content
stringlengths
22
815k
id
int64
0
4.91M
def rand_email(domain=None): """Generate a random zone name :return: a random zone name e.g. example.org. :rtype: string """ domain = domain or rand_zone_name() return 'example@%s' % domain.rstrip('.')
5,358,000
def wordcount_for_reddit(data, search_word): """Return the number of times a word has been used.""" count = 0 for result in data: # do something which each result from scrape for key in result: stringed_list = str(result[key]) text_list = stringed_list.split() for word in text_list: if search_word == 'Go': if word == search_word: count += 1 elif word.lower() == search_word.lower(): count += 1 return count
5,358,001
def openeo_to_eodatareaders(process_graph_json_in: Union[dict, str], job_data: str, process_defs: Union[dict, list, str], vrt_only: bool = False, existing_node_ids: List[Tuple] = None) \ -> Tuple[List[Tuple[str, List[str], Optional[str], List[str], str]], Graph]: """ This function translates an OpenEO process graph into a sequence of calls to EODataProcessor, one for each node of the process graph. Each openEO process is wrapped into an apply/reduce call using EODataProcessor methods. """ # Translate openEO PG to traversable object if isinstance(process_graph_json_in, dict): process_graph_json = deepcopy(process_graph_json_in) else: process_graph_json = process_graph_json_in graph = translate_process_graph(process_graph_json, process_defs=process_defs).sort(by='dependency') # Get wrapper processes -> TODO: is this really needed? wrapper_processes = get_wrapper_processes() nodes = [] N_nodes = len(graph.ids) last_node = False for k, node_id in enumerate(graph.ids): cur_node = graph[node_id] wrapper_name = None wrapper_dimension = None node_dependencies = None if k + 1 == N_nodes: last_node = True if cur_node.is_reducer: # Current process is classified as "reducer" in its process definition if cur_node.parent_process: # Current process has parent, must be an embedded process graph wrapper_name = cur_node.parent_process.process_id wrapper_dimension = cur_node.parent_process.dimension else: # Current process is of type "reducer" but has no parent, must be one of these processes: # "reduce_dimension", "reduce_dimension_binary" wrapper_name = cur_node.process_id wrapper_dimension = cur_node.dimension else: wrapper_name = cur_node.process_id recuder_dimension = None # for clarity, this will be needed when also 'apply_dimension' is supported by EODataProcessor # Workaround for process "array_element" until it has the category "reducer" set # TODO remove when the process definition is updated if (not cur_node.is_reducer) and (cur_node.parent_process): # Current process has parent, must be an embedded process graph wrapper_name = cur_node.parent_process.process_id wrapper_dimension = cur_node.parent_process.dimension # NB find better solution if wrapper_dimension: wrapper_dimension = check_dim_name(wrapper_dimension) if cur_node.content['process_id'] == 'run_udf': operator = "UdfExec" params = map_udf(cur_node.content, job_data, cur_node.id) else: operator = "EODataProcessor" params = map_process( cur_node.content, cur_node.id, cur_node.is_result, job_data, wrapper_name=wrapper_name, wrapper_dimension=wrapper_dimension, vrt_only=vrt_only, last_node=last_node ) # Get dependencies if cur_node.result_process and (cur_node.process_id in wrapper_processes): # The current process is a wrapper process, which embeds a process graph # Its only dependency is the node in the embedded process graph with 'result' set to True. node_dependencies = [cur_node.result_process.id] else: node_dependencies = list(cur_node.dependencies.ids) # Add to nodes list nodes.append((cur_node.id, params, node_dependencies, operator)) return nodes, graph
5,358,002
def main(): """ This function is executed automatically when the module is run directly. """ hats = [] # Define the channel list for each HAT device chans = [ {0, 1}, {0, 1} ] # Define the options for each HAT device options = [ OptionFlags.EXTTRIGGER, OptionFlags.EXTCLOCK ] samples_per_channel = 10000 sample_rate = 1000.0 # Samples per second trigger_mode = TriggerModes.RISING_EDGE try: # Get an instance of the selected hat device object. hats = select_hat_devices(HatIDs.MCC_118, DEVICE_COUNT) # Validate the selected channels. for i, hat in enumerate(hats): validate_channels(chans[i], hat.info().NUM_AI_CHANNELS) # Set the trigger mode for the master device. hats[MASTER].trigger_mode(trigger_mode) # Calculate the actual sample rate. actual_rate = hats[MASTER].a_in_scan_actual_rate(len(chans[MASTER]), sample_rate) print('MCC 118 multiple HAT example using external clock and', 'external trigger options') print(' Functions demonstrated:') print(' mcc118.trigger_mode') print(' mcc118.a_in_scan_start') print(' mcc118.a_in_scan_status') print(' mcc118.a_in_scan_read') print(' Samples per channel:', samples_per_channel) print(' Requested Sample Rate: {:.3f} Hz'.format(sample_rate)) print(' Actual Sample Rate: {:.3f} Hz'.format(actual_rate)) print(' Trigger type:', trigger_mode.name) for i, hat in enumerate(hats): print(' HAT {}:'.format(i)) print(' Address:', hat.address()) print(' Channels: ', end='') print(', '.join([str(chan) for chan in chans[i]])) options_str = enum_mask_to_string(OptionFlags, options[i]) print(' Options:', options_str) print('\n*NOTE: Connect the CLK terminals together on each MCC 118') print(' HAT device being used. Connect a trigger source') print(' to the TRIG input terminal on HAT 0.') try: input("\nPress 'Enter' to continue") except (NameError, SyntaxError): pass # Start the scan. for i, hat in enumerate(hats): chan_mask = chan_list_to_mask(chans[i]) hat.a_in_scan_start(chan_mask, samples_per_channel, sample_rate, options[i]) print('\nWaiting for trigger ... Press Ctrl-C to stop scan\n') try: # Monitor the trigger status on the master device. wait_for_trigger(hats[MASTER]) # Read and display data for all devices until scan completes # or overrun is detected. read_and_display_data(hats, chans) except KeyboardInterrupt: # Clear the '^C' from the display. print(CURSOR_BACK_2, ERASE_TO_END_OF_LINE, '\nAborted\n') except (HatError, ValueError) as error: print('\n', error) finally: for hat in hats: hat.a_in_scan_stop() hat.a_in_scan_cleanup()
5,358,003
def calc_precision(gnd_assignments, pred_assignments): """ gnd_clusters should be a torch tensor of longs, containing the assignment to each cluster assumes that cluster assignments are 0-based, and no 'holes' """ precision_sum = 0 assert len(gnd_assignments.size()) == 1 assert len(pred_assignments.size()) == 1 assert pred_assignments.size(0) == gnd_assignments.size(0) N = gnd_assignments.size(0) K_gnd = gnd_assignments.max().item() + 1 K_pred = pred_assignments.max().item() + 1 for k_pred in range(K_pred): mask = pred_assignments == k_pred gnd = gnd_assignments[mask.nonzero().long().view(-1)] max_intersect = 0 for k_gnd in range(K_gnd): intersect = (gnd == k_gnd).long().sum().item() max_intersect = max(max_intersect, intersect) precision_sum += max_intersect precision = precision_sum / N return precision
5,358,004
def scheduler_job_output_route(): """receive output from assigned job""" try: jsonschema.validate(request.json, schema=sner.agent.protocol.output) job_id = request.json['id'] retval = request.json['retval'] output = base64.b64decode(request.json['output']) except (jsonschema.exceptions.ValidationError, binascii.Error): return jsonify({'title': 'Invalid request'}), HTTPStatus.BAD_REQUEST job = Job.query.filter(Job.id == job_id).one_or_none() if job and (not job.retval): # requests for invalid, deleted, repeated or clashing job ids are discarded # agent should delete the output on it's side as well job.retval = retval os.makedirs(os.path.dirname(job.output_abspath), exist_ok=True) with open(job.output_abspath, 'wb') as ftmp: ftmp.write(output) job.time_end = datetime.utcnow() db.session.commit() return '', HTTPStatus.OK
5,358,005
def __get_app_package_path(package_type, app_or_model_class): """ :param package_type: :return: """ models_path = [] found = False if isinstance(app_or_model_class, str): app_path_str = app_or_model_class elif hasattr(app_or_model_class, '__module__'): app_path_str = app_or_model_class.__module__ else: raise RuntimeError('Unable to get module path.') for item in app_path_str.split('.'): if item in ['models', 'admin']: models_path.append(package_type) found = True break else: models_path.append(item) if not found: models_path.append(package_type) return '.'.join(models_path)
5,358,006
def generate_colors(history, config): """ This is some old code to generate colors for the ray plotting in _add_ray_history. For the moment I am just saving the old code here, but this will not work with the new history dictionary. (Only minor adjustments are neccessary to make it work, but the implementation was not very general.) """ raise NotImplementedError() color_masks = [] color_list = [] # This is a good pink color for un-reflected rays. # color_unref = [1.0, 0.5, 0.5, 0.2] if False: color_masks.append(output[0]['mask'].copy()) color_list.append((1.0, 0.0, 0.0, 0.5)) # Color by vertical position in Plasma. if False: norm = matplotlib.colors.Normalize(0.0, 1.0) cm = matplotlib.cm.ScalarMappable(norm=norm, cmap='gist_rainbow') color_masks.append((output[0]['origin'][:, 2] > 0.1)) color_list.append(cm.to_rgba(0.0, alpha=0.5)) color_masks.append((output[0]['origin'][:, 2] > 0.05) & (output[0]['origin'][:, 2] < 0.1)) color_list.append(cm.to_rgba(1 / 5, alpha=0.5)) color_masks.append((output[0]['origin'][:, 2] > 0.0) & (output[0]['origin'][:, 2] < 0.05)) color_list.append(cm.to_rgba(2 / 5, alpha=0.5)) color_masks.append((output[0]['origin'][:, 2] > -0.05) & (output[0]['origin'][:, 2] < 0)) color_list.append(cm.to_rgba(3 / 5, alpha=0.5)) color_masks.append((output[0]['origin'][:, 2] > -0.1) & (output[0]['origin'][:, 2] < -0.05)) color_list.append(cm.to_rgba(4 / 5, alpha=0.5)) color_masks.append((output[0]['origin'][:, 2] < -0.1)) color_list.append(cm.to_rgba(5 / 5, alpha=0.5)) if True: norm = matplotlib.colors.Normalize(0.0, 1.0) cm = matplotlib.cm.ScalarMappable(norm=norm, cmap='gist_rainbow') delta = 0.005 num_wave = 5 for ii in range(num_wave): wave_0 = inputs['source_input']['wavelength'] - 1 * delta * (num_wave - 1) / 2 + delta * ii wave_min = wave_0 - delta / 2 wave_max = wave_0 + delta / 2 mask_temp = (output[0]['wavelength'][:] > wave_min) & (output[0]['wavelength'][:] < wave_max) print('{:7.4f} {:7.4f} {:7.4f} {}'.format(wave_0, wave_min, wave_max, np.sum(mask_temp))) color_masks.append(mask_temp) color_list.append(cm.to_rgba(ii / num_wave, alpha=0.5))
5,358,007
def dict_from_payload(base64_input: str, fport: int = None): """ Decodes a base64-encoded binary payload into JSON. Parameters ---------- base64_input : str Base64-encoded binary payload fport: int FPort as provided in the metadata. Please note the fport is optional and can have value "None", if not provided by the LNS or invoking function. If fport is None and binary decoder can not proceed because of that, it should should raise an exception. Returns ------- JSON object with key/value pairs of decoded attributes """ bytes = base64.b64decode(base64_input) value= (bytes[0] << 8 | bytes[1]) & 0x3FFF battery = value/1000 door_open_status = 0 if bytes[0] & 0x40: water_leak_status = 1 water_leak_status = 0 if bytes[0] & 0x80: door_open_status = 1 mod = bytes[2] if mod == 1: open_times = bytes[3] << 16 | bytes[4] << 8 | bytes[5] open_duration = bytes[6] << 16 | bytes[7] << 8 | bytes[8] result = { "mod": mod, "battery": battery, "door_open_status": door_open_status, "open_times": open_times, "open_duration": open_duration } return result if mod == 2: leak_times = bytes[3] << 16 | bytes[4] << 8 | bytes[5] leak_duration = bytes[6] << 16 | bytes[7] << 8 | bytes[8] result = { "mod": mod, "battery": battery, "leak_times": leak_times, "leak_duration": leak_duration } return result result = { "battery": battery, "mod": mod }
5,358,008
def pack(circles, x, y, padding=2, exclude=[]): """ Circle-packing algorithm. Groups the given list of Circle objects around (x,y) in an organic way. """ # Ported from Sean McCullough's Processing code: # http://www.cricketschirping.com/processing/CirclePacking1/ # See also: http://en.wiki.mcneel.com/default.aspx/McNeel/2DCirclePacking # Repulsive force: move away from intersecting circles. for i, circle1 in enumerate(circles): for circle2 in circles[i+1:]: d = distance(circle1.x, circle1.y, circle2.x, circle2.y) r = circle1.radius + circle2.radius + padding if d < r - 0.01: dx = circle2.x - circle1.x dy = circle2.y - circle1.y vx = (dx / d) * (r-d) * 0.5 vy = (dy / d) * (r-d) * 0.5 if circle1 not in exclude: circle1.x -= vx circle1.y -= vy if circle2 not in exclude: circle2.x += vx circle2.y += vy # Attractive force: move all circles to center. for circle in circles: circle.goal.x = x circle.goal.y = y if circle not in exclude: damping = circle.radius ** 3 * 0.000001 # Big ones in the middle. vx = (circle.x - x) * damping vy = (circle.y - y) * damping circle.x -= vx circle.y -= vy
5,358,009
def test_call_bluesky(daq): """ These are things that bluesky uses. Let's check them. """ logger.debug('test_call_bluesky') daq.describe() daq.describe_configuration() daq.stage() daq.begin(duration=10) # unstage should end the run and we don't time out daq.unstage()
5,358,010
def handle(req): """POST""" im = Image.open(BytesIO(req.files[list(req.files.keys())[0]].body)) w, h = im.size im2 = ImageOps.mirror(im.crop((0, 0, w / 2, h))) im.paste(im2, (int(w / 2), 0)) io = BytesIO() im.save(io, format='PNG') return req.Response( body=io.getvalue(), mime_type='image/png', encoding='UTF-8')
5,358,011
def read_sachs_all(folder_path): """Reads all the sachs data specified in the folder_path. Args: folder_path: str specifying the folder containing the sachs data Returns: An np.array containing all the sachs data """ sachs_data = list() # Divides the Sachs dataset into environments. for _, file in enumerate(glob.glob(f'{folder_path}*.xls')): sachs_df = pd.read_excel(file) sachs_array = sachs_df.to_numpy() sachs_data.append(sachs_array) sachs_data_envs = np.vstack(sachs_data) return sachs_data_envs
5,358,012
def test_axes_map(): """ map from Axes([aaa, bbb]) to Axes([zzz, bbb]) via AxesMap {aaa: zzz} """ a = ng.make_axis(1, name='aaa') b = ng.make_axis(2, name='bbb') z = ng.make_axis(1, name='zzz') axes_before = ng.make_axes([a, b]) axes_after = ng.make_axes([z, b]) axes_map = AxesMap({a.name: z.name}) assert axes_after == axes_map.map_axes(axes_before)
5,358,013
def populate_job_directories(): """ -function to populate or update job directory tree with job scripts that are located in /Setup_and_Config """ JobStreams, Replicates, BaseDirNames, JobBaseNames, Runs, \ nJobStreams, nReplicates, nBaseNames = check_job_structure() mcf = read_master_config_file() ljdf_t = read_local_job_details() cwd=os.getcwd() ljdf_t[ 'BASE_DIR' ] = cwd ljdf_t[ 'CurrentRound' ] = mcf["Round"] ljdf_t[ 'Account' ] = mcf["Account"] ljdf_t[ 'Nodes' ] = mcf["nodes"] ljdf_t[ 'ntpn' ] = mcf["ntpn"] ljdf_t[ 'ppn' ] = mcf["ppn"] ljdf_t[ 'Walltime' ] = mcf["Walltime"] ljdf_t[ 'JobFailTime' ] = mcf["JobFailTime"] ljdf_t[ 'DiskSpaceCutOff' ] = mcf["DiskSpaceCutOff"] Flavour = mcf["Flavour"] OptScript = mcf["EquilibrateConfScript"] ProdScript = mcf["ProductionConfScript"] ModuleFile = mcf["ModuleFile"] startscript = mcf["SbatchEquilibrateScript"] productionscript = mcf["SbatchProductionScript"] ## list files to transfer: print(("{}Job Files to transfer from /Setup_and_Config:{}"\ .format(GREEN, DEFAULT))) print(("{} {}\n {}".format(BLUE, startscript,\ productionscript))) print(" local_job_details.json ") for pyfile in glob.glob(r'Setup_and_Config/*.py' ): print((" " + pyfile[17:])) for conffile in glob.glob(r'Setup_and_Config/*.conf' ): print((" " + conffile[17:])) ## descend through job structure and populate job directories: for i in range(0, nJobStreams): TargetJobDir = cwd + "/" + JobStreams[i] print(("{}\nPopulating JobStream: {} {}".format( GREEN, TargetJobDir, DEFAULT))) ## check to see if there actually are any job directories to fill: if not os.path.exists( TargetJobDir ): print(("Job directory {} not found. Have you initialized?"\ .format(TargetJobDir))) sys.exit(error) ## create temporary sbatch scripts: sb_start_template = "Setup_and_Config/" + startscript + ".template" sb_prod_template = "Setup_and_Config/" + productionscript + ".template" if not os.path.exists( sb_start_template ) \ or not os.path.exists( sb_prod_template ): print("Can't find sbatch template files in Settup_and_Config. Exiting.") sys.exit(error) ## modify replicate elements in staging dictionary file: ljdf_t['JOB_STREAM_DIR'] = JobStreams[i] ljdf_t['CurrentRun'] = 0 ljdf_t['TotalRuns'] = int( Runs[i] ) ljdf_t['JobBaseName'] = JobBaseNames[i] nnodes = "#SBATCH --nodes=" + mcf["nodes"] ntime = "#SBATCH --time=" + mcf["Walltime"] naccount = "#SBATCH --account=" + mcf["Account"] nntpn = "ntpn=" + mcf["ntpn"] nppn = "ppn=" + mcf["ppn"] nmodule = "module load " + ModuleFile nopt = "optimize_script=" + OptScript nprod = "production_script=" + ProdScript shutil.copy( sb_start_template, 'sb_start_temp') shutil.copy( sb_prod_template, 'sb_prod_temp' ) ## replace lines in sbatch files: for f in ["sb_start_temp", "sb_prod_temp"]: for line in fileinput.FileInput( f, inplace=True ): line = line.replace('#SBATCH --nodes=X', nnodes ) line = line.replace('#SBATCH --time=X', ntime ) line = line.replace('#SBATCH --account=X', naccount) line = line.replace('ntpn=X', nntpn ) line = line.replace('ppn=X', nppn ) line = line.replace('module load X', nmodule ) line = line.replace('optimize_script=X', nopt ) line = line.replace('production_script=X', nprod ) sys.stdout.write(line) ## update local job details file: jobdirlist = get_current_dir_list(JobStreams[i]) for j in jobdirlist: print(("{} -populating: {}{}".format(BLUE, j, DEFAULT))) ljdf_t['JobDirName'] = j ljdfile = JobStreams[i] + "/" + j + "/local_job_details.json" if not os.path.isfile(ljdfile): with open(ljdfile, 'w') as outfile: json.dump(ljdf_t, outfile, indent=2) outfile.close() else: print(" skipping local_details_file: already exists ") ## copy across python scripts from /Setup_and_Config: jobpath = JobStreams[i] + "/" + j + "/" sbs_path = jobpath + "/" + startscript sbp_path = jobpath + "/" + productionscript shutil.copy('sb_start_temp', sbs_path) shutil.copy('sb_prod_temp' , sbp_path) for pyfile in glob.glob(r'Setup_and_Config/*.py' ): shutil.copy2( pyfile, jobpath ) for conffile in glob.glob(r'Setup_and_Config/*.conf' ): shutil.copy2(conffile, jobpath) ## remove tempfiles. os.remove('sb_start_temp') os.remove('sb_prod_temp') print("\n -done populating directories")
5,358,014
def user_permitted_tree(user): """Generate a dictionary of the representing a folder tree composed of the elements the user is allowed to acccess. """ # Init user_tree = {} # Dynamically collect permission to avoid hardcoding # Note: Any permission to an element is the same as read permission so # they are all included. file_perm_list = [ f'data_driven_acquisition.{perm}' for perm in get_perms_for_model('data_driven_acquisition.File').values_list( 'codename', flat=True) ] folder_perm_list = [ f'data_driven_acquisition.{perm}' for perm in get_perms_for_model('data_driven_acquisition.Folder').values_list( 'codename', flat=True) ] # Collect all permistted elements permitted_folders = get_objects_for_user( user, folder_perm_list, any_perm=True).all() permitted_files = get_objects_for_user( user, file_perm_list, any_perm=True).all() # Add all permitted folders to the user tree with their content and parents. for folder_obj in permitted_folders: # Get the folder content as tree tree = get_folder_tree(folder_obj) # Try to place the tree in the user tree if not place_folder_in_tree(user_tree, folder_obj, tree): # The parent is not in the user tree. # Cresting the parent folder at root level and then completing the # climb to the package level, mergin as needed. user_tree[folder_obj] = tree user_tree = climb_to_package(user_tree, folder_obj) # Add all permitted files to the user tree with theirs parents. for file_obj in permitted_files: # Add to user tree iof the parent folder is already there. if not place_file_in_tree(user_tree, file_obj): # Cold not find the parent folder in the tree. # Creating a base tree with the parent folder # the file at root level and the climbing up to the Package # Merging when required tree = { "files": [file_obj, ] } user_tree[file_obj.parent] = tree user_tree = climb_to_package(user_tree, file_obj.parent) return user_tree
5,358,015
def upgrade(): """ Run upgrade """ # ### commands auto generated by Alembic - please adjust! ### op.drop_index('ix_domain_proxy_logs_cbsd_serial_number', table_name='domain_proxy_logs') op.drop_index('ix_domain_proxy_logs_created_date', table_name='domain_proxy_logs') op.drop_index('ix_domain_proxy_logs_fcc_id', table_name='domain_proxy_logs') op.drop_index('ix_domain_proxy_logs_response_code', table_name='domain_proxy_logs') op.drop_table('domain_proxy_logs') # ### end Alembic commands ###
5,358,016
def __save_roc(y_true, y_pred, output_dir): """ Creates an ROC curve with AUC for the model :param y_true: The actual phenotypes for the test data :param y_pred: The predicted phenotypes for the test data :param output_dir: The directory to save the ROC curve in """ fpr, tpr, thresholds = roc_curve(y_true, y_pred) roc_auc = auc(fpr, tpr) # Plot code referenced from http://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html plt.figure() lw = 2 plt.plot(fpr, tpr, color='darkorange', lw=lw, label='ROC curve (area = %0.3f)' % roc_auc) plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('ROC') plt.legend(loc="lower right") plt.savefig(path.join(output_dir, 'roc.png')) plt.close()
5,358,017
def extract_failure(d): """ Returns the failure object the given deferred was errback'ed with. If the deferred has result, not a failure a `ValueError` is raised. If the deferred has no result yet a :class:`NotCalledError` is raised. """ if not has_result(d): raise NotCalledError() else: result = [] def callback(value): result.append(value) d.addBoth(callback) result = result[0] if isinstance(result, failure.Failure): return result else: raise ValueError("Deferred was called back with a value: %r" % result)
5,358,018
def convert_where_clause(clause: dict) -> str: """ Convert a dictionary of clauses to a string for use in a query Parameters ---------- clause : dict Dictionary of clauses Returns ------- str A string representation of the clauses """ out = "{" for key in clause.keys(): out += "{}: ".format(key) #If the type of the right hand side is string add the string quotes around it if type(clause[key]) == str: out += '"{}"'.format(clause[key]) else: out += "{}".format(clause[key]) out += "," out += "}" return out
5,358,019
def updatereqs(): """Update services using requirements.txt and requirements.sh""" commands.updatereqs()
5,358,020
def clear(): """ Deletes the cache. """ cprint('Clearing cache', 'yellow') shutil.rmtree(_cache_path, ignore_errors=True)
5,358,021
def all_metadata_async(): """Retrieves all available metadata for an instance async""" loop = trollius.get_event_loop() res = loop.run_until_complete(call()) return res
5,358,022
def median_std_from_ma(data: np.ma, axis=0): """On the assumption that there are bit-flips in the *data*, attempt to find a value that might represent the standard deviation of the 'real' data. The *data* object must be a numpy masked array. The value of *axis* determines which way the data are handled. The default is 0 to scan vertially to accumulate statistics for columns. In this case, only those columns with the most unmasked data are evaluated. For them, the standard deviation is found for each column, and the returned value is the median of those standard deviations. If *axis* is 1, then this is applied to rows, not columns. """ valid_points = data.count(axis=axis) std_devs = np.std(data, axis=axis) return median_std(valid_points, std_devs)
5,358,023
def __check_value_range(x: int) -> bool: """ Checks if integer is in valid value range to be a coordinate for Tic-Tac-Toe. """ if x < 1 or x > 3: print(__standard_error_text + "Coordinates have to be between 1 and 3.\n") return False return True
5,358,024
def find_option(opt): """ This function checks for option defined with optcode; it could be implemented differently - by checking entries in world.cliopts """ # received msg from client must not be changed - make a copy of it tmp = world.climsg[world.clntCounter].copy() # 0 - ether, 1 - ipv6, 2 - udp, 3 - dhcpv6, 4 - opts if type(tmp) == Ether: tmp = tmp.getlayer(4) else: tmp = tmp.getlayer(3) while tmp: if tmp.optcode == int(opt): return True tmp = tmp.payload return False
5,358,025
def generic_add_model_components( m, d, reserve_zone_param, reserve_zone_set, reserve_generator_set, generator_reserve_provision_variable, total_reserve_provision_expression, ): """ Generic treatment of reserves. This function creates model components related to a particular reserve requirement, including 1) an expression aggregating generator-level provision to total provision :param m: :param d: :param reserve_zone_param: :param reserve_zone_set: :param reserve_generator_set: :param generator_reserve_provision_variable: :param total_reserve_provision_expression: :return: """ # Reserve generators operational generators in timepoint # This will be the intersection of the reserve generator set and the set of # generators operational in the timepoint op_set = str(reserve_generator_set) + "_OPERATIONAL_IN_TIMEPOINT" setattr( m, op_set, Set( m.TMPS, initialize=lambda mod, tmp: getattr(mod, reserve_generator_set) & mod.OPR_PRJS_IN_TMP[tmp], ), ) # Reserve provision def total_reserve_rule(mod, ba, tmp): return sum( getattr(mod, generator_reserve_provision_variable)[g, tmp] for g in getattr(mod, op_set)[tmp] if getattr(mod, reserve_zone_param)[g] == ba ) setattr( m, total_reserve_provision_expression, Expression(getattr(m, reserve_zone_set), m.TMPS, rule=total_reserve_rule), )
5,358,026
def return_all_content(content): """Help function to return untruncated stripped content.""" return mark_safe(str(content).replace('><', '> <')) if content else None
5,358,027
def get_trailing_returns(uid): """ Get trailing return chart """ connection = pymysql.connect(host=DB_SRV, user=DB_USR, password=DB_PWD, db=DB_NAME, charset='utf8mb4', cursorclass=pymysql.cursors.DictCursor) cursor = connection.cursor(pymysql.cursors.SSCursor) sql = "SELECT instruments.fullname, instruments.is_benchmark, "+\ "instruments.market, instruments.symbol, instruments.asset_class "+\ "FROM instruments JOIN symbol_list ON symbol_list.symbol = instruments.symbol "+\ "WHERE symbol_list.uid=" + str(uid) cursor.execute(sql) res = cursor.fetchall() for row in res: fullname = row[0].replace("'", "") is_benchmark = row[1] market = row[2] symbol_is_portf = row[3] asset_class = row[4] if symbol_is_portf.find(get_portf_suffix()) > -1: sql = "SELECT date FROM chart_data WHERE uid=" + str(uid) + " ORDER BY date DESC LIMIT 1" else: sql = "SELECT price_instruments_data.date FROM price_instruments_data JOIN symbol_list "+\ "ON symbol_list.symbol = price_instruments_data.symbol "+\ "WHERE symbol_list.uid=" + str(uid) +" ORDER BY date DESC LIMIT 1" cursor.execute(sql) res = cursor.fetchall() as_date = '' l_as_date = '' for row in res: as_date = row[0] if as_date != '': l_as_date = 'Trailing returns as of '+ as_date.strftime("%d-%b-%Y") font_size = 10 l_y1 = '1-Year' l_m6 = '6-month' l_m3 = '3-month' l_m1 = '1-month' l_w1 = '1-week' minb = 0 mini = 0 maxb = 0 maxi = 0 benchmark_header = '' benchmark_data_y1 = '' benchmark_data_m6 = '' benchmark_data_m3 = '' benchmark_data_m1 = '' benchmark_data_w1 = '' if not is_benchmark: sql = "SELECT symbol_list.uid, instruments.fullname "+\ "FROM symbol_list JOIN instruments "+\ "ON symbol_list.symbol = instruments.symbol "+\ "WHERE instruments.market='"+\ str(market) +"' AND instruments.asset_class='"+\ str(asset_class) +"' AND instruments.is_benchmark=1" cursor.execute(sql) res = cursor.fetchall() benchmark_uid = 0 for row in res: benchmark_uid = row[0] benchmark_fullname = row[1].replace("'", "") if benchmark_uid != 0: benchmark_header = ", ' " +\ benchmark_fullname +\ " ', {type: 'string', role: 'annotation'}" benchmark_data_y1 = ','+ get_chart_data(benchmark_uid, 'y1') benchmark_data_m6 = ','+ get_chart_data(benchmark_uid, 'm6') benchmark_data_m3 = ','+ get_chart_data(benchmark_uid, 'm3') benchmark_data_m1 = ','+ get_chart_data(benchmark_uid, 'm1') benchmark_data_w1 = ','+ get_chart_data(benchmark_uid, 'w1') minb = get_minmax(benchmark_uid, 'min') maxb = get_minmax(benchmark_uid, 'max') data = ''+\ '["'+ l_y1 + '",' + get_chart_data(uid, 'y1') + benchmark_data_y1 +']' + ',' +\ '["'+ l_m6 + '",' + get_chart_data(uid, 'm6') + benchmark_data_m6 + ']' + ',' +\ '["'+ l_m3 + '",' + get_chart_data(uid, 'm3') + benchmark_data_m3 + ']' + ',' +\ '["'+ l_m1 + '",' + get_chart_data(uid, 'm1') + benchmark_data_m1 + ']' + ',' +\ '["'+ l_w1 + '",' + get_chart_data(uid, 'w1') + benchmark_data_w1 + ']' mini = get_minmax(uid, 'min') maxi = get_minmax(uid, 'max') if minb < mini: mini = minb if maxb > maxi: maxi = maxb header = " ['x', ' " +\ fullname + " ', {type: 'string', role: 'annotation'}"+\ benchmark_header +" ]," chart_content = "" +\ "<script>" +\ "google.charts.load('current', {packages: ['corechart', 'bar']});" +\ "google.charts.setOnLoadCallback(drawAnnotations);" +\ "function drawAnnotations() {" +\ " var data = google.visualization.arrayToDataTable([" +\ header +\ data +\ " ]);" +\ " var options = {" +\ " fontSize: "+ str(font_size) + "," +\ " legend: {position:'top', textStyle: {color:"+\ theme_return_this("'black'", "'white'") +"} }," +\ " title: ''," +\ " backgroundColor: 'transparent',"+\ " chartArea: {width: '50%'}," +\ " annotations: {" +\ " alwaysOutside: true," +\ " textStyle: {" +\ " auraColor: 'none'," +\ " color: '#555'" +\ " }," +\ " boxStyle: {" +\ " stroke: '#ccc'," +\ " strokeWidth: 1," +\ " gradient: {" +\ " color1: 'yellow'," +\ " color2: 'white'," +\ " x1: '0%', y1: '0%'," +\ " x2: '100%', y2: '100%'" +\ " }" +\ " }" +\ " }," +\ " series: {0:{color: "+\ theme_return_this("'blue'", "'orange'") +"}, 1:{color: '#c9d6ea'} }," +\ " chartArea: {width:'80%',height:'80%'}," +\ " hAxis: {" +\ " title: '" + l_as_date + "', " +\ " titleTextStyle:{ color:"+\ theme_return_this("'black'", "'white'") +"},"+\ " viewWindow:{min:"+\ str(mini) +",max:"+\ str(maxi) +"}," +\ " gridlines: { color: 'transparent' },"+\ " textStyle: { color: "+\ theme_return_this("'black'", "'white'") +" } "+\ " }," +\ " vAxis: {" +\ " title: '', " +\ " textStyle: { color: "+\ theme_return_this("'black'", "'white'") +" } "+\ " }" +\ " };" +\ " var chart = "+\ "new google.visualization.BarChart(document.getElementById('trail_chart'));" +\ " chart.draw(data, options);" +\ " }" +\ " </script>" +\ " <div id='trail_chart' class='sa-chart-hw-290'></div>" cursor.close() connection.close() return chart_content
5,358,028
def bitsNotSet(bitmask, maskbits): """ Given a bitmask, returns True where any of maskbits are set and False otherwise. Parameters ---------- bitmask : ndarray Input bitmask. maskbits : ndarray Bits to check if set in the bitmask """ goodLocs_bool = np.zeros(bitmask.shape).astype(bool) for m in maskbits: bitind = bm.bit_set(m, bitmask) goodLocs_bool[bitind] = True return goodLocs_bool
5,358,029
def plot(foo, x, y): """x, y are tuples of 3 values: xmin, xmax, xnum""" np_foo = np.vectorize(foo) x_space = np.linspace(*x) y_space = np.linspace(*y) xx, yy = np.meshgrid(x_space, y_space) xx = xx.flatten() yy = yy.flatten() zz = np_foo(xx, yy) num_x = x[-1] num_y = y[-1] points = np.array([xx, yy, zz]).T scale = coin.SoScale() scale.scaleFactor.setValue(1, 1, abs(x[1] - x[0]) / abs(max(zz) - min(zz))) return [scale, simple_quad_mesh(points, num_x, num_y)]
5,358,030
def _StructPackEncoder(wire_type, format): """Return a constructor for an encoder for a fixed-width field. Args: wire_type: The field's wire type, for encoding tags. format: The format string to pass to struct.pack(). """ value_size = struct.calcsize(format) def SpecificEncoder(field_number, is_repeated, is_packed): local_struct_pack = struct.pack if is_packed: tag_bytes = TagBytes(field_number, wire_format.WIRETYPE_LENGTH_DELIMITED) local_EncodeVarint = _EncodeVarint def EncodePackedField(write, value): write(tag_bytes) local_EncodeVarint(write, len(value) * value_size) for element in value: write(local_struct_pack(format, element)) return EncodePackedField elif is_repeated: tag_bytes = TagBytes(field_number, wire_type) def EncodeRepeatedField(write, value): for element in value: write(tag_bytes) write(local_struct_pack(format, element)) return EncodeRepeatedField else: tag_bytes = TagBytes(field_number, wire_type) def EncodeField(write, value): write(tag_bytes) return write(local_struct_pack(format, value)) return EncodeField return SpecificEncoder
5,358,031
def transition_temperature(wavelength): """ To get temperature of the transition in K Wavelength in micros T = h*f / kB """ w = u.Quantity(wavelength, u.um) l = w.to(u.m) c = _si.c.to(u.m / u.s) h = _si.h.to(u.eV * u.s) kb = _si.k_B.to(u.eV / u.K) f = c/l t = h*f/kb return t
5,358,032
def truncate_string(string: str, max_length: int) -> str: """ Truncate a string to a specified maximum length. :param string: String to truncate. :param max_length: Maximum length of the output string. :return: Possibly shortened string. """ if len(string) <= max_length: return string else: return string[:max_length]
5,358,033
def geoinfo_from_ip(ip: str) -> dict: # pylint: disable=invalid-name """Looks up the geolocation of an IP address using ipinfo.io Example ipinfo output: { "ip": "1.1.1.1", "hostname": "one.one.one.one", "anycast": true, "city": "Miami", "region": "Florida", "country": "US", "loc": "25.7867,-80.1800", "org": "AS13335 Cloudflare, Inc.", "postal": "33132", "timezone": "America/New_York", "readme": "https://ipinfo.io/missingauth" } """ valid_ip = ip_address(ip) url = f"https://ipinfo.io/{valid_ip}/json" resp = requests.get(url) if resp.status_code != 200: raise Exception(f"Geo lookup failed: GET {url} returned {resp.status_code}") geoinfo = json.loads(resp.text) return geoinfo
5,358,034
async def test_camera_image( hass: HomeAssistant, mock_entry: MockEntityFixture, simple_camera: tuple[Camera, str], ): """Test retrieving camera image.""" mock_entry.api.get_camera_snapshot = AsyncMock() await async_get_image(hass, simple_camera[1]) mock_entry.api.get_camera_snapshot.assert_called_once()
5,358,035
def mpileup2acgt(pileup, quality, depth, reference, qlimit=53, noend=False, nostart=False): """ This function was written by Francesco Favero, from: sequenza-utils pileup2acgt URL: https://bitbucket.org/sequenza_tools/sequenza-utils original code were protected under GPLv3 license. Parse the mpileup format and return the occurrence of each nucleotides in the given positions. pileup format: 1 chr 2 1-based coordinate 3 reference base 4 depth 5 read bases 6 base qualities 7 mapping qualities # argument pileup = column-6 """ nucleot_dict = {'A': 0, 'C': 0, 'G': 0, 'T': 0} strand_dict = {'A': 0, 'C': 0, 'G': 0, 'T': 0} n = 0 block = {'seq': '', 'length': 0} start = False del_ins = False l_del_ins = '' last_base = None ins_del_length = 0 for base in pileup: if block['length'] == 0: if base == '$': if noend: if last_base: nucleot_dict[last_base.upper()] -= 1 if last_base.isupper(): strand_dict[last_base.upper()] -= 1 last_base = None elif base == '^': start = True block['length'] += 1 block['seq'] = base elif base == '+' or base == '-': del_ins = True block['length'] += 1 block['seq'] = base elif base == '.' or base == ',': ## . on froward, , on reverse if ord(quality[n]) >= qlimit: nucleot_dict[reference] += 1 if base == '.': strand_dict[reference] += 1 last_base = reference else: last_base = reference.lower() else: last_base = None n += 1 elif base.upper() in nucleot_dict: if ord(quality[n]) >= qlimit: nucleot_dict[base.upper()] += 1 if base.isupper(): strand_dict[base.upper()] += 1 last_base = base else: last_base = None n += 1 else: n += 1 else: if start: block['length'] += 1 block['seq'] += base if block['length'] == 3: if not nostart: if base == '.' or base == ',': if ord(quality[n]) >= qlimit: nucleot_dict[reference] += 1 if base == '.': strand_dict[reference] += 1 elif base.upper() in nucleot_dict: if ord(quality[n]) >= qlimit: nucleot_dict[base.upper()] += 1 if base.isupper(): strand_dict[base.upper()] += 1 block['length'] = 0 block['seq'] = '' start = False last_base = None n += 1 elif del_ins: if base.isdigit(): l_del_ins += base block['seq'] += base block['length'] += 1 else: ins_del_length = int(l_del_ins) + 1 + len(l_del_ins) block['seq'] += base block['length'] += 1 if block['length'] == ins_del_length: block['length'] = 0 block['seq'] = '' l_del_ins = '' # ins_del = False ins_del_length = 0 nucleot_dict['Z'] = [strand_dict['A'], strand_dict['C'], strand_dict['G'], strand_dict['T']] return nucleot_dict
5,358,036
def normalize_missing(xs): """Normalize missing values to avoid string 'None' inputs. """ if isinstance(xs, dict): for k, v in xs.items(): xs[k] = normalize_missing(v) elif isinstance(xs, (list, tuple)): xs = [normalize_missing(x) for x in xs] elif isinstance(xs, basestring): if xs.lower() in ["none", "null"]: xs = None elif xs.lower() == "true": xs = True elif xs.lower() == "false": xs = False return xs
5,358,037
def ensure_command_line_tools_are_installed(command): """ Determine if the Xcode command line tools are installed. If they are not installed, an exception is raised; in addition, a OS dialog will be displayed prompting the user to install Xcode. :param command: The command that needs to perform the verification check. :param min_version: The minimum allowed version of Xcode, specified as a tuple of integers (e.g., (11, 2, 1)). Default: ``None``, meaning there is no minimum version. """ # We determine if the command line tools are installed by running: # # xcode-select --install # # If that command exits with status 0, it means the tools are *not* # installed; but a dialog will be displayed prompting an installation. # # If it returns a status code of 1, the tools are already installed # and outputs the message "command line tools are already installed" # # Any other status code is a problem. try: command.subprocess.check_output( ['xcode-select', '--install'], stderr=subprocess.STDOUT ) raise BriefcaseCommandError(""" Xcode command line developer tools are not installed. You should be shown a dialog prompting you to install Xcode and the command line tools. Select "Install" to install the command line developer tools. Re-run Briefcase once that installation is complete. """) except subprocess.CalledProcessError as e: if e.returncode != 1: print(""" ************************************************************************* ** WARNING: Unable to determine if Xcode is installed ** ************************************************************************* Briefcase will proceed, assuming everything is OK. If you experience problems, this is almost certainly the cause of those problems. Please report this as a bug at: https://github.com/beeware/briefcase/issues/new In your report, please including the output from running: xcode-select --install from the command prompt. ************************************************************************* """)
5,358,038
def ini_inventory(nhosts=10): """Return a .INI representation of inventory""" output = list() inv_list = generate_inventory(nhosts) for group in inv_list.keys(): if group == '_meta': continue # output host groups output.append('[%s]' % group) for host in inv_list[group].get('hosts', []): output.append(host) output.append('') # newline # output child groups output.append('[%s:children]' % group) for child in inv_list[group].get('children', []): output.append(child) output.append('') # newline # output group vars output.append('[%s:vars]' % group) for k, v in inv_list[group].get('vars', {}).items(): output.append('%s=%s' % (k, v)) output.append('') # newline return '\n'.join(output)
5,358,039
def get_invalid_bunny_revival_dungeons(): """ Dungeon regions that can't be bunny revived from without superbunny state. """ yield 'Tower of Hera (Bottom)' yield 'Swamp Palace (Entrance)' yield 'Turtle Rock (Entrance)' yield 'Sanctuary'
5,358,040
def get_crp_constrained_partition_counts(Z, Cd): """Compute effective counts at each table given dependence constraints. Z is a dictionary mapping customer to table, and Cd is a list of lists encoding the dependence constraints. """ # Compute the effective partition. counts = defaultdict(int) seen = set() # Table assignment of constrained customers. for block in Cd: seen.update(block) customer = block[0] table = Z[customer] counts[table] += 1 # Table assignment of unconstrained customers. for customer in Z: if customer in seen: continue table = Z[customer] counts[table] += 1 return counts
5,358,041
def create_doc(): """Test basic layer creation and node creation.""" # Stupid tokenizer tokenizer = re.compile(r"[a-zA-Z]+|[0-9]+|[^\s]") doc = Document() main_text = doc.add_text("main", "This code was written in Lund, Sweden.") # 01234567890123456789012345678901234567 # 0 1 2 3 token = doc.add_layer("token", text=main_text.spantype) for m in tokenizer.finditer(str(main_text)): token.add(text=main_text[m.start():m.end()]) named_entity = doc.add_layer("named_entity", text=main_text.spantype, cls=T.string) named_entity.add(text=main_text[25:29], cls="GPE") named_entity.add(text=main_text[31:37], cls="GPE") return doc
5,358,042
def jissue_get_chunked(jira_in, project, issue_max_count, chunks=100): """ This method is used to get the issue list with references, in case the number of issues is more than 1000 """ result = [] # step and rest simple calc step = issue_max_count / chunks rest = issue_max_count % chunks # iterate the issue gathering for i in range(step): result.extend(jissue_query(jira_in, project, chunks*i, chunks)) result.extend(jissue_query(jira_in, project, issue_max_count-rest, rest)) return result
5,358,043
def negative_height_check(height): """Check the height return modified if negative.""" if height > 0x7FFFFFFF: return height - 4294967296 return height
5,358,044
def turn_off_plotting(namespace=globals()): """Call turn_off_plotting(globals()) to turn off all plotting.""" use(namespace['plt'], namespace, True)
5,358,045
def test_basic_parse(): """Test parsing a basic expression.""" instructions = parse(tokenise('obj allow user edit')) assert len(instructions) == 1 assert instructions == [('obj', 'allow', 'user', 'edit')]
5,358,046
def main(): """ Main function """ args=get_args() file_args = args.file print(args.num) if args.num: file_num = args.num else: file_num=10 for fh in file_args: num_lines = 0 print(f"{fh.name}") for line in fh: y = fh.readline() print(y, end='') num_lines += 1 if num_lines == file_num: print() break
5,358,047
def get_visemenet(model_name=None, pretrained=False, root=os.path.join("~", ".tensorflow", "models"), **kwargs): """ Create VisemeNet model with specific parameters. Parameters: ---------- model_name : str or None, default None Model name for loading pretrained model. pretrained : bool, default False Whether to load the pretrained weights for model. root : str, default '~/.tensorflow/models' Location for keeping the model parameters. """ net = VisemeNet( **kwargs) if pretrained: if (model_name is None) or (not model_name): raise ValueError("Parameter `model_name` should be properly initialized for loading pretrained model.") from .model_store import get_model_file in_channels = kwargs["in_channels"] if ("in_channels" in kwargs) else 3 input_shape = (1,) + (in_channels,) + net.in_size if net.data_format == "channels_first" else\ (1,) + net.in_size + (in_channels,) net.build(input_shape=input_shape) net.load_weights( filepath=get_model_file( model_name=model_name, local_model_store_dir_path=root)) return net
5,358,048
def linked_gallery_view(request, obj_uuid): """ View For Permalinks """ gallery = get_object_or_404(Gallery, uuid=obj_uuid) images = gallery.images.all().order_by(*gallery.display_sort_string) paginator = Paginator(images, gallery.gallery_pagination_count) page = request.GET.get('page') try: imgs = paginator.page(page) except PageNotAnInteger: imgs = paginator.page(1) except EmptyPage: imgs = paginator.page(paginator.num_pages) context = { "images": imgs, "gallery": gallery, "gallery_name": gallery.title } return render(request, 'image_list.html', context)
5,358,049
def _gm_cluster_assign_id(gm_list, track_id, num_tracks, weight_threshold, z_dim, max_id, max_iteration=1000): """The cluster algorithm that assign a new ID to the track Args: gm_list (:obj:`list`): List of ``GaussianComponent`` representing current multi-target PHD density. track_id (:obj:`int`): Current track id. num_tracks (:obj:`int`): The number of tracks that this list of Gaussian components need to split into. weight_threshold (:obj:`float`): Initial weight threshold for each newly spawned track. z_dim (:obj:`int`): The dimensionality of measurement space. max_id (:obj:`int`): The next track ID number that can be assigned. max_iteration (:obj:`int`): Max number of iterations in case that the clustering algorithm does not converge and oscillates. Returns: A `list` of Gaussian components with updated track ID and the next track ID that can be assigned to new tracks in the future. """ clusters_mean = np.random.uniform(0, 1, (num_tracks, z_dim)) previous_clusters_mean = None cluster_gms = [[] for i in range(num_tracks)] count = 0 while np.any(clusters_mean != previous_clusters_mean) and \ count < max_iteration: previous_clusters_mean = np.copy(clusters_mean) # There n_tracks means, calculate the distance between each track, # and sorted from high to low gm_distance_matrix = _gm_cluster_distance(gm_list=gm_list, clusters_mean=clusters_mean, num_tracks=num_tracks, z_dim=z_dim) # Assign GM to each mean where the weight of each cluster equals or # just higher than the weight threshold. cluster_gms = _gm_group_cluster(gm_list=gm_list, distance_matrix=gm_distance_matrix, weight_threshold=weight_threshold) # Update mean for i in range(num_tracks): new_mean = np.zeros((z_dim,), dtype=np.float32) new_weight = 0. for gm in cluster_gms[i]: new_mean += gm.mean.flatten()[0:z_dim] * gm.weight new_weight += gm.weight if new_weight == 0.: new_weight = 1 clusters_mean[i, :] = new_mean / new_weight # Update count count += 1 # Assign ID to each cluster for i in range(num_tracks): # For every new track, start counting with max_id if track_id == 0 and i == 0: for gm in cluster_gms[i]: gm.mean[-1, :] = max_id max_id += 1 elif i != 0: for gm in cluster_gms[i]: gm.mean[-1, :] = max_id max_id += 1 return gm_list, max_id
5,358,050
def get_bprop_scatter_nd(self): """Generate bprop for ScatterNd""" op = P.GatherNd() def bprop(indices, x, shape, out, dout): return zeros_like(indices), op(dout, indices), zeros_like(shape) return bprop
5,358,051
def myHullNumber() -> int: """Возвращает бортовой номер робота."""
5,358,052
def dates(bot, mask, target, args): """Show the planned dates within the next days %%dates """ config = dates_configuration(bot) now = datetime.utcnow().replace(hour=0, minute=0, second=0, microsecond=0) yield from _update_cache(bot) yield from output_dates(bot, target, now, now + timedelta(days=config['list_days']), config['filter_location'])
5,358,053
def progress_update_r(**kwargs): """ Receiver to update a progressbar """ index = kwargs.get('index') if index: update_pbar(index)
5,358,054
def get_md5(location: str, ignore_hidden_files: bool=True) -> Optional[str]: """ Gets an MD5 checksum of the file or directory at the given location. :param location: location of file or directory :param ignore_hidden_files: whether hidden files should be ignored when calculating an checksum for a directory :return: the MD5 checksum or `None` if the given location does not exist """ if not os.path.exists(location): return None if os.path.isfile(location): with open(location, "rb") as file: content = file.read() return hashlib.md5(content).hexdigest() else: return dirhash(location, "md5", ignore_hidden=ignore_hidden_files)
5,358,055
def set_output_image_folder(folder: str) -> None: """ Service that sets up the location of image output folder :param folder: location to set :return: None """ config_main.APPL_SAVE_LOCATION = folder log_setup_info_to_console('IMAGE FOLDER OUTPUT:{}'.format(os.path.join(os.getcwd(), config_main.APPL_INPUT_DIR)))
5,358,056
def delete_policy_rule(policy_key, key, access_token): """ Deletes a policy rule with the given key. Returns the response JSON. See http://localhost:8080/docs#/Policy/delete_rule_api_v1_policy__policy_key__rule__rule_key__delete """ return requests.delete( f"{FIDESOPS_URL}/api/v1/policy/{policy_key}/rule/{key}", headers=oauth_headers(access_token=access_token), )
5,358,057
def knn_search_parallel(data, K, qin=None, qout=None, tree=None, t0=None, eps=None, leafsize=None, copy_data=False): """ find the K nearest neighbours for data points in data, using an O(n log n) kd-tree, exploiting all logical processors on the computer. if eps <= 0, it returns the distance to the kth point. On the other hand, if eps > 0 """ # print("starting the parallel search") if eps is not None: assert data.shape[0]==len(eps) # build kdtree if copy_data: dataCopy = data.copy() # print('copied data') else: dataCopy = data if tree is None and leafsize is None: tree = ss.cKDTree(dataCopy) elif tree is None: tree = ss.cKDTree(dataCopy, leafsize=leafsize) if t0 is not None: print('time to tree formation: %f' %(clock()-t0)) ndata = data.shape[0] nproc = 20 # print('made the tree') # compute chunk size chunk_size = int(data.shape[0] / (4*nproc)) chunk_size = 100 if chunk_size < 100 else chunk_size if qin==None or qout==None: # set up a pool of processes qin = processing.Queue(maxsize=int(ndata/chunk_size)) qout = processing.Queue(maxsize=int(ndata/chunk_size)) if eps is None: pool = [processing.Process(target=__remote_process_query, args=(rank, qin, qout, tree, K, leafsize)) for rank in range(nproc)] else: pool = [processing.Process(target=__remote_process_ball, args=(rank, qin, qout, tree, leafsize)) for rank in range(nproc)] for p in pool: p.start() # put data chunks in input queue cur, nc = 0, 0 while 1: _data = data[cur:cur+chunk_size, :] if _data.shape[0] == 0: break if eps is None: qin.put((nc,_data)) else: _eps = eps[cur:cur+chunk_size] qin.put((nc,_data,_eps)) cur += chunk_size nc += 1 # read output queue knn = [] while len(knn) < nc: knn += [qout.get()] # avoid race condition _knn = [n for i,n in sorted(knn)] knn = [] for tmp in _knn: knn += [tmp] # terminate workers for p in pool: p.terminate() if eps is None: output = np.zeros((sum([ x.shape[0] for x in knn]),knn[0].shape[1])) else: output = np.zeros(sum([ len(x) for x in knn])) outputi = 0 for x in knn: if eps is None: nextVal = x.shape[0] else: nextVal = len(x) output[outputi:(outputi+nextVal)] = x outputi += nextVal return output
5,358,058
def find_absolute_reference( target: str, domain: str, remote_url: urllib.parse.ParseResult, https_mode: _constants.HTTPSMode = _constants.DEFAULT_HTTPS_MODE, base: typing.Optional[urllib.parse.ParseResult] = None ) -> typing.Optional[str]: """ Transform the partly defined target string to a full URL The implementation of this method is partly based on RFC 3986, section 5.1 and 5.2 (with modifications). :param target: anything that seems to be an URI, relative or absolute :param domain: remote network location name (usually domain name) :param remote_url: remote URL that was used before, i.e. the referrer to the new target (and most likely also the origin of the reference) :param https_mode: definition how to treat the HTTPS mode (for the scheme) :param base: optional base URI used to correctly find absolute paths for relative resource indicators (uses the remote URL if absent) :return: a full URL that can be used to request further resources, if possible and the target matched the criteria (otherwise None); one of those criteria is the same remote netloc, which is enforced to limit the width of our requests to not query the whole web """ def merge_paths(a: urllib.parse.ParseResult, b: str) -> str: """ Merge two paths, where `a` should be a base and `b` should be a reference """ if not b.startswith("/"): b = "/" + b if a.netloc != "" and a.path == "": return b return "/".join(a.path.split("/")[:-1]) + b url = urllib.parse.urlparse(target) scheme, netloc, path, params, query, fragment = url # TODO: section 5.1, order of precedence if base is None: base = remote_url # Unknown schemes are ignored (e.g. mailto:) and a given schema indicates # an absolute URL which should not be processed (only filtered) if scheme != "" and scheme.lower() not in ("http", "https"): return elif scheme == "": if https_mode == _constants.HTTPSMode.DEFAULT: scheme = remote_url.scheme elif https_mode in (_constants.HTTPSMode.HTTPS_ONLY, _constants.HTTPSMode.HTTPS_FIRST): scheme = "https" elif https_mode == _constants.HTTPSMode.HTTP_ONLY: scheme = "http" elif netloc != "" and netloc.lower() == domain.lower(): return urllib.parse.urlunparse( (scheme, netloc, remove_dot_segments(path), params, query, "") ) # Other network locations are ignored (so we don't traverse the whole web) if netloc != "" and netloc.lower() != domain.lower(): return elif netloc != "": return urllib.parse.urlunparse( (scheme, netloc, remove_dot_segments(path), params, query, "") ) netloc = domain # Determine the new path if path == "": path = base.path if query == "": query = base.query else: if path.startswith("/"): path = remove_dot_segments(path) else: path = remove_dot_segments(merge_paths(base, path)) return urllib.parse.urlunparse( (scheme, netloc, remove_dot_segments(path), params, query, "") )
5,358,059
def compute_vectors_from_coordinates( x: np.ndarray, y: np.ndarray, fps: int = 1 ) -> Tuple[Vector, Vector, Vector, Vector, np.array]: """ Given the X and Y position at each frame - Compute vectors: i. velocity vector ii. unit tangent iii. unit norm iv. acceleration and scalar quantities: i. speed ii. curvature See: https://stackoverflow.com/questions/28269379/curve-curvature-in-numpy """ # compute velocity vector dx_dt = np.gradient(x) dy_dt = np.gradient(y) velocity = ( np.array([[dx_dt[i], dy_dt[i]] for i in range(dx_dt.size)]) * fps ) # compute scalr speed vector ds_dt = np.sqrt(dx_dt * dx_dt + dy_dt * dy_dt) # get unit tangent vector tangent = np.array([1 / ds_dt] * 2).transpose() * velocity unit_tangent = tangent / np.apply_along_axis( np.linalg.norm, 1, tangent ).reshape(len(tangent), 1) # get unit normal vector tangent_x = tangent[:, 0] tangent_y = tangent[:, 1] deriv_tangent_x = np.gradient(tangent_x) deriv_tangent_y = np.gradient(tangent_y) dT_dt = np.array( [ [deriv_tangent_x[i], deriv_tangent_y[i]] for i in range(deriv_tangent_x.size) ] ) length_dT_dt = np.sqrt( deriv_tangent_x * deriv_tangent_x + deriv_tangent_y * deriv_tangent_y ) normal = np.array([1 / length_dT_dt] * 2).transpose() * dT_dt # get acceleration and curvature d2s_dt2 = np.gradient(ds_dt) d2x_dt2 = np.gradient(dx_dt) d2y_dt2 = np.gradient(dy_dt) curvature = ( np.abs(d2x_dt2 * dy_dt - dx_dt * d2y_dt2) / (dx_dt * dx_dt + dy_dt * dy_dt) ** 1.5 ) t_component = np.array([d2s_dt2] * 2).transpose() n_component = np.array([curvature * ds_dt * ds_dt] * 2).transpose() acceleration = t_component * tangent + n_component * normal return ( Vector(velocity), Vector(tangent), Vector( -unit_tangent[:, 1], unit_tangent[:, 0] ), # normal as rotated tangent Vector(acceleration), curvature, )
5,358,060
def get_now(pair): """ Return last info for crypto currency pair :param pair: ex: btc-ltc :return: """ info = {'marketName': pair, 'tickInterval': 'oneMin'} return requests.get('https://bittrex.com/Api/v2.0/pub/market/GetLatestTick', params=info).json()
5,358,061
def resize_and_convert_images_to_png(): """ For each file in the folders: Convert to a .PNG file, preserve file size Label it something computer-processable """ print("Running resize_and_convert_images_to_png()") current_directory = './Deep Learning Plant Classifier' # first pass - convert to png, preserving file name (except for the extension) for (root, _, files) in os.walk(current_directory): tif_filepaths = [rf"{root}\{f}" for f in files if f.endswith(".tif")] with ThreadPoolExecutor(max_workers=16) as executor: executor.map(resize_file, tif_filepaths) # second pass - delete the tif file IF PNG EXISTS for (root, _, files) in os.walk(current_directory): for file_name in [f for f in files if f.endswith(".tif")]: file_path = rf"{root}\{file_name}" png_filepath = file_path.replace('.tif', '.png') if os.path.isfile(png_filepath): os.remove(file_path) print("All done! PNG images are ready to be split into fragments now.")
5,358,062
def fixture_buildchain_template_context() -> Any: """Emulate .in template context for buildchain.""" buildchain_path = paths.REPO_ROOT / "buildchain" sys.path.insert(0, str(buildchain_path)) # pylint: disable=import-error,import-outside-toplevel from buildchain import versions # pylint: enable=import-error,import-outside-toplevel sys.path.pop(0) return { "VERSION": versions.VERSION, }
5,358,063
def test_no_optional_attrs(): """Test loading DAG with no optional attributes.""" obj = OptionalAttrs("go-basic.obo", None) obj.chk_no_optattrs() obj = OptionalAttrs("go-basic.obo", []) obj.chk_no_optattrs() obj = OptionalAttrs("go-basic.obo", set([])) obj.chk_no_optattrs()
5,358,064
def hsv(h: float, s: float, v: float) -> int: """Convert HSV to RGB. :param h: Hue (0.0 to 1.0) :param s: Saturation (0.0 to 1.0) :param v: Value (0.0 to 1.0) """ return 0xFFFF
5,358,065
def transform2json(source, target): """ Transform bahaviors file in tsv to json for later evaluation Args: TODO source: target: """ behaviors = pd.read_table( source, header=None, names=['uid', 'time', 'clicked_news', 'impression']) f = open(target, "w") with tqdm(total=len(behaviors), desc="Transforming tsv to json") as pbar: for row in behaviors.itertuples(index=False): item = {} item['uid'] = row.uid[1:] item['time'] = row.time item['impression'] = { x.split('-')[0][1:]: int(x.split('-')[1]) for x in row.impression.split() } f.write(json.dumps(item) + '\n') pbar.update(1) f.close()
5,358,066
def make_exponential_mask(img, locations, radius, alpha, INbreast=False): """Creating exponential proximity function mask. Args: img (np.array, 2-dim): the image, only it's size is important locations (np.array, 2-dim): array should be (n_locs x 2) in size and each row should correspond to a location [x,y]. Don't need to be integer, truncation is applied. NOTICE [x,y] where x is row number (distance from top) and y column number (distance from left) radius (int): radius of the exponential pattern alpha (float): decay rate INbreast (bool, optional): Not needed anymore, handled when parsing INbreast dataset Returns: mask (np.array, 0.0-1.0): Exponential proximity function """ # create kernel which we will be adding at locations # Kernel has radial exponential decay form kernel = np.zeros((2*radius+1,2*radius+1)) for i in range(0, kernel.shape[0]): for j in range(0, kernel.shape[1]): d = np.sqrt((i-radius)**2+(j-radius)**2) if d<= radius: kernel[i,j]=(np.exp(alpha*(1-d/radius))-1)/(np.exp(alpha)-1) # pad original img to avoid out of bounds errors img = np.pad(img, radius+1, 'constant').astype(float) # update locations locations = np.array(locations)+radius+1 locations = np.round(locations).astype(int) # initialize mask mask = np.zeros_like(img) for location in locations: if INbreast: y, x = location else: x, y = location # add kernel mask[x-radius:x+radius+1, y-radius:y+radius+1] =np.maximum(mask[x-radius:x+radius+1, y-radius:y+radius+1],kernel) # unpad mask = mask[radius+1:-radius-1,radius+1:-radius-1] return mask
5,358,067
def loadTileSources(entryPointName='large_image.source', sourceDict=AvailableTileSources): """ Load all tilesources from entrypoints and add them to the AvailableTileSources dictionary. :param entryPointName: the name of the entry points to load. :param sourceDict: a dictionary to populate with the loaded sources. """ for entryPoint in iter_entry_points(entryPointName): try: sourceClass = entryPoint.load() if sourceClass.name and None in sourceClass.extensions: sourceDict[entryPoint.name] = sourceClass config.getConfig('logprint').debug('Loaded tile source %s' % entryPoint.name) except Exception: config.getConfig('logprint').exception( 'Failed to loaded tile source %s' % entryPoint.name)
5,358,068
def delete(client, url: str, payload: dict) -> Tuple[dict, bool]: """Make DELETE requests to K8s (see `k8s_request`).""" resp, code = request(client, 'DELETE', url, payload, headers=None) err = (code not in (200, 202)) if err: logit.error(f"{code} - DELETE - {url} - {resp}") return (resp, err)
5,358,069
def f(x): """The objective is defined as the cost + a per-demographic penalty for each demographic not reached.""" n = len(x) assert n == n_venues reached = np.zeros(n_demographics, dtype=int) cost = 0.0 for xi, ri, ci in zip(x, r, c): if xi: reached = reached | ri # cost += ci for ri, pi in zip(reached, p): if ri == 0: cost += pi return cost
5,358,070
def clamp(minVal, val, maxVal): """Clamp a `val` to be no lower than `minVal`, and no higher than `maxVal`.""" return max(minVal, min(maxVal, val))
5,358,071
def _remove_discussion_tab(course, user_id): """ Remove the discussion tab for the course. user_id is passed to the modulestore as the editor of the xblock. """ course.tabs = [tab for tab in course.tabs if not tab.type == 'discussion'] modulestore().update_item(course, user_id)
5,358,072
def generate_primes(start): """ generate primes in increasing order, starting from the number start. >>> generator = generate_primes(2) >>> [generator.next() for _ in xrange(10)] # first 10 primes [2, 3, 5, 7, 11, 13, 17, 19, 23, 29] >>> generator = generate_primes(100) >>> # first 10 primes over 100 >>> [generator.next() for _ in xrange(10)] [101, 103, 107, 109, 113, 127, 131, 137, 139, 149] """ for n in itertools.count(start): # check if n is a prime maxdivisor = int(math.floor(math.sqrt(n))) # maximum possible divisor for div_cand in range(2, maxdivisor+1): if n%div_cand==0: break # n is not a prime, continue searching else: # no divisors -> n is a prime yield n
5,358,073
def get_closest_spot( lat: float, lng: float, area: config.Area ) -> t.Optional[config.Spot]: """Return closest spot if image taken within 100 m""" if not area.spots: return None distances = [ (great_circle((spot.lat, spot.lng), (lat, lng)).meters, spot) for spot in area.spots ] distance, closest_spot = min(distances) return closest_spot if distance < 100 else None
5,358,074
def drawBezier( page: Page, p1: point_like, p2: point_like, p3: point_like, p4: point_like, color: OptSeq = None, fill: OptSeq = None, dashes: OptStr = None, width: float = 1, morph: OptStr = None, closePath: bool = False, lineCap: int = 0, lineJoin: int = 0, overlay: bool = True, stroke_opacity: float = 1, fill_opacity: float = 1, oc: int = 0, ) -> Point: """Draw a general cubic Bezier curve from p1 to p4 using control points p2 and p3.""" img = page.newShape() Q = img.drawBezier(Point(p1), Point(p2), Point(p3), Point(p4)) img.finish( color=color, fill=fill, dashes=dashes, width=width, lineCap=lineCap, lineJoin=lineJoin, morph=morph, closePath=closePath, stroke_opacity=stroke_opacity, fill_opacity=fill_opacity, oc=oc, ) img.commit(overlay) return Q
5,358,075
def product(numbers): """Return the product of the numbers. >>> product([1,2,3,4]) 24 """ return reduce(operator.mul, numbers, 1)
5,358,076
def load_ref_system(): """ Returns l-phenylalanine as found in the IQMol fragment library. All credit to https://github.com/nutjunkie/IQmol """ return psr.make_system(""" N 0.7060 -1.9967 -0.0757 C 1.1211 -0.6335 -0.4814 C 0.6291 0.4897 0.4485 C -0.8603 0.6071 0.4224 C -1.4999 1.1390 -0.6995 C -2.8840 1.2600 -0.7219 C -3.6384 0.8545 0.3747 C -3.0052 0.3278 1.4949 C -1.6202 0.2033 1.5209 C 2.6429 -0.5911 -0.5338 O 3.1604 -0.2029 -1.7213 O 3.4477 -0.8409 0.3447 H -0.2916 -2.0354 -0.0544 H 1.0653 -2.2124 0.8310 H 0.6990 -0.4698 -1.5067 H 1.0737 1.4535 0.1289 H 0.9896 0.3214 1.4846 H -0.9058 1.4624 -1.5623 H -3.3807 1.6765 -1.6044 H -4.7288 0.9516 0.3559 H -3.5968 0.0108 2.3601 H -1.1260 -0.2065 2.4095 H 4.1118 -0.2131 -1.6830 """)
5,358,077
def parse_dependency_file(filename): """Parse a data file containing dependencies. The input file is the following csv format: name,minerals,gas,build time,dependencies command center,400,0,100, orbital command,150,0,35,command center|barracks Notice that the "dependencies" column is a list, deliminated with | # TODO: We should lowercase everthing in this file # TODO: We should validate all names and dependencies are valid units/buildings/research # TODO: Should we store this stuff in memory rather than reading a file? Or memcache it? """ reader = csv.DictReader(open(filename, 'rb'), delimiter=',', quotechar='"') data = list(reader) # Force to a list # Ensure values for these keys are integers int_keys = ['minerals', 'gas', 'supply', 'build time', 'research time'] result = {} for line in data: # Change "thing1 |thing2 | thing3 " into ["thing1", "thing2", "thing3"] line['dependencies'] = [s.strip() for s in line['dependencies'].split("|") if s] for key in int_keys: if key in line: line[key] = int(line[key]) result[line['name']] = line return result
5,358,078
def main(): """ there are four cubes with concrete colors on their sides and the goal is to place each cube in one row that way that along the row each side presents four different colors """ # ----------- ----------- ----------- ----------- ----------- ----------- # front back left right top bottom # ----------- ----------- ----------- ----------- ----------- ----------- cubes = [ Cube(Color.GREEN, Color.WHITE, Color.GREEN, Color.RED, Color.WHITE, Color.BLUE), Cube(Color.WHITE, Color.RED , Color.WHITE, Color.GREEN, Color.BLUE, Color.RED), Cube(Color.RED, Color.RED, Color.RED , Color.GREEN, Color.BLUE, Color.WHITE), Cube(Color.BLUE, Color.RED, Color.GREEN, Color.GREEN, Color.WHITE, Color.BLUE) ] cubesChecker = CubesChecker(cubes) cubesChecker.calculate()
5,358,079
def range_with_bounds(start: int, stop: int, interval: int) -> List[int]: """Return list""" result = [int(val) for val in range(start, stop, interval)] if not isclose(result[-1], stop): result.append(stop) return result
5,358,080
def insert(cursor, name, value): """ Insert data into CrateDB with a current timestamp. """ cursor.execute("""INSERT INTO sensordata (ts, name, value) VALUES (?, ?, ?)""", (timestamp_ms(), name, value))
5,358,081
def iou_score(box1, box2): """Returns the Intersection-over-Union score, defined as the area of the intersection divided by the intersection over the union of the two bounding boxes. This measure is symmetric. Args: box1: The coordinates for box 1 as a list of points box2: The coordinates for box 2 in same format as box1. """ if len(box1) == 2: x1, y1 = box1[0] x2, y2 = box1[1] box1 = np.array([[x1, y1], [x2, y1], [x2, y2], [x1, y2]]) if len(box2) == 2: x1, y1 = box2[0] x2, y2 = box2[1] box2 = np.array([[x1, y1], [x2, y1], [x2, y2], [x1, y2]]) if any(cv2.contourArea(np.int32(box2)[:, np.newaxis, :]) == 0 for box in [box1, box2]): warnings.warn('A box with zero area was detected.') return 0 pc = pyclipper.Pyclipper() pc.AddPath(np.int32(box1), pyclipper.PT_SUBJECT, closed=True) pc.AddPath(np.int32(box2), pyclipper.PT_CLIP, closed=True) intersection_solutions = pc.Execute(pyclipper.CT_INTERSECTION, pyclipper.PFT_EVENODD, pyclipper.PFT_EVENODD) union_solutions = pc.Execute(pyclipper.CT_UNION, pyclipper.PFT_EVENODD, pyclipper.PFT_EVENODD) union = sum(cv2.contourArea(np.int32(points)[:, np.newaxis, :]) for points in union_solutions) intersection = sum( cv2.contourArea(np.int32(points)[:, np.newaxis, :]) for points in intersection_solutions) return intersection / union
5,358,082
def _actually_on_chip(ra, dec, obs_md): """ Take a numpy array of RA in degrees, a numpy array of Decin degrees and an ObservationMetaData and return a boolean array indicating which of the objects are actually on a chip and which are not """ out_arr = np.array([False]*len(ra)) d_ang = 2.11 good_radii = np.where(angularSeparation(ra, dec, obs_md.pointingRA, obs_md.pointingDec)<d_ang) if len(good_radii[0]) > 0: chip_names = chipNameFromRaDecLSST(ra[good_radii], dec[good_radii], obs_metadata=obs_md).astype(str) vals = np.where(np.char.find(chip_names, 'None')==0, False, True) out_arr[good_radii] = vals return out_arr
5,358,083
def outlier_dataset(seed=None) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]: """Generates Outliers dataset, containing 10'000 inliers and 50 outliers Args: seed: random seed for generating points Returns: Tuple containing the inlier features, inlier labels, outlier features and outlier labels """ if seed is not None: np.random.seed(seed) inlier_feats = np.concatenate( [np.random.normal(1, 1, 5000), np.random.normal(-1, 1, 5000)] ) inlier_labels = np.concatenate( [ np.ones((5000,)), -1 * np.ones((5000,)), ] ) outlier_feats = np.concatenate( [np.random.normal(-200, 1, 25), np.random.normal(200, 1, 25)] ) outlier_labels = np.concatenate( [ np.ones((25,)), -1 * np.ones((25,)), ] ) return inlier_feats, inlier_labels, outlier_feats, outlier_labels
5,358,084
def posts(request, payload={}, short_id=None): """ Posts endpoint of the example.com public api Request with an id parameter: /public_api/posts/1qkx8 POST JSON in the following format: POST /public_api/posts/ {"ids":["1qkx8","ma6fz"]} """ Metrics.api_comment.record(request) ids = payload.get('ids') if short_id and not ids: try: comment = Comment.details_by_id(long_id(short_id), promoter=PublicAPICommentDetails) (comment,) = CachedCall.multicall([comment]) return comment.to_client() except (ObjectDoesNotExist, util.Base36DecodeException): raise ServiceError("Post not found") elif ids: ids = [long_id(x) for x in set(ids)] calls = [Comment.details_by_id(id, ignore_not_found=True, promoter=PublicAPICommentDetails) for id in ids] comments = CachedCall.multicall(calls, skip_decorator=True) return {'posts': [x.to_client() for x in comments if x]}
5,358,085
def compute_bleu(reference_corpus, translation_corpus, max_order=4, smooth=False): """Computes BLEU score of translated segments against one or more references. Args: reference_corpus: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. translation_corpus: list of translations to score. Each translation should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: 3-Tuple with the BLEU score, n-gram precisions, geometric mean of n-gram precisions and brevity penalty. bleu:float,翻译句子的bleu得分, precisions:list, 包含每种ngram的准确率, bp:brevity penalty, 短句惩罚系数, ratio:translation_length / min(reference_length), translation_length:int,翻译长度, reference_length:int,最短的reference长度 """ matches_by_order = [0] * max_order possible_matches_by_order = [0] * max_order reference_length = 0 translation_length = 0 for (references, translation) in zip(reference_corpus, translation_corpus): reference_length += min(len(r) for r in references) translation_length += len(translation) merged_ref_ngram_counts = collections.Counter() for reference in references: # 同时考虑多个references merged_ref_ngram_counts |= _get_ngrams(reference, max_order) # 位或 translation_ngram_counts = _get_ngrams(translation, max_order) overlap = translation_ngram_counts & merged_ref_ngram_counts # 位与 # matches_by_order:{len(ngram):sum of ngram overlap counts} for ngram in overlap: matches_by_order[len(ngram) - 1] += overlap[ngram] # possible_matches_by_order(可匹配n-gram总数):{len(ngram):sum of each ngram possible matches} for order in range(1, max_order + 1): possible_matches = len(translation) - order + 1 if possible_matches > 0: possible_matches_by_order[order - 1] += possible_matches precisions = [0] * max_order for i in range(0, max_order): if smooth: precisions[i] = ((matches_by_order[i] + 1.) / (possible_matches_by_order[i] + 1.)) else: if possible_matches_by_order[i] > 0: precisions[i] = (float(matches_by_order[i]) / possible_matches_by_order[i]) else: precisions[i] = 0.0 if min(precisions) > 0: p_log_sum = sum((1. / max_order) * math.log(p) for p in precisions) geo_mean = math.exp(p_log_sum) else: geo_mean = 0 # 翻译长度惩罚(对较短的翻译基于较大的惩罚,以防止短翻译准确率会更高的问题) ratio = float(translation_length) / reference_length if ratio > 1.0: bp = 1. else: bp = math.exp(1 - 1. / ratio) bleu = geo_mean * bp return (bleu, precisions, bp, ratio, translation_length, reference_length)
5,358,086
def rf_agg_local_mean(tile_col): """Compute the cellwise/local mean operation between Tiles in a column.""" return _apply_column_function('rf_agg_local_mean', tile_col)
5,358,087
def Shot(project, name): """ 샷 정보를 가지고 오는 함수. (딕셔너리, err)값을 반환한다. """ restURL = "http://10.0.90.251/api/shot?project=%s&name=%s" % (project, name) try: data = json.load(urllib2.urlopen(restURL)) except: return {}, "RestAPI에 연결할 수 없습니다." if "error" in data: return {}, data["error"] return data["data"], None
5,358,088
def inversion_double(in_array): """ Get the input boolean array along with its element-wise logical not beside it. For error correction. >>> inversion_double(np.array([1,0,1,1,1,0,0,1], dtype=np.bool)) array([[ True, False, True, True, True, False, False, True], [False, True, False, False, False, True, True, False]]) """ return np.stack((in_array, np.logical_not(in_array)))
5,358,089
def query_to_csv(engine, host, user, port, password, database, query, headers=False, out_type='stdout', destination_file=None, delimiter=',', quotechar='"', print_info=1000): """ Run a query and store the result to a CSV file """ # Get SQL connection connection = get_connection( engine=engine, host=host, user=user, port=port, password=password, database=database ) cursor = get_cursor(connection) if out_type == 'file': print('\n* Exporting rows...') with open_tempfile() if out_type == 'stdout' else open_file(resolve_home_dir(destination_file)) as file_: writer = get_writer(file_, delimiter=delimiter, quotechar=quotechar) # Execute query execute_query(cursor=cursor, query=query) # Write headers if requested if headers: writer.writerow(fetch_headers(cursor=cursor)) # Write rows to CSV i = 0 while True: row = cursor.fetchone() if not row: break # Increment row counter i += 1 if out_type == 'file' and i % print_info == 0: print(' ...%s rows written' % "{:,}".format(i)) writer.writerow(row.values()) if out_type == 'file': print(' ...done') print('* The result has been exported to %s.\n' % (destination_file)) cursor.close # Print stdout if out_type == 'stdout': file_to_stdout()
5,358,090
def test_list_roles(requests_mock): """ Tests synapse-list-users command function. """ from Synapse import Client, list_roles_command mock_response = util_load_json('test_data/list_roles.json') requests_mock.get('https://test.com/api/v1/auth/roles', json=mock_response) mock_roles = util_load_json('test_data/list_roles.json') requests_mock.get('https://test.com/api/v1/auth/roles', json=mock_roles) client = Client( base_url='https://test.com/api/v1', username='test', password='test', verify=False, proxy=False ) response = list_roles_command(client) assert response.outputs_prefix == 'Synapse.Roles' assert response.outputs_key_field == 'Iden' assert response.outputs[0]['Iden'] == mock_response['result'][0]['iden']
5,358,091
def test_expands_blank_panes(): """Expand blank config into full form. Handle ``NoneType`` and 'blank':: # nothing, None, 'blank' 'panes': [ None, 'blank' ] # should be blank 'panes': [ 'shell_command': [] ] Blank strings:: panes: [ '' ] # should output to: panes: 'shell_command': [''] """ yaml_config_file = os.path.join(example_dir, 'blank-panes.yaml') test_config = load_config(yaml_config_file) assert config.expand(test_config) == fixtures.expand_blank.expected
5,358,092
def solution(N): """ This is a fairly simple task. What we need to do is: 1. Get string representation in binary form (I love formatted string literals) 2. Measure biggest gap of zeroes (pretty self explanatory) """ # get binary representation of number binary_repr = f"{N:b}" # initialise counters current_gap, max_gap = 0, 0 for b in binary_repr: # end of gap, update max if b == '1': max_gap = max(current_gap, max_gap) current_gap = 0 # increase gap counter else: current_gap += 1 return max_gap
5,358,093
def version(verbose: bool = False) -> None: """Show version information""" if not verbose: console.print(idom.__version__) else: table = Table() table.add_column("Package") table.add_column("Version") table.add_column("Language") table.add_row("idom", str(idom.__version__), "Python") for js_pkg, js_ver in _private.build_dependencies().items(): table.add_row(js_pkg, js_ver, "Javascript") console.print(table)
5,358,094
def distributed_compute_expectations( building_blocks: Tuple[cw.ComplexDeviceArray], operating_axes: Tuple[Tuple[int]], pbaxisums: Tuple[Tuple[cw.ComplexDeviceArray]], pbaxisums_operating_axes: Tuple[Tuple[Tuple[int]]], pbaxisum_coeffs: Tuple[Tuple[float]], num_discretes: int, ) -> ShardedDeviceArray: """ Compute the expectation values of several observables given in `pbaxisums`. This function uses a single pmap and can be memory intesive for pbaxisums with many long prob-basis-axis-strings. Args: building_blocks: The building_blocks in super-matrix format (i.e. 128x128) operating_axes: The discrete axes on which `building_blocks` act. pbaxisums: Supermatrices of large_block representation of pauli sum operators. A single pbaxistring is represented as an innermost list of matrix-large_blocks. The outermost list iterates through different prob-basis-axis-sums, the intermediate list iterates through pbaxistrings within a pbaxisum. pbaxisums_operating_axes: The discrete axes on which the pbaxisums act. pbaxisum_coeffs: The coefficients of the prob-basis-axis-strings appearing in the union of all prob-basis-axis-sum operators. num_discretes: The number of discretes needed for the simulation. num_params: The number of parameters on which the acyclic_graph depends. Returns: ShardedDeviceArray: The expectation values. """ num_pbaxisums = len(pbaxisums) expectation_values = jnp.zeros(num_pbaxisums) final_state = helpers.get_final_state(building_blocks, operating_axes, num_discretes) for m, pbaxisum in enumerate(pbaxisums): pbaxisum_op_axes = pbaxisums_operating_axes[m] pbaxisum_coeff = pbaxisum_coeffs[m] # `psi` is brought into natural discrete order # don't forget to also align the axes here! coeff = pbaxisum_coeff[0] psi = helpers.apply_building_blocks( final_state, pbaxisum[0], pbaxisum_op_axes[0] ).align_axes() expectation_value = ( helpers.scalar_product_real(psi, final_state) * coeff ) for n in range(1, len(pbaxisum)): pbaxistring = pbaxisum[n] op_axes = pbaxisum_op_axes[n] coeff = pbaxisum_coeff[n] psi = helpers.apply_building_blocks( final_state, pbaxistring, op_axes ).align_axes() expectation_value += ( helpers.scalar_product_real(psi, final_state) * coeff ) # at this point all `psis` are in natural discrete ordering, # with the same `labels` values as `final_state` (i.e. # `labels = [0,1,2,3,..., num_discretes - 1]`). They also all have the # same (sorted) `perm` ordering due to the call to `align_axes()`. # compute the expectation values. Note that `psi` and `final_state` # have identical `perm` and `labels`. expectation_values = expectation_values.at[m].set( expectation_value.real[0] ) return expectation_values
5,358,095
def write_to_pubsub(data): """ :param data: :return: """ try: if data["lang"] == "en": publisher.publish(topic_path, data=json.dumps({ "text": data["text"], "user_id": data["user_id"], "id": data["id"], "posted_at": datetime.datetime.fromtimestamp( data["created_at"]).strftime('%Y-%m-%d %H:%M:%S') }).encode("utf-8"), tweet_id=str(data["id"]).encode("utf-8")) except Exception as e: raise
5,358,096
def extractStudents(filename): """ Pre: The list in xls file is not empty Post: All students are extract from file Returns students list """ list = [] try: # open Excel file wb = xlrd.open_workbook(str(filename)) except IOError: print ("Oops! No file "+filename+ " has been found !") else: sh = wb.sheet_by_name(wb.sheet_names()[0]) for rownum in range(1,sh.nrows):#1 to remove title line student = sh.row_values(rownum) list.append(student) return list
5,358,097
def dmenu_select(num_lines, prompt="Entries", inp=""): """Call dmenu and return the selected entry Args: num_lines - number of lines to display prompt - prompt to show inp - bytes string to pass to dmenu via STDIN Returns: sel - string """ cmd = dmenu_cmd(num_lines, prompt) sel, err = Popen(cmd, stdin=PIPE, stdout=PIPE, stderr=PIPE, env=bwm.ENV).communicate(input=inp) if err: cmd = [cmd[0]] + ["-dmenu"] if "rofi" in cmd[0] else [""] Popen(cmd[0], stdin=PIPE, stdout=PIPE, env=bwm.ENV).communicate(input=err) sys.exit() if sel is not None: sel = sel.decode(bwm.ENC).rstrip('\n') return sel
5,358,098
def clean_ip(ip): """ Cleans the ip address up, useful for removing leading zeros, e.g.:: 1234:0:01:02:: -> 1234:0:1:2:: 1234:0000:0000:0000:0000:0000:0000:000A -> 1234::a 1234:0000:0000:0000:0001:0000:0000:0000 -> 1234:0:0:0:1:: 0000:0000:0000:0000:0001:0000:0000:0000 -> ::1:0:0:0 :type ip: string :param ip: An IP address. :rtype: string :return: The cleaned up IP. """ theip = normalize_ip(ip) segments = ['%x' % int(s, 16) for s in theip.split(':')] # Find the longest consecutive sequence of zeroes. seq = {0: 0} start = None count = 0 for n, segment in enumerate(segments): if segment != '0': start = None count = 0 continue if start is None: start = n count += 1 seq[count] = start # Replace those zeroes by a double colon. count = max(seq) start = seq[count] result = [] for n, segment in enumerate(segments): if n == start and count > 1: if n == 0: result.append('') result.append('') if n == 7: result.append('') continue elif start < n < start + count: if n == 7: result.append('') continue result.append(segment) return ':'.join(result)
5,358,099