content
stringlengths
22
815k
id
int64
0
4.91M
def auc(y, z, round=True): """Compute area under the ROC curve.""" if round: y = y.round() if len(y) == 0 or len(np.unique(y)) < 2: return np.nan return skm.roc_auc_score(y, z)
2,300
def test_die_init() -> None: """tests the use of a single die""" die = Die() assert die.sides == 6 assert die.max == 6 assert die.min == 1 assert die.rolls == 0 assert die.net_sides == die.sides assert str(die) == "<d6 Die>" assert repr(die) == "<d6 Die>" assert not die > die assert not die < die assert die >= die assert die <= die
2,301
def get_routing_attributes(obj, modify_doc=False, keys=None): """ Loops through the provided object (using the dir() function) and finds any callables which match the name signature (e.g. get_foo()) AND has a docstring beginning with a path-like char string. This does process things in alphabetical order (rather than than the unpredictable __dict__ attribute) so take this into consideration if certain routes should be checked before others. Unfortunately, this is a problem because the 'all' method will always come before others, so there is no capturing one type followed by a catch-all 'all'. Until a solution is found, just make a router by hand. """ if keys is None: keys = dir(obj) for val, method_str in _find_routeable_attributes(obj, keys): path, *doc = val.__doc__.split(maxsplit=1) or ('', '') if not path: continue if modify_doc: val.__doc__ = ''.join(doc) method = HTTPMethod[method_str] yield method, path, val
2,302
def copy_jce_policy_files(cluster): """" Copy JCE unlimited strength policy files to all nodes. """ source_folder = cluster.get_config(KEY_JCE_POLICY_FILES_LOCATION) if not source_folder: raise KerberosConfigError( 'The location of JCE Unlimited Strength Policy files was not found in {}'.format( cluster.get_config_file())) jar_files_pattern = os.path.join(source_folder, "*.jar") if not glob.glob(jar_files_pattern): raise KerberosConfigError( 'No policy jar files found in {}'.format(source_folder)) target_dir = os.path.join(cluster.get_config(KEY_JAVA_HOME), 'jre', 'lib', 'security') execute(copy, hosts=cluster.get_all_hosts(), source_file=jar_files_pattern, remote_file=target_dir)
2,303
def get_tmp_filepath(_file): """生成一个针对_file的临时文件名""" _path = os.path.dirname(_file) _tmp_filename = os.path.basename(_file) if not _tmp_filename.startswith('.'): _tmp_filename = '.' + _tmp_filename _tmp_filename += '_tmp' _tmp_filepath = os.path.join(_path, _tmp_filename) if os.path.exists(_tmp_filepath): return get_tmp_filepath(_tmp_filepath + '_1') return _tmp_filepath
2,304
def upperLeftOrigin( largeSize, smallSize ): """ The upper left coordinate (tuple) of a small rectangle in a larger rectangle (centered) """ origin = tuple( map( lambda x: int( ( (x[0]-x[1])/2 ) ), zip( largeSize, smallSize )) ) return origin
2,305
def get_supported_events(): """Returns the list of available _local_ templates. If a template exists in the local app, it will take precedence over the default trello_webhooks template. The base assumption for this function is that _if_ a local template exists, then this is an event we are interested in. """ app_template_path = path.join( path.realpath(path.dirname(__file__)), 'templates/trello_webhooks' ) return [t.split('.')[0] for t in listdir(app_template_path)]
2,306
def test_unwrap_spans() -> None: """It unwraps span.pre elements.""" tree = parse_html("<span class='pre'>Test</span>") postprocess._remove_span_pre(tree) span = tree("span") assert len(span) == 0 assert str(tree) == "Test"
2,307
def from_ext(ext: str) -> S: """Get a SignedObject by file extension.""" object_types: typing.List[S] = [RpkiGhostbusters, RpkiManifest, RouteOriginAttestation] entry_point_name = "rpkimancer.sigobj" entry_points = importlib.metadata.entry_points() for entry_point in entry_points.get(entry_point_name, []): log.info(f"trying to load signed object {entry_point.value}") cls = entry_point.load() if issubclass(cls, SignedObject): object_types.append(typing.cast(S, cls)) else: log.warning(f"signed objects must inherit from {SignedObject}") lookup_map = {cls.econtent_type.file_ext: cls for cls in object_types} try: return lookup_map[ext] except KeyError: return lookup_map[ext.lstrip(".")]
2,308
def plot_audio(audio,time,ResultPath,title): """Plot and save an audio file amplitude over time""" plt.figure() plt.plot(time,audio, linewidth=0.01) plt.ylabel("Amplitude") plt.xlabel("Time (s)") plt.title(title) pathname=ResultPath + title plt.savefig(pathname) plt.show() return()
2,309
def dataSet(): """ 测试数据集 """ x = [np.array([[1], [2], [3]]), np.array([[2], [3], [4]])] d = np.array([[1], [2]]) return x, d
2,310
def config(): """ Get the OpenAPI Document configuration :returns: OpenAPI configuration YAML dict """ with open(get_test_file_path('pygeoapi-test-openapi-config.yml')) as config_file: # noqa return yaml_load(config_file)
2,311
def save_data(df, database_filename): """Saves Data into Database Args: df: cleaned dataframe database_filename: database file name """ engine = create_engine('sqlite:///' + database_filename) df.to_sql('Disasters', engine, if_exists='replace',index=False)
2,312
def convert_broadcast_lesser(node, **kwargs): """Map MXNet's broadcast_lesser operator attributes to onnx's Less operator and return the created node. """ return create_basic_op_node('Less', node, kwargs)
2,313
def main(mt_input: str, panelapp_path: str, config_path: str, out_vcf: str): """ Read the MT from disk Do filtering and class annotation Export as a VCF :param mt_input: path to the MT directory :param panelapp_path: path to the panelapp data dump :param config_path: path to the config json :param out_vcf: path to write the VCF out to """ # initiate Hail with defined driver spec. init_batch() # get the run configuration JSON logging.info(f'Reading config dict from "{config_path}"') with open(AnyPath(config_path), encoding='utf-8') as handle: config_dict = json.load(handle) # find the config area specific to hail operations hail_config = config_dict.get('filter') # read the parsed panelapp data logging.info(f'Reading PanelApp data from "{panelapp_path}"') with open(AnyPath(panelapp_path), encoding='utf-8') as handle: panelapp = json.load(handle) # pull green and new genes from the panelapp data green_expression, new_expression = green_and_new_from_panelapp(panelapp) logging.info( f'Starting Hail with reference genome "{hail_config.get("ref_genome")}"' ) # if we already generated the annotated output, load instead if not AnyPath(mt_input.rstrip('/') + '/').exists(): raise Exception(f'Input MatrixTable doesn\'t exist: {mt_input}') matrix = hl.read_matrix_table(mt_input) logging.debug( f'Loaded annotated MT from {mt_input}, size: {matrix.count_rows()}', ) # running global quality filter steps matrix = filter_matrix_by_ac(matrix_data=matrix, config=hail_config) matrix = filter_matrix_by_variant_attributes(matrix_data=matrix) # pull annotations into info and update if missing logging.info('Pulling VEP annotations into INFO field') matrix = extract_annotations(matrix) # # checkpoint after applying all these operations matrix = informed_repartition(matrix=matrix) # filter on row annotations logging.info('Filtering Variant rows') matrix = filter_rows_for_rare(matrix=matrix, config=hail_config) logging.info(f'Variants remaining after Rare filter: {matrix.count_rows()}') matrix = filter_benign_or_non_genic(matrix=matrix) logging.info(f'Variants remaining after Benign filter: {matrix.count_rows()}') matrix = filter_to_green_genes_and_split( matrix=matrix, green_genes=green_expression ) logging.info(f'Variants remaining after Green-Gene filter: {matrix.count_rows()}') matrix = filter_by_consequence(matrix=matrix, config=hail_config) logging.info(f'Variants remaining after Consequence filter: {matrix.count_rows()}') logging.info('Repartitioning after consequence filtration') matrix = informed_repartition(matrix=matrix) # add Classes to the MT logging.info('Applying categories to variant consequences') matrix = annotate_category_1(matrix) matrix = annotate_category_2(matrix, hail_config, new_expression) matrix = annotate_category_3(matrix, hail_config) matrix = annotate_category_4(matrix, hail_config) # filter to class-annotated only prior to export logging.info('Filter variants to leave only classified') matrix = filter_to_categorised(matrix) logging.info(f'Variants remaining after Category filter: {matrix.count_rows()}') # another little repartition after heavy filtering matrix = informed_repartition(matrix=matrix) # add an additional annotation, if the variant is Category4 only # obtain the massive CSQ string using method stolen from the Broad's Gnomad library # also take the single gene_id (from the exploded attribute) matrix = matrix.annotate_rows( info=matrix.info.annotate( CSQ=vep_struct_to_csq( matrix.vep, csq_fields=config_dict['variant_object'].get('csq_string') ), gene_id=matrix.geneIds, ), category_4_only=hl.if_else( (matrix.info.Category1 == 0) & (matrix.info.Category2 == 0) & (matrix.info.Category3 == 0) & (matrix.info.Category4 == 1), ONE_INT, MISSING_INT, ), ) # write to MT matrix.write(f'{out_vcf}.mt', overwrite=True) # parse out the compound het details (after pulling gene_id above) comp_het_details = extract_comp_het_details(matrix=matrix) # transform the vcf output path into a json path out_json = f'{out_vcf.split(".", maxsplit=1)[0]}.json' # and write the comp-het JSON file with AnyPath(out_json).open('w') as handle: json.dump(comp_het_details, handle, indent=True, default=str) logging.info('comp-het data written to cloud') # write the results to a VCF path logging.info(f'Write variants out to "{out_vcf}"') write_matrix_to_vcf(matrix=matrix, output_path=out_vcf)
2,314
def test_simulator_setup_space_quoted(): """run_and_pytest() parses quoted --setup TEXT argument.""" command = ( 'phmdoctest doc/setup.md --setup "import math" --teardown LAST' " --report --outfile discarded.py" ) simulator_status = phmdoctest.simulator.run_and_pytest( well_formed_command=command, pytest_options=["--doctest-modules", "-v"] ) assert simulator_status.runner_status.exit_code == 0 assert simulator_status.pytest_exit_code == 0 stdout = simulator_status.runner_status.stdout assert 'python 9 setup "import math"' in stdout
2,315
def sliding_window(image, step_size, window_size): """给定一副图像,返回一个从左向右滑动的窗口,直至覆盖整个图像""" for y in range(0, image.shape[0], step_size): for x in range(0, image.shape[1], step_size): yield (x, y, image[y:y + window_size[1], x:x + window_size[0]])
2,316
def check_federated_type( type_spec: computation_types.Type, member: Optional[computation_types.Type] = None, placement: Optional[placement_literals.PlacementLiteral] = None, all_equal: Optional[bool] = None): """Checks that `type_spec` is a federated type with the given parameters. Args: type_spec: The `tff.Type` to check. member: The expected member type, or `None` if unspecified. placement: The desired placement, or `None` if unspecified. all_equal: The desired result of accessing the property `tff.FederatedType.all_equal` of `type_spec`, or `None` if left unspecified. Raises: TypeError: if `type_spec` is not a federated type of the given kind. """ py_typecheck.check_type(type_spec, computation_types.FederatedType) if member is not None: py_typecheck.check_type(member, computation_types.Type) member.check_assignable_from(type_spec.member) if placement is not None: py_typecheck.check_type(placement, placement_literals.PlacementLiteral) if type_spec.placement is not placement: raise TypeError( 'Expected federated type placed at {}, got one placed at {}.'.format( placement, type_spec.placement)) if all_equal is not None: py_typecheck.check_type(all_equal, bool) if type_spec.all_equal != all_equal: raise TypeError( 'Expected federated type with all_equal {}, got one with {}.'.format( all_equal, type_spec.all_equal))
2,317
def randomize_examples(verbalize, path='prompts/',example_filenames="example_" , n_examples=3, onlyverbal=False): """ Randomizes the examples for the initial prompt. Parameters ---------- verbalize : bool If true, examples contain reasoning for the answer, e.g. "because I do not believe in conspiracies." path : TYPE, optional Filepath. The default is 'prompts/'. example_filenames : TYPE, optional How the files containing the examples are named. The default is "example_". n_examples : TYPE, optional How many examples are sampled. The default is 3. onlyverbal : bool, optional If True, examples where there are no numerical answers are used. The default is False. Returns ------- examples_string : TYPE DESCRIPTION. """ # Read all the examples in a directory examples_list = [] for file in os.listdir(path): if file.startswith(example_filenames): examples_list.append(open(path + file, "r").read()) # Remove verbalization if verbalize == False: if onlyverbal == False: for i, value in enumerate(examples_list): temp = examples_list[i] examples_list[i] = temp[0:temp.find("Participant:") + 14] + '.' if onlyverbal == True: for i, value in enumerate(examples_list): temp = examples_list[i] findend = temp.find("Participant:") end_i = temp.find(",", findend) examples_list[i] = temp[0:end_i] + '.' # Randomize the order examples_list = random.sample(examples_list, k=n_examples) # Add to a string that will be added to the prompt for i in range(n_examples): if i == 0: examples_string = examples_list[i] else: examples_string = examples_string + "\n\n" + examples_list[i] return examples_string
2,318
def histogram2d(x, y, bins_x, bins_y): """Histogram 2d between two continuous row vectors. Parameters ---------- x : array_like Vector array of shape (N,) and of type np.float32 y : array_like Vector array of shape (N,) and of type np.float32 bins_x, bins_y : int64 Number of bins respectively for the x and y variables Returns ------- hist : array_like Array of shape (bins, bins) and of type int64 """ # x-range x_max, x_min = x.max(), x.min() delta_x = 1 / ((x_max - x_min) / bins_x) # y-range y_max, y_min = y.max(), y.min() delta_y = 1 / ((y_max - y_min) / bins_y) # compute histogram 2d xy_bin = np.zeros((np.int64(bins_x), np.int64(bins_y)), dtype=np.int64) for t in range(len(x)): i = (x[t] - x_min) * delta_x j = (y[t] - y_min) * delta_y if 0 <= i < bins_x and 0 <= j < bins_y: xy_bin[int(i), int(j)] += 1 return xy_bin
2,319
def xy2latlong(x: float, y: float, ds: Any) -> Tuple[float, float]: """Return lat long coordinate by x, y >>> import gdal >>> path = "../../../tests/data/raster_for_test.tif" >>> ds = gdal.Open(path) >>> xy2latlong(3715171, 2909857, ds) (1.7036231518576481, 48.994284431891565) """ old_cs = osr.SpatialReference() old_cs.ImportFromWkt(ds.GetProjectionRef()) # create the new coordinate system wgs84_wkt = """ GEOGCS["WGS 84", DATUM["WGS_1984", SPHEROID["WGS 84",6378137,298.257223563, AUTHORITY["EPSG","7030"]], AUTHORITY["EPSG","6326"]], PRIMEM["Greenwich",0, AUTHORITY["EPSG","8901"]], UNIT["degree",0.01745329251994328, AUTHORITY["EPSG","9122"]], AUTHORITY["EPSG","4326"]]""" new_cs = osr.SpatialReference() new_cs.ImportFromWkt(wgs84_wkt) # create a transform object to convert between coordinate systems transform = osr.CoordinateTransformation(old_cs, new_cs) # get the coordinates in lat long latlong = transform.TransformPoint(x, y) return latlong[0], latlong[1]
2,320
def relative_date(r='12m', end_date='today', date_format='%Y-%m-%d', as_string=False, unixtimestamp=False): """ Relative Date function Calculates a datetime from a given end date and a relative reference. INPUT: r - relative date reference as '-12d' accepts d, w, m or y end_date - 'today' (default), date string, datetime object date_format - input format of string & output if requested as_string - True | False (default) decides if output is converted to string from datetime unixtimestamp - converts datetime to an INTEGER unixtimestamp """ # Create Datetime object end_date based on supplied end_date # If not string or 'today' assume already in datetime format if end_date == 'today': end_date = dt.datetime.today() elif isinstance(end_date, str): end_date = dt.datetime.strptime(end_date, date_format) # Breakdown Relative Reference into type (i.e. d, w, m, y) & number r = r[1::] if r[0] == '-' else r dtype, dnum = str(r[-1]).lower(), float(r[0:-1]) # Manipulate based on relative Days, Weeks, Months or Years if dtype == 'd': start_date = end_date - dt.timedelta(days=dnum) elif dtype == 'w': start_date = end_date - dt.timedelta(weeks=dnum) elif dtype == 'm': start_date = end_date - dt.timedelta(weeks=dnum*4) elif dtype == 'y': start_date = end_date - dt.timedelta(weeks=dnum*52.143) # Output as Strings if desirable if as_string is True: start_date = dt.datetime.strftime(start_date, date_format) end_date = dt.datetime.strftime(end_date, date_format) elif unixtimestamp is True: start_date = int(dt.datetime.timestamp(start_date)) end_date = int(dt.datetime.timestamp(end_date)) return start_date, end_date
2,321
def get_iexist_vdw_bond(ipt): """ check if a given mol pair contain any vdw bond, which exists in the query mol. Note that input mol pairs must have cc=0. """ obj, mi, mj = ipt iok = F if np.any( [ set(b) <= set(mi.iasq+mj.iasq) for b in obj.ncbs ] ): iok = T return iok
2,322
def getSVG(shape, opts=None, view_vector=(-0, 0, 20.0)): """ Export a shape to SVG """ d = {"width": 800, "height": 800, "marginLeft": 20, "marginTop": 20} if opts: d.update(opts) # need to guess the scale and the coordinate center uom = guessUnitOfMeasure(shape) width = float(d["width"]) height = float(d["height"]) marginLeft = float(d["marginLeft"]) marginTop = float(d["marginTop"]) # TODO: provide option to give 3 views viewVector = FreeCAD.Base.Vector(view_vector) (visibleG0, visibleG1, hiddenG0, hiddenG1) = Drawing.project(shape, viewVector) (hiddenPaths, visiblePaths) = getPaths( Drawing.projectToSVG(shape, viewVector, "") ) # this param is totally undocumented! # get bounding box -- these are all in 2-d space bb = visibleG0.BoundBox bb.add(visibleG1.BoundBox) bb.add(hiddenG0.BoundBox) bb.add(hiddenG1.BoundBox) # width pixels for x, height pixesl for y # massive hack convert pixels to mm unitScale = ( 3.779527559 ) # min( width / bb.XLength * 0.75 , height / bb.YLength * 0.75 ) # compute amount to translate-- move the top left into view (xTranslate, yTranslate) = ( (0 - bb.XMin) + marginLeft / unitScale, (0 - bb.YMax) - marginTop / unitScale, ) # compute paths ( again -- had to strip out freecad crap ) hiddenContent = "" for p in hiddenPaths: hiddenContent += PATHTEMPLATE % p visibleContent = "" for p in visiblePaths: visibleContent += PATHTEMPLATE % p svg = SVG_TEMPLATE % ( { "unitScale": str(unitScale), "strokeWidth": "0.1", "hiddenContent": visibleContent, "xTranslate": str(xTranslate), "yTranslate": str(yTranslate), "width": str(width), "height": str(height), "textboxY": str(height - 30), "uom": str(uom), } ) # svg = SVG_TEMPLATE % ( # {"content": projectedContent} # ) return svg
2,323
def test_process(ase3_code): """Test running a calculation note this does not test that the expected outputs are created of output parsing""" # Prepare input parameters Ase3Parameters = DataFactory('ase3') input_file = SinglefileData( file=os.path.join(TEST_DIR, 'input_files', 'run_gpaw.py')) # set up calculation inputs = { 'code': ase3_code, 'input_file': input_file, 'operation_mode':Str('inout'), 'metadata': { 'options': { 'max_wallclock_seconds': 30 }, }, } result = run(CalculationFactory('ase3'), **inputs) computed_diff = result['ase3'].get_content() assert 'ase3_output' in computed_diff
2,324
def load_data(messages_filepath, categories_filepath): """Loads messages and categories data and creates a merged dataframe Args: messages_filepath (str): Path to the messages file categories_filepath (str): Path to the categories file Returns: (pd.DataFrame): A messages and categories dataframe """ messages = pd.read_csv(messages_filepath) categories = pd.read_csv(categories_filepath) return messages.merge(categories, on='id')
2,325
def is_square_inside(row, col, rows, cols): """Check if row and col is square inside grid having rows and cols.""" return row not in (0, rows - 1) and col not in (0, cols - 1)
2,326
def demo(ks=(1, 2, 3, 4), N=20, azimuths=(0, 20), elevations=(90, 30), colors=get_colors(), verbose=True, savefig=False, showfig=True, elements=True): """ :param tuple ks : Orders of the Enneper surface :param int N : Resolution of each plot :param tuple azimuths : Azimuths for each plot :param tuple elevations: Elevations for each plot :param tuple colors : RGBA tuples for colors of the surface, planes, lines, and point :param bool verbose : Whether to output auxilliary information :param bool savefig : Whether to save the figure to a file :param bool showfig : Whether to show the figure :param bool elements : Whether to display elements :return: """ c_surfs, c_plane, c_line, c_point = colors for k in ks: if verbose: print(f"Enneper surface of order k={k}") # Collect meshes of the Enneper surface, its symmetry planes, symmetry axes, and symmetry point X, Y, Z, C = Enneper_mesh(k=k, N=N, colors=c_surfs) if elements: u_plane = max(np.max(X), np.max(Y)) u_line = 0.6*np.max(np.sqrt(X**2 + Y**2)) u_zfactor = np.max(Z) / u_plane Xs, Ys, Zs, Cs = symmetry_element_meshes(k, N, u_plane, u_line, u_zfactor, c_plane, c_line, c_point) X, Y, Z, C = bridge_meshes([X] + Xs, [Y] + Ys, [Z] + Zs, [C] + Cs) # We plot the surface from various view points for azimuth, elevation in zip(azimuths, elevations): fig = plt.figure() ax = fig.gca(projection='3d') ax.view_init(elev=elevation, azim=azimuth) ax.plot_surface(X, Y, Z, antialiased=True, rstride=1, cstride=1, facecolors=C, shade=True, linewidth=1) ax.set_xlim(np.min(X), np.max(X)) ax.set_ylim(np.min(Y), np.max(Y)) ax.set_zlim(np.min(Z), np.max(Z)) plt.axis('off') if savefig: if elements: fname = f"figs/Enneper-k-{k}-elements-elevation-{elevation}-azimuth-{azimuth}-N-{N}.png" else: fname = f"figs/Enneper-k-{k}-elevation-{elevation}-azimuth-{azimuth}-N-{N}.png" plt.savefig(fname, bbox_inches='tight', dpi=300) if showfig: plt.show()
2,327
def reshapeLabel(label): """ Reshape 1-D [0,1,...] to 2-D [[1,-1],[-1,1],...]. """ n = label.size(0) y = FloatTensor(n, 2) y[:, 0] = 2 * (0.5 - label) y[:, 1] = - y[:, 0] return y.long()
2,328
def _coo_scipy2torch(adj, coalesce=True, use_cuda=False): """ convert a scipy sparse COO matrix to torch """ values = adj.data indices = np.vstack((adj.row, adj.col)) i = torch.LongTensor(indices) v = torch.FloatTensor(values) ans = torch.sparse.FloatTensor(i, v, torch.Size(adj.shape)) if use_cuda: ans = ans.cuda() if coalesce: ans = ans.coalesce() return ans
2,329
def behavior_by_delta_temp(db_dict: dict, bins: np.ndarray): """ Computes frequency of behavior by delta-temperature achieved during the preceding bout :param db_dict: Debug dictionary created during simulation run :param bins: The bin-edges for dividing the bout delta temperature space :return: A dictionary with behaviors as keys and probability in each bin as values """ selector = np.logical_and(db_dict["sel_behav"] != '', db_dict["sel_behav"] != 'N') behavior_types = np.unique(db_dict["sel_behav"][selector]) all_behavs = db_dict["sel_behav"][selector] all_btemps = db_dict["curr_temp"][selector] all_deltas = np.zeros(all_btemps.size) for i in range(1, all_btemps.size): all_deltas[i] = all_btemps[i] - all_btemps[i-1] ad_counts = np.histogram(all_deltas, bins)[0].astype(np.float) result = {k: np.zeros(bins.size - 1) for k in behavior_types} for behav in behavior_types: b_dtemps = all_deltas[all_behavs == behav] result[behav] = np.histogram(b_dtemps, bins)[0].astype(np.float) / ad_counts return result
2,330
def _gen_efficientnet(channel_multiplier=1.0, depth_multiplier=1.0, num_classes=1000, **kwargs): """Creates an EfficientNet model. Ref impl: https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/efficientnet_model.py Paper: https://arxiv.org/abs/1905.11946 EfficientNet params name: (channel_multiplier, depth_multiplier, resolution, dropout_rate) 'efficientnet-b0': (1.0, 1.0, 224, 0.2), 'efficientnet-b1': (1.0, 1.1, 240, 0.2), 'efficientnet-b2': (1.1, 1.2, 260, 0.3), 'efficientnet-b3': (1.2, 1.4, 300, 0.3), 'efficientnet-b4': (1.4, 1.8, 380, 0.4), 'efficientnet-b5': (1.6, 2.2, 456, 0.4), 'efficientnet-b6': (1.8, 2.6, 528, 0.5), 'efficientnet-b7': (2.0, 3.1, 600, 0.5), Args: channel_multiplier: multiplier to number of channels per layer depth_multiplier: multiplier to number of repeats per stage """ # ORIGINAL # arch_def = [ # ['ds_r1_k3_s1_e1_c16_se0.25'], # ['ir_r2_k3_s2_e6_c24_se0.25'], # ['ir_r2_k5_s2_e6_c40_se0.25'], # ['ir_r3_k3_s2_e6_c80_se0.25'], # ['ir_r3_k5_s1_e6_c112_se0.25'], # ['ir_r4_k5_s2_e6_c192_se0.25'], # ['ir_r1_k3_s1_e6_c320_se0.25'], # ] # DEBUG arch_def = [ ['ds_r1_k3_s1_e1_c16'], ['ir_r2_k3_s2_e6_c24'], ['ir_r2_k5_s2_e6_c40'], ['ir_r3_k3_s2_e6_c80'], ['ir_r3_k5_s1_e6_c112'], ['ir_r4_k5_s2_e6_c192'], ['ir_r1_k3_s1_e6_c320'], ] bn_momentum, bn_eps = _resolve_bn_params(kwargs) # NOTE: other models in the family didn't scale the feature count num_features = _round_channels(1280, channel_multiplier, 8, None) model = GenEfficientNet( _decode_arch_def(arch_def, depth_multiplier), num_classes=num_classes, stem_size=32, channel_multiplier=channel_multiplier, channel_divisor=8, channel_min=None, num_features=num_features, bn_momentum=bn_momentum, bn_eps=bn_eps, act_fn=swish, **kwargs ) return model
2,331
def test_rescan_file(test_microvm_with_ssh, network_config): """Verify that rescan works with a file-backed virtio device.""" test_microvm = test_microvm_with_ssh test_microvm.spawn() # Set up the microVM with 1 vCPUs, 256 MiB of RAM, 0 network ifaces and # a root file system with the rw permission. The network interface is # added after we get a unique MAC and IP. test_microvm.basic_config() _tap, _, _ = test_microvm_with_ssh.ssh_network_config(network_config, '1') block_size = 2 # Add a scratch block device. fs = drive_tools.FilesystemFile( os.path.join(test_microvm.fsfiles, 'scratch'), size=block_size ) test_microvm.add_drive( 'scratch', fs.path, ) test_microvm.start() ssh_connection = net_tools.SSHConnection(test_microvm.ssh_config) _check_block_size(ssh_connection, '/dev/vdb', fs.size()) # Check if reading from the entire disk results in a file of the same size # or errors out, after a truncate on the host. truncated_size = block_size//2 utils.run_cmd(f"truncate --size {truncated_size}M {fs.path}") block_copy_name = "dev_vdb_copy" _, _, stderr = ssh_connection.execute_command( f"dd if=/dev/vdb of={block_copy_name} bs=1M count={block_size}") assert "dd: error reading '/dev/vdb': Input/output error" in stderr.read() _check_file_size(ssh_connection, f'{block_copy_name}', truncated_size * MB) response = test_microvm.drive.patch( drive_id='scratch', path_on_host=test_microvm.create_jailed_resource(fs.path), ) assert test_microvm.api_session.is_status_no_content(response.status_code) _check_block_size( ssh_connection, '/dev/vdb', fs.size() )
2,332
def do_add_application_type(request): """定义 dict_class=models.CharField(u"字典类别",max_length=255) dict_type=models.CharField(u"字典类型",max_length=255) dict_name=models.CharField(u"字典名称",max_length=255) dict_value=models.CharField(u"字典值",max_length=255) dict_status=models.IntegerField(u"字典状态") dict_mark=models.CharField(u"字典备注",max_length=1000,null=True,blank=True) """ dict_class=request.POST.get("dict_class") dict_type=request.POST.get("dict_type") dict_name=request.POST.get("dict_name") dict_code=request.POST.get("dict_code") dict_status=0 dict_mark=request.POST.get("dict_mark") try: dicts = Dicts.objects.filter(dict_class=dict_class,dict_type=dict_type,dict_name=dict_name,dict_code=dict_code) if dicts.exists(): return render_json({'code':True, 'msg':u"已存在相同记录信息"}) Dicts.objects.create(dict_class=dict_class,dict_type=dict_type ,dict_name=dict_name,dict_code=dict_code ,dict_status=dict_status,dict_mark=dict_mark) logger.info('insert object to Dicts is success') return render_json({'code':True, 'msg':u"数据保存成功"}) except Exception, e: logger.error('insert object to Dicts is error:{}'.format(repr(e))) return render_json({'code':False, 'msg':u"数据保存失败"})
2,333
def setup_app(command, conf, vars): """Place any commands to setup axantaddressbook here""" conf = base_config.configure(conf.global_conf, conf.local_conf) base_config.setup(conf) setup_schema(command, conf, vars) bootstrap(command, conf, vars)
2,334
def eval_single_grid_node(iden, counter, phases, maxiter, start_index): """ Evaluating randomly generated spotty single system model. :param iden: str; node ID :param counter: int; current number of already calculeted nodes :param phases: numpy.array; desired phases of observations :param maxiter: int; total number of nodes in this batch :param start_index: int; number of iterations already calculated before interruption :return: None """ aug_counter = counter + start_index print(f'Processing node: {aug_counter}/{maxiter}, {100.0 * aug_counter / maxiter:.2f}%') while True: params = aux.draw_single_star_params() try: s = SingleSystem.from_json(params) except ValueError as e: continue o = Observer(passband=config.PASSBANDS, system=s) try: o.lc(phases=phases, normalize=True) # o.plot.lc() except (LimbDarkeningError, AtmosphereError) as e: # print(f'Parameters: {params} produced system outside grid coverage.') continue dtb.insert_observation( config.DATABASE_NAME, o, iden, config.PARAMETER_COLUMNS_SINGLE, config.PARAMETER_TYPES_SINGLE ) break
2,335
def assert_data_frame_almost_equal(left, right): """Raise AssertionError if ``pd.DataFrame`` objects are not "almost equal". Wrapper of ``pd.util.testing.assert_frame_equal``. Floating point values are considered "almost equal" if they are within a threshold defined by ``assert_frame_equal``. This wrapper uses a number of checks that are turned off by default in ``assert_frame_equal`` in order to perform stricter comparisons (for example, ensuring the index and column types are the same). It also does not consider empty ``pd.DataFrame`` objects equal if they have a different index. Other notes: * Index (row) and column ordering must be the same for objects to be equal. * NaNs (``np.nan``) in the same locations are considered equal. This is a helper function intended to be used in unit tests that need to compare ``pd.DataFrame`` objects. Parameters ---------- left, right : pd.DataFrame ``pd.DataFrame`` objects to compare. Raises ------ AssertionError If `left` and `right` are not "almost equal". See Also -------- pandas.util.testing.assert_frame_equal """ # pass all kwargs to ensure this function has consistent behavior even if # `assert_frame_equal`'s defaults change pdt.assert_frame_equal(left, right, check_dtype=True, check_index_type=True, check_column_type=True, check_frame_type=True, check_less_precise=False, check_names=True, by_blocks=False, check_exact=False) # this check ensures that empty DataFrames with different indices do not # compare equal. exact=True specifies that the type of the indices must be # exactly the same pdt.assert_index_equal(left.index, right.index, exact=True, check_names=True)
2,336
def exponential_decay_function(distance: np.ndarray) -> np.ndarray: """Calculate exponential discount factor for action interaction weight matrix. Parameters ----------- distance: array-like, shape (len_list, ) Distance between two slots. """ if not isinstance(distance, np.ndarray) or distance.ndim != 1: raise ValueError("distance must be 1-dimensional ndarray") return np.exp(-distance)
2,337
def line_length(line, ellipsoid='WGS-84',shipping=True): """Length of a line in meters, given in geographic coordinates Adapted from https://gis.stackexchange.com/questions/4022/looking-for-a-pythonic-way-to-calculate-the-length-of-a-wkt-linestring#answer-115285 Arguments: line {Shapely LineString} -- a shapely LineString object with WGS-84 coordinates ellipsoid {String} -- string name of an ellipsoid that `geopy` understands (see http://geopy.readthedocs.io/en/latest/#module-geopy.distance) Returns: Length of line in meters """ if shipping == True: if line.geometryType() == 'MultiLineString': return sum(line_length(segment) for segment in line) return sum( vincenty(tuple(reversed(a)), tuple(reversed(b)), ellipsoid=ellipsoid).kilometers for a, b in pairwise(line.coords) ) else: if line.geometryType() == 'MultiLineString': return sum(line_length(segment) for segment in line) return sum( vincenty(a, b, ellipsoid=ellipsoid).kilometers for a, b in pairwise(line.coords) )
2,338
def corr2_coeff(x, y): """A magic function for computing correlation between matrices and arrays. This code is 640x+ faster on large dataset compared to np.corrcoef(). ------------------------------------------------------------------ author: Divakar (https://stackoverflow.com/users/3293881/divakar) url: https://stackoverflow.com/questions/42677677 ------------------------------------------------------------------ """ # input arrays subtract row-wise mean x_sub_mx = x - x.mean(1)[:, None] y_sub_my = y - y.mean(1)[:, None] # sum of squares across rows ssx = (x_sub_mx ** 2).sum(1) ssy = (y_sub_my ** 2).sum(1) return np.dot(x_sub_mx, y_sub_my.T) / np.sqrt(np.dot(ssx[:, None], ssy[None]))
2,339
def get_database_url(track: str) -> Optional[URL]: """ Get the database URL based on the environment How the database URL is selected: 1. If a predefined URL for the track is set, use that 2. If no predefined URL is set, generate one based on the preferred database type """ database_default_port_mapping = {MYSQL: 3306, POSTGRES: 5432} uppercase_track = track.upper() track_database_url = env.str(f"K8S_{uppercase_track}_DATABASE_URL", "") if track_database_url: return make_url(track_database_url) database_type = get_database_type() if not database_type: return None deploy_name = get_deploy_name(track) database_port = database_default_port_mapping[database_type] database_host = f"{deploy_name}-db-{database_type}" database_url = ( f"" f"{database_type}://{settings.DATABASE_USER}:{settings.DATABASE_PASSWORD}" f"@{database_host}:{database_port}" f"/{settings.DATABASE_DB}" ) return make_url(database_url)
2,340
def create_membership_push_to_timeline(sender, instance, created, **kwargs): """ Creating new membership with associated user. If the user is the project owner we don't do anything because that info will be shown in created project timeline entry @param sender: Membership model @param instance: Membership object """ # We shown in created project timeline entry if created and instance.user and instance.user != instance.project.owner: created_datetime = instance.created_at _push_to_timelines(instance.project, instance.user, instance, "create", created_datetime)
2,341
def build_suite(): """A function.""" #suite = unittest.TestSuite() #suite.addTest(WidgetTestCase('test_default_size')) #suite.addTest(WidgetTestCase('test_resize')) suite = unittest.TestLoader().loadTestsFromTestCase(WidgetTestCase) return suite
2,342
def get_quantile(data, percentage, **kwargs): """ Assuming the dataset is loaded as type `np.array`, and has shape (num_samples, num_features). :param data: Provided dataset, assume each row is a data sample and \ each column is one feature. :type data: `np.ndarray` :param percentage: Quantile or sequence of quantiles to compute, \ which must be between 0 and 1 inclusive. :type percentage: `float` or `np.array` of `float` :param kwargs: Dictionary of differential privacy arguments \ for computing the specified quantile of each feature across all samples, \ e.g., epsilon, etc. :type kwargs: `dict` :return: A vector of shape (1, num_features) stores the standard deviation of each feature across all samples. :rtype: `np.array` of `float` """ try: quantile_vec = np.quantile(data, q=percentage, axis=0) except Exception as ex: raise FLException('Error occurred when calculating ' 'the quantile. ' + str(ex)) return quantile_vec
2,343
def clean_repository_clone_url( repository_clone_url ): """Return a URL that can be used to clone a tool shed repository, eliminating the protocol and user if either exists.""" if repository_clone_url.find( '@' ) > 0: # We have an url that includes an authenticated user, something like: # http://[email protected]:9009/repos/some_username/column items = repository_clone_url.split( '@' ) tmp_url = items[ 1 ] elif repository_clone_url.find( '//' ) > 0: # We have an url that includes only a protocol, something like: # http://bx.psu.edu:9009/repos/some_username/column items = repository_clone_url.split( '//' ) tmp_url = items[ 1 ] else: tmp_url = repository_clone_url return tmp_url
2,344
def calculate_uncertainty_ins_seg(logits, classes): """ We estimate uncerainty as L1 distance between 0.0 and the logit prediction in 'logits' for the foreground class in `classes`. Args: logits (Tensor): A tensor of shape (R, C, ...) or (R, 1, ...) for class-specific or class-agnostic, where R is the total number of predicted masks in all images and C is the number of foreground classes. The values are logits. classes (list): A list of length R that contains either predicted of ground truth class for eash predicted mask. Returns: scores (Tensor): A tensor of shape (R, 1, ...) that contains uncertainty scores with the most uncertain locations having the highest uncertainty score. """ if logits.shape[1] == 1: gt_class_logits = logits.clone() else: gt_class_logits = logits[ torch.arange(logits.shape[0], device=logits.device), classes ].unsqueeze(1) return -(torch.abs(gt_class_logits))
2,345
def euclidean_distance(x, y): """ Compute Euclidean distance between two Variable matrices. --- param: x: PyTorch Variable with shape (m, d) y: PyTorch Variable with shape (n, d) return: distance: PyTorch Variable with shape (m, n) """ m, n = x.size(0), y.size(0) xx = torch.pow(x, 2).sum(1, keepdim=True).expand(m, n) yy = torch.pow(y, 2).sum(1, keepdim=True).expand(n, m).t() distance = xx + yy distance.addmm_(1, -2, x, y.t()) distance = distance.clamp(min=1e-12).sqrt() return distance
2,346
def gsettings_set(schema, path, key, value): """Set value of gsettings schema""" if path is None: gsettings = Gio.Settings.new(schema) else: gsettings = Gio.Settings.new_with_path(schema, path) if isinstance(value, list): return gsettings.set_strv(key, value) if isinstance(value, int): return gsettings.set_int(key, value) if isinstance(value, str): return gsettings.set_string(key, value)
2,347
def _get_permutations_draw(draw): """Helper to get all permutations of a draw (list of letters), hint: use itertools.permutations (order of letters matters)""" for length in range(1, 8): yield from itertools.permutations(draw, r=length)
2,348
def test_constructor_mm2gamma(setup_mm2gamma_zarr): """ test that constructor parses metadata properly no data extraction in this test """ src = setup_mm2gamma_zarr mmr = ZarrReader(src) assert(mmr.mm_meta is not None) assert(mmr.z_step_size is not None) assert(mmr.width is not 0) assert(mmr.height is not 0) assert(mmr.frames is not 0) assert(mmr.slices is not 0) assert(mmr.channels is not 0) assert(mmr.rows is not None) assert(mmr.columns is not None) assert(mmr.wells is not None) assert(mmr.hcs_meta is not None) # Check HCS metadata copy meta = mmr.hcs_meta assert('plate' in meta.keys()) assert('well' in meta.keys()) assert(len(meta['well']) == mmr.get_num_positions()) assert('images' in meta['well'][0]) assert(len(meta['well'][0]['images']) != 0) assert('path' in meta['well'][0]['images'][0]) assert(meta['well'][0]['images'][0]['path'] == 'Pos_000')
2,349
def initialize_parameters_deep(layer_dims): """ Arguments: layer_dims -- python array (list) containing the dimensions of each layer in our network Returns: parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL": Wl -- weight matrix of shape (layer_dims[l], layer_dims[l-1]) bl -- bias vector of shape (layer_dims[l], 1) """ np.random.seed(3) parameters = {} L = len(layer_dims) # number of layers in the network for l in range(1, L): ### START CODE HERE ### (≈ 2 lines of code) parameters['W' + str(l)] = np.random.randn(layer_dims[l], layer_dims[l - 1]) * 0.01 parameters['b' + str(l)] = np.zeros(shape=(layer_dims[l], 1)) ### END CODE HERE ### assert(parameters['W' + str(l)].shape == (layer_dims[l], layer_dims[l-1])) assert(parameters['b' + str(l)].shape == (layer_dims[l], 1)) return parameters
2,350
def get_nblocks_ntraces(f,nblocks,ntraces,pts,nbheaders,dt,read_blockhead): """ Read n blocks from a Varian binary file which may have multiple traces per block. Parameters: * f File object of Varian binary file to read from. * nblocks Number of blocks to read. * ntraces Number of traces per block. * pts Number of points per trace. * nbheaders Number of block headers in each block. * dt Data type of data in binary file (real). * read_blockhead Set to True to read the varian blockheaders(s) into the returned dictionary. False ignores them. Returns: dic,data if read_blockhead is True, data if False """ # create an empty array to hold data data = np.empty( (nblocks*ntraces,pts), dtype=dt) if read_blockhead: bdic = [0]*nblock # read the data for i in xrange(nblocks): if read_blockhead: bdic[i],bdata = get_block_ntraces(f,ntraces,pts,nbheaders,dt,True) data[i*ntraces:(i+1)*ntraces] = bdata else: bdata = get_block_ntraces(f,ntraces,pts,nbheaders,dt,False) data[i*ntraces:(i+1)*ntraces] = bdata if read_blockhead: return bdic,data else: return data
2,351
def register(): """Run multi_pyspin constructor and register multi_pyspin destructor. Should be called once when first imported""" multi_pyspin.register()
2,352
def calcMedian(list_o_tuples): """Given a list of tuples (A, B), where A = category, and B = counts, returns A that represents the median count value""" #calc total ct = 0 for (a, b) in list_o_tuples: ct += float(b) med = ct / 2 #find A ct = 0 for (i, (a, b)) in enumerate(list_o_tuples): ct += float(b) if ct > med: break #print (i, a, b) return a
2,353
def add(n1, n2): """Adds the 2 given numbers""" return n1 + n2
2,354
def kwarg_any(kwarg_functions): """Resolve kwarg predicates with short-circuit evaluation. This optimization technique means we do not have to evaluate every predicate if one is already true. """ return any(kwarg_function() for kwarg_function in kwarg_functions)
2,355
def _behler_parrinello_cutoff_fn(dr: Array, cutoff_distance: float=8.0) -> Array: """Function of pairwise distance that smoothly goes to zero at the cutoff.""" # Also returns zero if the pairwise distance is zero, # to prevent a particle from interacting with itself. return jnp.where((dr < cutoff_distance) & (dr > 1e-7), 0.5 * (jnp.cos(jnp.pi * dr / cutoff_distance) + 1), 0)
2,356
def test_get_models_list(): """Assert that the right models are returned when the parameter is a list.""" atom = ATOMClassifier(X_bin, y_bin, random_state=1) atom.run(["LR1", "LR2", "LR3"]) assert atom._get_models(["LR1", "LR2"]) == ["LR1", "LR2"]
2,357
def _get_build_to_download(build: str) -> Tuple[str, Optional[str]]: """Get the build version to download. If the passed value is not an explict build number (eg. 15.0) then the build for the current day of that major/minor will be downloaded. :param build: The target build number. :return: The target build information. """ components = build.split(".") num_components = len(components) if num_components == 1: components.append("0") if num_components == 2: return ".".join(components), None # Always treat the last component as the 'build'. Unlike Houdini itself # which would treat a release candidate version as part of the build number # the web api will treat the candidate version as the build number and the # the 3 main components as the version. return ".".join(components[: num_components - 1]), components[-1]
2,358
def test(program, mode): """ function to do tests """ print('Program {}, mode {}'.format(program, mode)) print('Doing tests...')
2,359
def label(type=None, is_emphasis=True, is_label_show=False, label_pos=None, label_text_color="#000", label_text_size=12, formatter=None, **kwargs): """ Text label of , to explain some data information about graphic item like value, name and so on. In ECharts 3, to make the configuration structure flatter, labelis taken to be at the same level with itemStyle, and has two status normal and emphasis as itemStyle does. :param type: Chart type :param is_emphasis: It specifies whether to show laebl in emphasis status. :param is_label_show: It specifies whether to show laebl in normal status. :param label_pos: Label position.It can be 'top', 'left', 'right', 'bottom', 'inside','outside' :param label_text_color: Label text color. :param label_text_size: Label font size. :param formatter: Data label formatter,it can be 'series', 'name', 'value', 'precent' :param kwargs: :return: """ if label_pos is None: label_pos = "outside" if type in ["pie", "graph"] else "top" _label = { "normal": {"show": is_label_show, "position": label_pos, "textStyle": {"color": label_text_color, "fontSize": label_text_size}}, "emphasis": {"show": is_emphasis} } fmat = {"series": "{a} ", "name": "{b} ", "value": "{c} ", "percent": "{d}% "} if formatter is None: _formatter = "{b} {d}%" if type == "pie" else None else: _formatter = "".join([fmat.get(f) for f in formatter if fmat.get(f, None)]) if type != "graph": _label.get("normal").update(formatter=_formatter) return _label
2,360
def MPC_ComputeCrc(card_type: TechnologyType, frame: bytes) -> bytes: """Computes frame CRC Parameters ---------- card_type : TechnologyType Technology type frame : bytes Input frame Returns ------- bytes CRC bytes """ if not isinstance(card_type, TechnologyType): raise TypeError('card_type must be an instance of ' 'TechnologyType IntEnum') if not isinstance(frame, bytes): raise TypeError('frame must be an instance of bytes') _check_limits(c_uint32, len(frame), 'frame') crc1 = c_uint8() crc2 = c_uint8() CTS3Exception._check_error(_MPuLib.MPC_ComputeCrc( c_uint8(0), c_int32(card_type), frame, c_uint32(len(frame)), byref(crc1), byref(crc2))) return bytes([crc1.value, crc2.value])
2,361
def max_contiguous(input, value, _builder=None): """ Let the compiler knows that the `value` first values in :code:`input` are contiguous. """ value = _constexpr_to_value(value) return semantic.max_contiguous(input, value)
2,362
def kl_reverse(logu: torch.Tensor) -> torch.Tensor: """ Log-space Csiszar function for reverse KL-divergence D_f(p,q) = KL(q||p). Also known as the exclusive KL-divergence and negative ELBO, minimizing results in zero-forcing / mode-seeking behavior. Args: logu (torch.Tensor): ``p.log_prob``s evaluated at samples from q. """ return -logu
2,363
def twos_comp_to_signed(val: int, n_bits: int) -> int: """ Convert a "two's complement" representation (as an integer) to its signed version. Args: val: positive integer representing a number in two's complement format n_bits: number of bits (which must reflect a whole number of bytes) Returns: signed integer See http://stackoverflow.com/questions/1604464/twos-complement-in-python """ assert n_bits % 8 == 0, "Must specify a whole number of bytes" n_bytes = n_bits // 8 b = val.to_bytes(n_bytes, byteorder=sys.byteorder, signed=False) return int.from_bytes(b, byteorder=sys.byteorder, signed=True)
2,364
def main(): """main entry point for module execution """ argument_spec = dict( lines=dict(type='list', aliases=['commands'], required=True), ) module = AnsibleModule( argument_spec=argument_spec, supports_check_mode=True ) lines = module.params['lines'] result = { 'changed': False } if lines and not module.check_mode: r = edit_config(module, lines) result['changed'] = True result['commands'] = lines result['updates'] = lines result['result'] = r # "<ERROR> Need to do reset after execute the save command." # これが戻ってきたときに、警告を出す commit_resp = r.get('commit_response') if commit_resp: result['warnings'] = commit_resp module.exit_json(**result)
2,365
def delete_file(subject_file_id): """deletes a particular file :rtype tuple :return (subject_file_id, deleted_file_path) """ file_entity = SubjectFileEntity.query.filter_by(id=subject_file_id).one() file_path = file_entity.get_full_path(app.config['REDIDROPPER_UPLOAD_SAVED_DIR']) os.remove(file_path) file_entity.delete() db.session.commit() return (subject_file_id, file_path)
2,366
def export_chart_avg_age_by_country(data_file_path): """ Exports a line chart with average age observed for each country. Args: data_file_path (str): File path of the exported CSV file """ # Read csv as pandas dataframe fight_data = pd.read_csv(data_file_path, sep=';') fight_data_df = pd.DataFrame(fight_data) # Group data for average age of each country and plot a line chart fight_data_df.groupby([' country'])[' age'].mean().plot(linewidth=10) plt.xlabel("Country") plt.ylabel("Average Age observed for each country") plt.title("Distribution of average age observed for each country") plt.savefig('saved_figure_avg_age.png', dpi=300, bbox_inches = "tight") plt.close()
2,367
def test_command_line_slide_info_file_not_found(sample_svs): """Test CLI slide info file not found error.""" runner = CliRunner() slide_info_result = runner.invoke( cli.main, [ "slide-info", "--img-input", str(sample_svs)[:-1], "--file-types", "*.ndpi, *.svs", "--mode", "show", ], ) assert slide_info_result.output == "" assert slide_info_result.exit_code == 1 assert isinstance(slide_info_result.exception, FileNotFoundError)
2,368
def do_lint() -> str: """ Execute pylint """ check_command_exists("pylint") with safe_cd(SRC): lint_output_file_name = f"{PROBLEMS_FOLDER}/lint.txt" if os.path.isfile(lint_output_file_name): os.remove(lint_output_file_name) if IS_DJANGO: django_bits = "--load-plugins pylint_django " else: django_bits = "" command_text = ( f"{PIPENV} pipenv run pylint {django_bits} " f"--rcfile=.pylintrc {PROJECT_NAME} " f"--output-format=parseable".strip().replace(" ", " ") ) print(command_text) command = shlex.split(command_text) with open(lint_output_file_name, "w") as outfile: env = config_pythonpath() subprocess.call(command, stdout=outfile, env=env) full_text = open(lint_output_file_name, "r").read() lint_did_indeed_run = "Your code has been rated at" in full_text fatal_errors = sum( 1 for line in open(lint_output_file_name) if "no-member" in line or "no-name-in-module" in line or "import-error" in line or ": E" in line or ": F" in line ) if fatal_errors > 0: for line in open(lint_output_file_name): if ( "no-member" in line or "no-name-in-module" in line or "import-error" in line or ": E" in line or ": F" in line ): print(line) message = f"Fatal lint errors : {fatal_errors}" if IS_GITLAB: with open(lint_output_file_name) as error_file: print(error_file.read()) say_and_exit(message, "lint") return message for line in [ line for line in open(lint_output_file_name) if not ( "*************" in line or "---------------------" in line or "Your code has been rated at" in line or line == "\n" ) ]: print(line) if total_loc() > SMALL_CODE_BASE_CUTOFF: cutoff = MAXIMUM_LINT else: cutoff = 0 num_lines = sum( 1 for line in open(lint_output_file_name) if not ( "*************" in line or "---------------------" in line or "Your code has been rated at" in line or line == "\n" ) ) if num_lines > cutoff: print(f"Too many lines of lint : {num_lines}, max {cutoff}") exit(-1) num_lines_all_output = sum(1 for _ in open(lint_output_file_name)) if not lint_did_indeed_run and num_lines_all_output == 0: # should always have at least 'found 0 errors' in output if os.path.isfile(lint_output_file_name): # force lint to re-run, because empty file will be missing os.remove(lint_output_file_name) print("No lint messages at all, did pylint fail to run or is it installed?") exit(-1) return "pylint succeeded"
2,369
def json_configs(type, name): """ Base method that extracts the configuration info from the json file defined in SETTINGS Args: type - the name of the type of configuration object to look in name - the name of the object whose configs will be extracted Returns: a dict containing the settings for the object of type and name Raises: a value error if type or name are not defined in the SETTINGS json file """ f = open(SETTINGS) configs = json.load(f)[type] f.close() if name not in configs: raise ValueError('Unable to find configuration for %s %s' % (type, name)) return configs[name]
2,370
def reload() -> bool: """Gracefully reloads uWSGI. * http://uwsgi.readthedocs.io/en/latest/Management.html#reloading-the-server """ return False
2,371
def predict_imagen(titulo=None, grados=None, ano_lanzamiento=None, paginas=None, codbarras=None): """ Predictor for Imagen from model/5a143f443980b50a74003699 Created using BigMLer """ import re tm_tokens = 'tokens_only' tm_full_term = 'full_terms_only' tm_all = 'all' def term_matches(text, field_name, term): """ Counts the number of occurences of term and its variants in text """ forms_list = term_forms[field_name].get(term, [term]) options = term_analysis[field_name] token_mode = options.get('token_mode', tm_tokens) case_sensitive = options.get('case_sensitive', False) first_term = forms_list[0] if token_mode == tm_full_term: return full_term_match(text, first_term, case_sensitive) else: # In token_mode='all' we will match full terms using equals and # tokens using contains if token_mode == tm_all and len(forms_list) == 1: pattern = re.compile(r'^.+\b.+$', re.U) if re.match(pattern, first_term): return full_term_match(text, first_term, case_sensitive) return term_matches_tokens(text, forms_list, case_sensitive) def full_term_match(text, full_term, case_sensitive): """Counts the match for full terms according to the case_sensitive option """ if not case_sensitive: text = text.lower() full_term = full_term.lower() return 1 if text == full_term else 0 def get_tokens_flags(case_sensitive): """Returns flags for regular expression matching depending on text analysis options """ flags = re.U if not case_sensitive: flags = (re.I | flags) return flags def term_matches_tokens(text, forms_list, case_sensitive): """ Counts the number of occurrences of the words in forms_list in the text """ flags = get_tokens_flags(case_sensitive) expression = r'(\b|_)%s(\b|_)' % '(\\b|_)|(\\b|_)'.join(forms_list) pattern = re.compile(expression, flags=flags) matches = re.findall(pattern, text) return len(matches) term_analysis = { "titulo": { "case_sensitive": False, "token_mode": 'all', }, } term_forms = { "titulo": { "fantásticos": ['fantásticos', 'fantásticas'], "gigante": ['gigante', 'gigantes'], }, } if (codbarras is None): return {"prediction": 1.82, "error": 5.53698} if (codbarras > 9789872414340): if (ano_lanzamiento is None): return {"prediction": 9, "error": 7.02326} if (ano_lanzamiento > 2008): if (paginas is None): return {"prediction": 10.5, "error": 5.88884} if (paginas > 90): if (titulo is None): return {"prediction": 9, "error": 5.08228} if (term_matches(titulo, "titulo", u"fantásticos") > 0): return {"prediction":8, "error":5.08228} if (term_matches(titulo, "titulo", u"fantásticos") <= 0): if (grados is None): return {"prediction": 9.5, "error": 5.26764} if (grados == "Elsa Pizzi"): return {"prediction":9, "error":5.26764} if (grados != "Elsa Pizzi"): return {"prediction":10, "error":5.26764} if (paginas <= 90): if (titulo is None): return {"prediction": 12, "error": 5.08228} if (term_matches(titulo, "titulo", u"gigante") > 0): return {"prediction":11, "error":5.08228} if (term_matches(titulo, "titulo", u"gigante") <= 0): if (grados is None): return {"prediction": 12.5, "error": 5.26764} if (grados == "Patricia Roggio"): return {"prediction":13, "error":5.26764} if (grados != "Patricia Roggio"): return {"prediction":12, "error":5.26764} if (ano_lanzamiento <= 2008): if (grados is None): return {"prediction": 6, "error": 5.08228} if (grados == "4°, 5°"): return {"prediction":7, "error":5.08228} if (grados != "4°, 5°"): if (grados == "5°, 6°"): return {"prediction":5, "error":5.26764} if (grados != "5°, 6°"): return {"prediction":6, "error":5.26764} if (codbarras <= 9789872414340): if (codbarras > 9789872414309): if (paginas is None): return {"prediction": 3, "error": 5.08228} if (paginas > 100): if (grados is None): return {"prediction": 2.5, "error": 5.26764} if (grados == "4°, 5°"): return {"prediction":2, "error":5.26764} if (grados != "4°, 5°"): return {"prediction":3, "error":5.26764} if (paginas <= 100): return {"prediction":4, "error":5.08228} if (codbarras <= 9789872414309): if (codbarras > 9789871989852): return {"prediction":1, "error":0.26071} if (codbarras <= 9789871989852): return {"prediction":0, "error":0.04286}
2,372
def traducir_texto(texto, lenguaje_destino): """ Permite traducir un texto de entrada. .. note:: Es importante tener en cuenta los siguientes aspectos al utilizar la \ función **traducir_texto**: * La función utiliza la librería googletrans, que hace uso de la API \ de Google Translate. Por lo tanto, se requiere tener una conexión \ a internet para su funcionamiento. * El límite máximo de caracteres en un solo texto es de 15.000. * Debido a las limitaciones de la versión web del traductor de Google,\ el uso de la API no garantiza que la librería funcione \ correctamente en todo momento. * Si desea utilizar una API estable, se recomienda el uso de la \ `API de traducción oficial de Google <https://cloud.google.com/translate/docs>`_. * Si recibe un error HTTP 5xx, probablemente se deba a que Google ha \ bloqueado su dirección IP. * Para mayor información puede consultar la \ `documentación de la librería googletrans <https://py-googletrans.readthedocs.io/en/latest/>`_. :param texto: Texto de entrada. :type texto: str :param lenguaje_destino: Indica el lenguaje al que desea traducir \ el texto. Para mayor información, consultar la sección de \ :ref:`Lenguajes soportados <seccion_lenguajes_soportados>`. :type lenguaje_destino: {'es', 'en', 'fr', 'ge'} :return: (str) Texto traducido. """ traductor = Translator() # Adecuar el lenguaje de destino al formato de la API lenguaje_destino = dict_lenguajes[lenguaje_destino] lenguaje_destino = dict_lenguajes_simplificado[lenguaje_destino] salida = traductor.translate(texto, dest=lenguaje_destino) if isinstance(texto, str): return salida.text else: return [i.text for i in salida]
2,373
def euler_to_axis_angle(roll: float, pitch: float, yaw: float) -> np.ndarray: """Converts Euler angle to Axis-angle format. Args: roll: rotation angle. pitch: up/down angle. yaw: left/right angle. Returns: Equivalent Axis-angle format. """ r = Rotation.from_euler('xyz', [roll, pitch, yaw]) return r.as_rotvec()
2,374
def predict(): """ An example of how to load a trained model and use it to predict labels. """ # load the saved model classifier = pickle.load(open('best_model.pkl')) # compile a predictor function predict_model = theano.function( inputs=[classifier.input], outputs=classifier.y_pred) # We can test it on some examples from test test dataset='mnist.pkl.gz' datasets = load_data(dataset) test_set_x, test_set_y = datasets[2] test_set_x = test_set_x.get_value() predicted_values = predict_model(test_set_x[:10]) print("Predicted values for the first 10 examples in test set:") print(predicted_values)
2,375
def test_sanitize_query_params_only_month(): """ GIVEN Empty year and correct month params. WHEN sanitize_query_params() fun is invoked. THEN Result is tuple with empty year and correct month. """ result = sanitize_query_params(year='', month='1') assert result == ('', '01')
2,376
def add_scalebar(axis, matchx=True, matchy=True, hidex=True, hidey=True, unitsx=None, unitsy=None, scalex=1.0, scaley=1.0, xmax=None, ymax=None, space=None, **kwargs): """ Add scalebars to axes Adds a set of scale bars to *ax*, matching the size to the ticks of the plot and optionally hiding the x and y axes - axis : the axis to attach ticks to - matchx,matchy : if True, set size of scale bars to spacing between ticks, if False, set size using sizex and sizey params - hidex,hidey : if True, hide x-axis and y-axis of parent - **kwargs : additional arguments passed to AnchoredScaleBars Returns created scalebar object """ def get_tick_size(subaxis): tick_size = None tick_locs = subaxis.get_majorticklocs() if len(tick_locs)>1: tick_size = np.abs(tick_locs[1] - tick_locs[0]) return tick_size if matchx: sizex = get_tick_size(axis.xaxis) if matchy: sizey = get_tick_size(axis.yaxis) if 'sizex' in kwargs: sizex = kwargs['sizex'] if 'sizey' in kwargs: sizey = kwargs['sizey'] def autosize(value, maxvalue, scale, n=1, m=10): round_to_n = lambda value, n, m: int(np.ceil(round(value, -int(np.floor(np.log10(abs(value)))) + (n - 1)) / m)) * m while value > maxvalue: try: value = round_to_n(0.8 * maxvalue * scale, n, m) / scale except: value /= 10.0 m /= 10.0 return value if ymax is not None and sizey>ymax: sizey = autosize(sizey, ymax, scaley) if xmax is not None and sizex>xmax: sizex = autosize(sizex, xmax, scalex) kwargs['sizex'] = sizex kwargs['sizey'] = sizey if unitsx is None: unitsx = '' if unitsy is None: unitsy = '' if 'labelx' not in kwargs or kwargs['labelx'] is None: kwargs['labelx'] = '%.3g %s'%(kwargs['sizex'] * scalex, unitsx) if 'labely' not in kwargs or kwargs['labely'] is None: kwargs['labely'] = '%.3g %s'%(kwargs['sizey'] * scaley, unitsy) # add space for scalebar if space is not None: ylim0, ylim1 = axis.get_ylim() ylim = (ylim0 - space, ylim1) if ylim0 > ylim1: # if y axis is inverted ylim = (ylim0 + space, ylim1) axis.set_ylim(ylim) scalebar = AnchoredScaleBar(axis, **kwargs) axis.add_artist(scalebar) if hidex: axis.xaxis.set_visible(False) if hidey: axis.yaxis.set_visible(False) if hidex and hidey: axis.set_frame_on(False) return scalebar
2,377
def test_cross_validate(): """Assert that the cross_validate method works as intended.""" atom = ATOMClassifier(X_bin, y_bin, random_state=1) atom.run("LR") assert isinstance(atom.lr.cross_validate(), dict) assert isinstance(atom.lr.cross_validate(scoring="AP"), dict)
2,378
def parse_args(): """Parse and enforce command-line arguments.""" try: options, args = getopt(sys.argv[1:], "l:dh", ["listen=", "debug", "help"]) except GetoptError as e: print("error: %s." % e, file=sys.stderr) print_usage() sys.exit(1) listen = {"host": "127.0.0.1", "port": "8080"} debug = False for option, value in options: if option in ("-h", "--help"): print_usage() sys.exit(0) elif option in ("-l", "--listen"): fields = value.split(":") listen = {"host": fields[0].strip(), "port": int(fields[1]) if len(fields) > 1 else "8080"} elif option in ("-d", "--debug"): debug = True return (listen, debug)
2,379
def test_status_no_total(monkeypatch): """ Have not created a job with .set_total() yet """ monkeypatch.setenv('WorkTopic', 'abc123') with patch('redis.StrictRedis', mock_strict_redis_client): with pytest.raises(JobDoesNotExist): RedisProgress().status('123')
2,380
def create_medoids_summary(season, country, result, d, names): """ Create cluster based summary of medoids' description Parameters: season: str, season sued to cluster country: str, used to cluster result: cluster resutls joint to customer features d: trajectory clustering results names: list of cluster names """ results_with_clusters=result[pd.notnull(result['cluster'])] season_name=seasons[season.lower()] num_visitors_thousand=calc_num_visitors_in_thousands(result) num_clusters=calc_num_clusters(d) summary_text=f"""In the last {season_name} roughly {num_visitors_thousand} thousand tourists visited Tuscany from {country.title()}. The data shows us {num_clusters} clusters. Each line in the graph above represents a cluster's typical path that tourists from {country.title()} followed. These paths are displayed as differently-coloured lines in the map here above. \n""" summary_text=summary_text+create_medoid_basic_description(results_with_clusters, names, num_clusters) print(summary_text) write_file(country, season, summary_text, 'summary') return summary_text
2,381
def backtest( strategy, data, # Treated as csv path is str, and dataframe of pd.DataFrame commission=COMMISSION_PER_TRANSACTION, init_cash=INIT_CASH, data_format="c", plot=True, verbose=True, sort_by="rnorm", **kwargs ): """ Backtest financial data with a specified trading strategy {0} """ # Setting inital support for 1 cpu # Return the full strategy object to get all run information cerebro = bt.Cerebro(stdstats=False, maxcpus=1, optreturn=False) cerebro.addobserver(bt.observers.Broker) cerebro.addobserver(bt.observers.Trades) cerebro.addobserver(bt.observers.BuySell) # Convert all non iterables and strings into lists kwargs = { k: v if isinstance(v, Iterable) and not isinstance(v, str) else [v] for k, v in kwargs.items() } cerebro.optstrategy( STRATEGY_MAPPING[strategy], init_cash=[init_cash], transaction_logging=[verbose], **kwargs ) # Apply Total, Average, Compound and Annualized Returns calculated using a logarithmic approach cerebro.addanalyzer(btanalyzers.Returns, _name="returns") cerebro.addanalyzer(btanalyzers.SharpeRatio, _name="mysharpe") cerebro.broker.setcommission(commission=commission) # Treat `data` as a path if it's a string; otherwise, it's treated as a pandas dataframe if isinstance(data, str): if verbose: print("Reading path as pandas dataframe ...") data = pd.read_csv(data, header=0, parse_dates=["dt"]) # If data has `dt` as the index, set `dt` as the first column # This means `backtest` supports the dataframe whether `dt` is the index or a column if data.index.name == "dt": data = data.reset_index() pd_data = bt.feeds.PandasData( dataname=data, **DATA_FORMAT_MAPPING[data_format] ) cerebro.adddata(pd_data) cerebro.broker.setcash(init_cash) # Allows us to set buy price based on next day closing # (technically impossible, but reasonable assuming you use all your money to buy market at the end of the next day) cerebro.broker.set_coc(True) if verbose: print("Starting Portfolio Value: %.2f" % cerebro.broker.getvalue()) # clock the start of the process tstart = time.time() stratruns = cerebro.run() # clock the end of the process tend = time.time() params = [] metrics = [] if verbose: print("==================================================") for stratrun in stratruns: if verbose: print("**************************************************") for strat in stratrun: p = strat.p._getkwargs() p = { k: v for k, v in p.items() if k not in ["periodic_logging", "transaction_logging"] } returns = strat.analyzers.returns.get_analysis() sharpe = strat.analyzers.mysharpe.get_analysis() # Combine dicts for returns and sharpe m = { **returns, **sharpe, "pnl": strat.pnl, "final_value": strat.final_value, } params.append(p) metrics.append(m) if verbose: print("--------------------------------------------------") print(p) print(returns) print(sharpe) params_df = pd.DataFrame(params) metrics_df = pd.DataFrame(metrics) # Get indices based on `sort_by` metric optim_idxs = np.argsort(metrics_df[sort_by].values)[::-1] sorted_params_df = params_df.iloc[optim_idxs].reset_index(drop=True) sorted_metrics_df = metrics_df.iloc[optim_idxs].reset_index(drop=True) sorted_combined_df = pd.concat( [sorted_params_df, sorted_metrics_df], axis=1 ) # print out the result print("Time used (seconds):", str(tend - tstart)) # Save optimal parameters as dictionary optim_params = sorted_params_df.iloc[0].to_dict() optim_metrics = sorted_metrics_df.iloc[0].to_dict() print("Optimal parameters:", optim_params) print("Optimal metrics:", optim_metrics) if plot: has_volume = DATA_FORMAT_MAPPING[data_format]["volume"] is not None # Plot only with the optimal parameters when multiple strategy runs are required if params_df.shape[0] == 1: # This handles the Colab Plotting # Simple Check if we are in Colab try: from google.colab import drive iplot=False except: iplot=True cerebro.plot(volume=has_volume, figsize=(30, 15), iplot=iplot) else: print("=============================================") print("Plotting backtest for optimal parameters ...") backtest( strategy, data, # Treated as csv path is str, and dataframe of pd.DataFrame commission=commission, data_format=data_format, plot=plot, verbose=verbose, sort_by=sort_by, **optim_params ) return sorted_combined_df
2,382
def mapflatdeep(iteratee, *seqs): """ Map an `iteratee` to each element of each iterable in `seqs` and recurisvely flatten the results. Examples: >>> list(mapflatdeep(lambda n: [[n, n]], [1, 2])) [1, 1, 2, 2] Args: iteratee (object): Iteratee applied per iteration. *seqs (Iterable): Iterables to iterate over. Yields: Elements result from recursive flatten + map operations. """ return flattendeep(map(iteratee, *seqs))
2,383
def eHealthClass_getSkinConductanceVoltage(): """eHealthClass_getSkinConductanceVoltage() -> float""" return _ehealth.eHealthClass_getSkinConductanceVoltage()
2,384
def construct_item(passage: str, labels): """ 根据输入的passage和labels构建item, 我在巴拉巴拉... ['B-ASP', 'I-ASP', 'I-ASP', 'I-ASP', ..., 'I-OPI', 'I-OPI', 'O'] 构造结果示例如下: { 'passage': '使用一段时间才来评价,淡淡的香味,喜欢!', 'aspect': [['香味', 14, 16]], 'opinion': [['喜欢', 17, 19]] } :return: """ assert len(passage) == len(labels) aspects, opinions = [], [] for i, char, label in zip(range(len(passage)), passage, labels): if label == "O": continue elif label.startswith("B"): if label.endswith("ASP"): aspects.append([char, i]) elif label.endswith("OPI"): opinions.append([char, i]) else: raise Exception("label must be in set {'B-ASP', 'I-ASP', 'B-OPI', 'I-OPI', 'O'}.") elif label.endswith("ASP"): if (i==0 or not labels[i-1].endswith("ASP")): aspects.append([char, i]) else: aspects[-1][0] += char elif label.endswith("OPI"): if (i==0 or not labels[i-1].endswith("OPI")): opinions.append([char, i]) else: opinions[-1][0] += char else: raise Exception("label must be in set {'B-ASP', 'I-ASP', 'B-OPI', 'I-OPI', 'O'}.") aspects = [[aspect[0], aspect[1], aspect[1]+len(aspect[0])] for aspect in aspects] opinions = [[opinion[0], opinion[1], opinion[1] + len(opinion[0])] for opinion in opinions] result = { "passage": passage, "aspects": aspects, "opinions": opinions } return result
2,385
def for_b(): """ *'s printed in the Shape of Small b """ for row in range(9): for col in range(6): if col ==0 or row in (4,8) and col !=5 or row in (5,6,7) and col ==5: print('*',end=' ') else: print(' ',end=' ') print()
2,386
def close_client(client): """Saves the recoded responses to a temp file if the config file allows. This should be called in the unit test's tearDown method. Checks to see if settings.CACHE_RESPONSES is True, to make sure we only save sessions to repeat if the user desires. """ if client and settings.CACHE_RESPONSES: # If this was a live request, save the recording. client.http_client.close_session()
2,387
def getStartingAddress(packet): """Get the address of a modbus request""" return ((ord(packet[8]) << 8) + ord(packet[9]))
2,388
def rf_local_unequal(left_tile_col, rhs: Union[float, int, Column_type]) -> Column: """Cellwise inequality comparison between two tiles, or with a scalar value""" if isinstance(rhs, (float, int)): rhs = lit(rhs) return _apply_column_function('rf_local_unequal', left_tile_col, rhs)
2,389
def save_dump_to_file(dump): """ Saves dump information and activities in csv files. """ assert isinstance(dump, Dump) with open("dumps.csv", "a") as dumps_file: dumps_file.write(dump.to_csv()) dumps_file.write("\n") print("Saved {0} activities between {1} and {2}...".format( len(dump.activities), dump.from_datetime.isoformat(" "), dump.to_datetime.isoformat(" ")))
2,390
def get_normalized_star_spectrum(spectral_type, magnitude, filter_name): """ spec_data = get_normalized_star_spectrum(spectral_type, magnitude, filter_name) Returns a structure containing the synthetic spectrum of the star having the spectral type and magnitude in the specified input filter. Magnitude is in VEGAMAG-F(lambda) system. Spectra are from PICKLES, PASP, 110, 863 (1998) Absolute flux spectra, no effect of atmospheric and instrument transmission Parameters ---------- r0AtZenith: float overall r0 at zenith [m] spectral_type: string. spectral type and luminosity class (e.g. G2V or M4III) or 'vega' magnitude: float. magnitude in the filter_name filter filter_name: string. Name of the filter. See Filters.get() for the list of available filters Returns ------- spectrum: synphot.SourceSpectrum object defining the spectrum Examples -------- Plot the spectrum of a vega, A0V, G2V stars of mag=8 defined on JohnsonR filter >>> sp= get_normalized_star_spectrum('vega', 8, Filters.JOHNSON_R) >>> spA0V= get_normalized_star_spectrum('A0V', 8, Filters.JOHNSON_R) >>> spG2V= get_normalized_star_spectrum('G2V', 8, Filters.JOHNSON_R) >>> plt.plot(sp.waveset, sp(sp.waveset), label='Vega') >>> plt.plot(spA0V.waveset, spA0V(spA0V.waveset), label='A0V') >>> plt.plot(spG2V.waveset, spG2V(spG2V.waveset), label='G2V') >>> plt.grid(True) >>> plt.xlabel('nm') >>> plt.ylabel('FLAM') >>> plt.xlim(0, 10000) >>> plt.legend() """ # read the sourcespectrum if spectral_type == 'vega': spectrum = SourceSpectrum.from_vega() else: spectrum = SourceSpectrum.from_file( PickelsLibrary.filename(spectral_type)) bandpass = Filters.get(filter_name) spectrum_norm = spectrum.normalize( magnitude * synphot.units.VEGAMAG, bandpass, vegaspec=SourceSpectrum.from_vega()) return spectrum_norm
2,391
def header(**kwargs): """ Create header node and return it. Equivalent to :code:`return Element("header", attributes...)`. """ return Element("header", **kwargs)
2,392
def bump_func(xs_arg, low, high, btype): """ Setup initial displacement distribution of a bump, either sine or triangular. """ # check the case of a single float as input if isinstance(xs_arg, (int, float)): xs_in = np.array([float(xs_arg)]) scalar = True else: xs_in = xs_arg scalar = False Ys_out = 0.0 * xs_in mid = (low + high) / 2.0 diff = high - low for i in range(0, len(Ys_out)): if ((xs_in[i] > low) and (xs_in[i] < high)): if (btype == 1): # triangle shape Ys_out[i] = 1.0 - abs((xs_in[i] - mid) / (0.5 * diff)) else: # sine bump Ys_out[i] = ( 1.0 + m.cos(2. * m.pi / diff * (xs_in[i] - mid))) / 2. if scalar is True: return Ys_out[0] else: return Ys_out
2,393
def main(debug_function: bool = False): """ the main function for the script """ # region def main(...): # region debug_function if debug_function: print("[def] sort_by_number_of_videos_and_size.main()") print("{") # endregion current_directory_path = os.getcwd() # region debug_function if debug_function: print("> current_directory_path : \n (type) {0} = \n{1}"\ .format(type(current_directory_path), str(current_directory_path))) print() # endregion all_files_and_folders = os.listdir(current_directory_path) # region debug_function if debug_function: print("> all_files_and_folders:") for index, item in enumerate(all_files_and_folders): print("> all_files_and_folders[{0}] :\n (type) {1} = \n {2}" \ .format(str(index), type(item), str(item))) # print() print() # endregion only_folders : list = [] for item in all_files_and_folders: if is_folder(item): only_folders.append(item) ... # region debug_function if debug_function: print("> only_folders:") for index, item in enumerate(only_folders): print("> only_folders[{0}] :\n (type) {1} = \n {2}" \ .format(str(index), type(item), str(item))) # print() print() # endregion for folder in only_folders: process_folder(current_directory_path, folder, debug_function=True) ... # region debug_function if debug_function: print("}") # endregion ...
2,394
def set_kallisto_binary_path(path): """Helper function to set the KALLISTO_PATH variable. Automatically finds the full path to the executable and sets that as KALLISTO_PATH. """ global KALLISTO_PATH shutil_path = shutil.which(path) actual_path = None # First, check if it is an executable in the user's PATH if shutil_path: actual_path = os.path.abspath(shutil_path) elif os.path.isfile(path): actual_path = os.path.abspath(path) else: raise Exception(f'Unable to resolve path {path}') # Check that it is executable if not os.access(actual_path, os.X_OK): raise NotExecutableException(f'{actual_path} is not executable') KALLISTO_PATH = actual_path
2,395
def setup_session(username, password, check_url=None, session=None, verify=True): """ A special call to get_cookies.setup_session that is tailored for URS EARTHDATA at NASA credentials. """ if session is not None: # URS connections cannot be kept alive at the moment. session.headers.update({'Connection': 'close'}) session = get_cookies.setup_session('https://urs.earthdata.nasa.gov', username=username, password=password, session=session, check_url=check_url, verify=verify) return session
2,396
def is_number(item): """Check if the item is a number.""" return isinstance(item, numbers.Number)
2,397
def from_list(commands): """ Given a list of tuples of form (depth, text) that represents a DFS traversal of a command tree, returns a dictionary representing command tree. """ def subtrees(commands, level): if not commands: return acc = [] parent, *commands = commands for command in commands: if command["level"] > level: acc.append(command) else: yield (parent, acc) parent = command acc.clear() yield (parent, acc) def walk(commands, level=0): return [ { "description": key["description"], "children": walk(subtree, level + 1), "id": key["id"], } for key, subtree in subtrees(commands, level) ] return walk(commands)
2,398
def get_cassandra_config_options(config): """Parse Cassandra's Config class to get all possible config values. Unfortunately, some are hidden from the default cassandra.yaml file, so this appears the only way to do this.""" return _get_config_options(config=config, config_class='org.apache.cassandra.config.Config')
2,399