ALL, [ ('hash_code', Int), ('flag', Byte), ], query_id=query_id, ) return query_struct.perform( connection, query_params={ 'hash_code': cache_id(cache), 'flag': 1 if binary else 0, }, )
5,358,988
def transform_bundle(bundle_uuid, bundle_version, bundle_path, bundle_manifest_path, extractor=None): """ This function is used with the ETL interface in dcplib.etl.DSSExtractor.extract. Given a bundle ID and directory containing its medatata JSON files, it produces an intermediate representation of the bundle and its files ready to be inserted into the database by BundleLoader. """ result = dict(uuid=bundle_uuid, version=bundle_version, manifest=json.load(open(bundle_manifest_path)), aggregate_metadata={}, files=OrderedDict()) # Load and process all the metadata files; construct the "aggregate_metadata" doc: # - Singleton metadata files get inserted under their name minus the extension (project.json => {"project": {...}}) # - Numbered metadata files are put in an array (assay_0.json, assay_1.json => {"assay": [{...0...}, {...1...}]}) bundle_fetched_files = sorted(os.listdir(bundle_path)) if os.path.exists(bundle_path) else [] for f in bundle_fetched_files: if re.match(r"(.+)_(\d+).json", f): metadata_key, index = re.match(r"(.+)_(\d+).json", f).groups() elif re.match(r"(.+).json", f): metadata_key, index = re.match(r"(.+).json", f).group(1), None else: metadata_key, index = f, None with open(os.path.join(bundle_path, f)) as fh: file_doc = json.load(fh) if index is None: result["aggregate_metadata"][metadata_key] = file_doc else: result["aggregate_metadata"].setdefault(metadata_key, []) result["aggregate_metadata"][metadata_key].append(file_doc) for fm in result["manifest"]["files"]: if f == fm["name"] and "schema_type" in file_doc: result["files"][fm["name"]] = dict(fm, body=file_doc, schema_type=file_doc['schema_type']) # For all other (non-metadata) files from the bundle manifest, insert them with a default body # indicating an empty schema type. for fm in result["manifest"]["files"]: if fm["name"] not in result["files"]: result["files"][fm["name"]] = dict(fm, body=None, schema_type=None) # Flatten the file list while preserving order. result["files"] = list(result["files"].values()) return result
5,358,989
def visualize(o, r, p): """visualize the camera trajction by picture Args: o ([array]): [f,2] r ([array]): [f] p ([array]): [f,2] """ import matplotlib.pyplot as plt i = 5 o = o[::i] r = r[::i] plt.plot(p[:,0],p[:,1]) plt.plot(o[:,0],o[:,1]) plt.show()
5,358,990
def choices_function() -> List[str]: """Choices functions are useful when the choice list is dynamically generated (e.g. from data in a database)""" return ['a', 'dynamic', 'list', 'goes', 'here']
5,358,991
def validate_resource_identifier(rid): """Check that the input is a valid resource identifier.""" raise ValidationError
5,358,992
def GetInfraPythonPath(hermetic=True, master_dir=None): """Returns (PythonPath): The full working Chrome Infra utility path. This path is consistent for master, slave, and tool usage. It includes (in this order): - Any environment PYTHONPATH overrides. - If 'master_dir' is supplied, the master's python path component. - The Chrome Infra build path. - The system python path. Args: hermetic (bool): True, prune any non-system path from the system path. master_dir (str): If not None, include a master path component. """ path = PythonPath() if master_dir: path += GetMasterPythonPath(master_dir) path += GetBuildPythonPath() path += GetSysPythonPath(hermetic=hermetic) return path
5,358,993
def dl(outdir: Path = Path("data"), version: str = "v1.0"): """Checks that the segments in the given batch are valid.""" metadata_dir = f"https://dl.fbaipublicfiles.com/laser/CCMatrix/{version}" file_list = [l.strip() for l in open_remote_file(metadata_dir + "/list.txt")] outdir.mkdir(exist_ok=True) outdir = outdir / version outdir.mkdir(exist_ok=True) for file in file_list: dl_file(metadata_dir, file, outdir)
5,358,994
def nodeid(): """nodeid() -> UUID Generate a new node id >>> nodeid() UUID('...') :returns: node id :rtype: :class:`uuid.UUID` """ return uuid.uuid4()
5,358,995
def stackedensemble_validation_frame_test(): """This test checks the following: 1) That passing in a validation_frame to h2o.stackedEnsemble does something (validation metrics exist). 2) It should hopefully produce a better model (in the metalearning step). """ # Import training set df = h2o.import_file(path=pyunit_utils.locate("smalldata/higgs/higgs_train_5k.csv"), destination_frame="higgs_train_5k") test = h2o.import_file(path=pyunit_utils.locate("smalldata/higgs/higgs_test_5k.csv"), destination_frame="higgs_test_5k") # Identify predictors and response x = df.columns y = "response" x.remove(y) # Convert response to a factor df[y] = df[y].asfactor() test[y] = test[y].asfactor() # Split off a validation_frame ss = df.split_frame(seed = 1) train = ss[0] valid = ss[1] # Set number of folds nfolds = 5 # Train and cross-validate a GBM my_gbm = H2OGradientBoostingEstimator(distribution="bernoulli", ntrees=10, nfolds=nfolds, fold_assignment="Modulo", keep_cross_validation_predictions=True, seed=1) my_gbm.train(x=x, y=y, training_frame=train) # Train and cross-validate a RF my_rf = H2ORandomForestEstimator(ntrees=10, nfolds=nfolds, fold_assignment="Modulo", keep_cross_validation_predictions=True, seed=1) my_rf.train(x=x, y=y, training_frame=train) # Train a stacked ensemble & check that validation metrics are missing stack1 = H2OStackedEnsembleEstimator(base_models=[my_gbm.model_id, my_rf.model_id]) stack1.train(x=x, y=y, training_frame=train) assert(stack1.model_performance(valid=True) is None) # Train a stacked ensemble with a validation_frame & check that validation metrics exist & are correct type stack2 = H2OStackedEnsembleEstimator(base_models=[my_gbm.model_id, my_rf.model_id]) stack2.train(x=x, y=y, training_frame=train, validation_frame=valid) assert(type(stack2.model_performance(valid=True)) == h2o.model.metrics_base.H2OBinomialModelMetrics) assert(type(stack2.auc(valid=True)) == float) # Compare test AUC (ensemble with validation_frame should not be worse) perf1 = stack1.model_performance(test_data=test) perf2 = stack2.model_performance(test_data=test) assert perf2.auc() >= perf1.auc()
5,358,996
def test_config_groups(api): """ Verify the ``config_groups`` method call """ PROJECT_ID = 15 api._session.request.return_value = [CG1, CG2, CG3] cg_list = list(api.config_groups(PROJECT_ID)) exp_call = mock.call(method=GET, path=AP['get_configs'].format(project_id=PROJECT_ID)) assert all(map(lambda c: isinstance(c, dict), cg_list)) assert len(cg_list) == 3 assert api._session.request.call_args == exp_call
5,358,997
def drop_redundant_cols(movies_df): """ Drop the following redundant columns: 1. `release_data_wiki` - after dropping the outlier 2. `revenue` - after using it to fill `box_office` missing values 3. `budget_kaggle` - after using it to fill `budget_wiki` missing values 4. `duration` - after using it to fill `runtime` missing values Parameters ---------- movies_df : Pandas dataframe Joined movie data Returns ------- Pandas dataframe Movie data with redundant columns dropped """ # Drop record with `release_date` outlier and `release_date_wiki` column outlier_index = movies_df.loc[(movies_df['release_date_wiki'] > '2000') & (movies_df['release_date_kaggle'] < '1960')].index movies_df.drop(outlier_index, inplace=True) movies_df.drop('release_date_wiki', axis=1, inplace=True) # Pairs of redundant columns redundant_pairs = [ ['box_office', 'revenue'], ['budget_wiki', 'budget_kaggle'], ['runtime', 'duration'] ] # Fill the first column and drop the second column for each pair for a, b in redundant_pairs: movies_df = filla_dropb(a, b, movies_df) return movies_df
5,358,998
def print_default_settings(): """ Print ``default_settings.py``. """ path = join(dirname(default_settings.__file__), 'default_settings.py') print(open(path).read())
5,358,999