content
stringlengths 22
815k
| id
int64 0
4.91M
|
---|---|
def columns_not_changed(df, col_to_keep):
"""
insert the clean columns as features without changing the columns
:param df: dataframe
:param col_to_keep: columns that are clean and should not be changed
:return unchanged columns plus SK_ID_CURR
"""
df = df.loc[:, ['SK_ID_CURR'] + col_to_keep]
df.loc[df.DAYS_ID_PUBLISH > 0, :] = np.nan
col_to_turn_positive = ['DAYS_BIRTH', 'DAYS_EMPLOYED', 'DAYS_REGISTRATION', 'DAYS_ID_PUBLISH']
df[col_to_turn_positive] = df[col_to_turn_positive].abs()
return df | 1,200 |
def removeRestaurantFromList(update: Update, context: CallbackContext) -> int:
"""Removes the current restaurant from the current preferred list."""
query = update.callback_query
query.answer()
# Removing the restaurant from the list in the database
removeRestaurantFromListDb(
context.chat_data.get("current_list_restaurants").restaurants.current.id,
context.chat_data.get("current_list_restaurants").id,
)
# Removing the restaurant even from the local list
context.chat_data.get("current_list_restaurants").restaurants.remove()
# Sending a message of success and displaying back the updated list.
context.bot.edit_message_text(
chat_id=update.effective_chat.id,
message_id=context.chat_data.get("fav_list_message_id"),
text=getString(
"GENERAL_RestaurantRemovedFromFavList", context.chat_data.get("lang")
),
)
# Sending a new empty message which will be overwritten immediately by going back to the RESTAURANT_INFOS_DISPLAY state.
newId = context.bot.send_message(
chat_id=update.effective_chat.id, text="_"
).message_id
# Storing the new id which will be used from now on to modify the message.
context.chat_data.update({"fav_list_message_id": newId})
return showCurrentFavRestaurant(update, context) | 1,201 |
def _process_null(_):
"""
Placeholder for an efficient replacement for when no columns of a
`WaveformReducer` are activated.
"""
return dict() | 1,202 |
def GenerateRst(proto_file):
"""Generate a RST representation from a FileDescriptor proto."""
source_code_info = SourceCodeInfo(proto_file.name, proto_file.source_code_info)
# Find the earliest detached comment, attribute it to file level.
# Also extract file level titles if any.
header, comment = FormatHeaderFromFile('=', source_code_info.file_level_comment, proto_file.name)
package_prefix = NormalizeFQN('.' + proto_file.package + '.')[:-1]
package_type_context = TypeContext(source_code_info, package_prefix)
msgs = '\n'.join(
FormatMessage(package_type_context.ExtendMessage(index, msg.name), msg)
for index, msg in enumerate(proto_file.message_type))
enums = '\n'.join(
FormatEnum(package_type_context.ExtendEnum(index, enum.name), enum)
for index, enum in enumerate(proto_file.enum_type))
debug_proto = FormatProtoAsBlockComment(proto_file)
return header + comment + msgs + enums # + debug_proto | 1,203 |
def make_padded_batch(items):
"""
Pads sequences in a batch, so they are all the same length as the longest.
"""
max_len = max(len(d["input_ids"]) for d in items)
if max_len == 0:
return {k: torch.zeros((0, 0), dtype=torch.long) for k in items[0]}
return {
k: pad_sequence([d[k] for d in items if len(d["input_ids"])], batch_first=True)
for k, v in items[0].items()
} | 1,204 |
def hlmlEventSetCreate() -> hlml_t.HLML_EVENT_SET.TYPE:
""" Create an empty set of events
Parameters: None.
Returns:
st (HLML_EVENT_SET) - An empty set of events.
"""
global _hlmlOBJ
st = hlml_t.HLML_EVENT_SET.TYPE
fn = _hlmlOBJ.get_func_ptr("hlml_event_set_create")
ret = fn(ctypes.byref(st))
check_return(ret)
return st | 1,205 |
def is_ip_addr(value):
"""
Check that the supplied value is an Internet Protocol address, v.4,
represented by a dotted-quad string, i.e. '1.2.3.4'.
>>> vtor.check('ip_addr', '1 ')
'1'
>>> vtor.check('ip_addr', ' 1.2')
'1.2'
>>> vtor.check('ip_addr', ' 1.2.3 ')
'1.2.3'
>>> vtor.check('ip_addr', '1.2.3.4')
'1.2.3.4'
>>> vtor.check('ip_addr', '0.0.0.0')
'0.0.0.0'
>>> vtor.check('ip_addr', '255.255.255.255')
'255.255.255.255'
>>> vtor.check('ip_addr', '255.255.255.256')
Traceback (most recent call last):
VdtValueError: the value "255.255.255.256" is unacceptable.
>>> vtor.check('ip_addr', '1.2.3.4.5')
Traceback (most recent call last):
VdtValueError: the value "1.2.3.4.5" is unacceptable.
>>> vtor.check('ip_addr', '1.2.3. 4')
Traceback (most recent call last):
VdtValueError: the value "1.2.3. 4" is unacceptable.
>>> vtor.check('ip_addr', 0)
Traceback (most recent call last):
VdtTypeError: the value "0" is of the wrong type.
"""
if not isinstance(value, StringTypes):
raise VdtTypeError(value)
value = value.strip()
try:
dottedQuadToNum(value)
except ValueError:
raise VdtValueError(value)
return value | 1,206 |
async def do_work(number):
"""
# 此方法在调用时不会立即被执行,而是返回一个协程对象
:param number:
:return:
"""
print('Number:', number) | 1,207 |
def batchEuclid (features, patterns, knowledge):
"""
Classifies whole dataset via euclidean distance. Returns score.
"""
dists = euclidean_distances (knowledge, features)
preds = np.array (dists).argmin (axis = 0)
truthVector = (preds.T.astype (float) == patterns)
pos = truthVector.sum ()
score = pos / features.shape[0]
return score | 1,208 |
def upload_plans_for_template(request):
"""
Allow user to upload a csv file to create plans based on a previously selected template
"""
ctxd = {}
context = RequestContext(request, ctxd)
return render_to_response("rundb/plan/modal_batch_planning_upload.html", context_instance=context) | 1,209 |
def calculate_total_correlativity(coefficient_array):
""" Returns the total correlativity of the coefficient_array. The total
correlativity is the sum of the absolute values and a measure of how
correlated to timeseries are. The greater the value the more correlated."""
return sum(map(abs, coefficient_array)) | 1,210 |
def merge_by_name(out_file_name, in_file_names):
""" Merge name-sorted bam files into bam file sorted by name"""
args = ['samtools', 'merge', '-n', out_file_name]
args.extend(in_file_names)
log_subprocess.check_call(args) | 1,211 |
def test_execute_command():
"""
Execute "SELECT 1;"
Assert:
A result of 1 is returned
"""
cur = create_connection(host=host, port=port, user=usr, password=paswd, db=db)
assert type(cur) == pymysql.cursors.Cursor
stmt = "SELECT 1"
result = execute_command(cur, stmt)
assert result[0][0] == 1 | 1,212 |
def mosmix_example():
"""Retrieve Mosmix mosmix data by DWD."""
# A. MOSMIX-L -- Specific stations_result - each station with own file
Settings.tidy = True
Settings.humanize = True
request = DwdMosmixRequest(
parameter=["DD", "ww"],
start_issue=DwdForecastDate.LATEST, # automatically set if left empty
mosmix_type=DwdMosmixType.LARGE,
)
stations = request.filter_by_station_id(
station_id=["01001", "01008"],
)
response = next(stations.values.query())
# meta data enriched with information from metadata_for_forecasts()
output_section("Metadata", response.stations.df)
output_section("Forecasts", response.df)
# B. MOSMIX-S -- All stations_result - specified stations_result are extracted.
request = DwdMosmixRequest(
parameter=["DD", "ww"],
start_issue=DwdForecastDate.LATEST, # automatically set if left empty
mosmix_type=DwdMosmixType.SMALL,
)
stations = request.filter_by_station_id(
station_id=["01001", "01008"],
)
response = next(stations.values.query())
output_section("Metadata", response.stations.df)
output_section("Forecasts", response.df) | 1,213 |
def hide_topic(topic_id: TopicID, moderator_id: UserID) -> BoardTopicHidden:
"""Hide the topic."""
topic = _get_topic(topic_id)
moderator = _get_user(moderator_id)
now = datetime.utcnow()
topic.hidden = True
topic.hidden_at = now
topic.hidden_by_id = moderator.id
db.session.commit()
aggregate_topic(topic)
topic_creator = _get_user(topic.creator_id)
return BoardTopicHidden(
occurred_at=now,
initiator_id=moderator.id,
initiator_screen_name=moderator.screen_name,
board_id=topic.category.board_id,
topic_id=topic.id,
topic_creator_id=topic_creator.id,
topic_creator_screen_name=topic_creator.screen_name,
topic_title=topic.title,
moderator_id=moderator.id,
moderator_screen_name=moderator.screen_name,
url=None,
) | 1,214 |
def shell():
"""
Starts an interactive shell with app object imported.
"""
# Local vars defined/imported will be available in shells global scope
import IPython
from app.main import app
IPython.embed() | 1,215 |
def argmax(a, axis=None, out=None):
""" Returns the indices of the maximum values along an axis.
Parameters
----------
a: array_like
axis: int, optional
By default, the index is into the flattened array, otherwise along the specified axis.
out: numpy.array, optional
If provided, the result will be inserted into this array. It should be of the appropriate shape and dtype.
Returns
-------
numpy.ndarray[int]"""
a = a.data if isinstance(a, Tensor) else a
return np.argmax(a, axis, out) | 1,216 |
def FlowBalance_rule(model, node):
"""Ensures that flows into and out of a node are equal
"""
return model.Supply[node] \
+ sum(model.Flow[i, node] for i in model.NodesIn[node]) \
- model.Demand[node] \
- sum(model.Flow[node, j] for j in model.NodesOut[node]) \
== 0 | 1,217 |
def evaluate_perfs(num_images, duration):
"""
Calculate and print the inference duration.
"""
#fps = float(num_images / duration)
#print("Throughput=%.2f fps, total frames = %.0f , time=%.4f seconds" %(fps, num_images, duration))
print("Duration = %.2f ms" %(duration * 1000)) | 1,218 |
def test_config_merging_missing():
"""
If we have set a boolean value in the TOML file, but not on the CLI, we
want the TOML value to be taken.
"""
toml = StringIO(
dedent(
"""\
[tool.vulture]
verbose = true
ignore_names = ["name1"]
"""
)
)
cliargs = [
"cli_path",
]
result = make_config(cliargs, toml)
assert result["verbose"] is True
assert result["ignore_names"] == ["name1"] | 1,219 |
def abcd(actual, predicted, distribution, as_percent=True):
"""
Confusion Matrix:
|`````````````|`````````````|
| TN[0][0] | FP[0][1] |
| | |
|`````````````|`````````````|
| FN[1][0] | TP[1][1] |
| | |
`````````````````````````````
"""
c_mtx = confusion_matrix(actual, predicted)
"Probablity of Detection: Pd"
try:
p_d = c_mtx[1][1] / (c_mtx[1][1] + c_mtx[1][0]) # TP/(TP+FN)
except ZeroDivisionError:
p_d = 0
"Probability of False Alarm: Pf"
try:
p_f = c_mtx[0][1] / (c_mtx[0][1] + c_mtx[0][0]) # FP/(FP+TN)
except ZeroDivisionError:
p_f = 0
"Precision"
try:
p_r = c_mtx[1][1] / (c_mtx[1][1] + c_mtx[0][1]) # TP/(TP+FP)
if not np.isfinite(p_r): p_r = 0
except ZeroDivisionError:
p_r = 0
"Recall (Same as Pd)"
r_c = p_d
"F1 measure"
try:
f1 = 2 * c_mtx[1][1] / (2 * c_mtx[1][1] + c_mtx[0][1] + 1 * c_mtx[1][0]) # F1 = 2*TP/(2*TP+FP+FN)
except ZeroDivisionError:
f1 = 0
e_d = 2 * p_d * (1 - p_f) / (1 + p_d - p_f)
g = np.sqrt(p_d - p_d * p_f) # Harmonic Mean between True positive rate and True negative rate
try:
auroc = round(roc_auc_score(actual, distribution), 2)
except ValueError:
auroc = 0
if as_percent is True:
return p_d * 100, p_f * 100, p_r * 100, r_c * 100, f1 * 100, e_d * 100, g * 100, auroc * 100
else:
return p_d, p_f, p_r, r_c, f1, e_d, g, auroc | 1,220 |
def get_gene_name(protein_id, web_fallback=True):
"""Return the gene name for the given UniProt ID.
This is an alternative to get_hgnc_name and is useful when
HGNC name is not availabe (for instance, when the organism
is not homo sapiens).
Parameters
----------
protein_id : str
UniProt ID to be mapped.
web_fallback : Optional[bool]
If True and the offline lookup fails, the UniProt web service
is used to do the query.
Returns
-------
gene_name : str
The gene name corresponding to the given Uniprot ID.
"""
try:
gene_name = uniprot_gene_name[protein_id]
# There are cases when the entry is in the resource
# table but the gene name is empty. Often this gene
# name is actually available in the web service RDF
# so here we return only if the gene name is not None
# and not empty string.
if gene_name:
return gene_name
except KeyError:
pass
if not web_fallback:
return None
g = query_protein(protein_id)
if g is None:
return None
query = rdf_prefixes + """
SELECT ?name
WHERE {
?gene a up:Gene .
?gene skos:prefLabel ?name .
}
"""
res = g.query(query)
if res:
gene_name = [r for r in res][0][0].toPython()
if not gene_name:
return None
return gene_name
return None | 1,221 |
def AddEventTypePositionalArg(parser):
"""Adds event type positional arg."""
parser.add_argument(
'event_type',
help='Type of event (e.g. com.google.gc.object.finalize).') | 1,222 |
def summarize():
""" Returns summary of articles """
if request.method == 'POST':
url = request.form['pageurl']
parser = HtmlParser.from_url(url, Tokenizer(LANGUAGE))
stemmer = Stemmer(LANGUAGE)
summarizer = Summarizer(stemmer)
summarizer.stop_words = get_stop_words(LANGUAGE)
final = []
for sentence in summarizer(parser.document, SENTENCES_COUNT):
final.append(str(sentence))
return render_template('result.html', len=len(final), summary=final) | 1,223 |
def _env_constructor(loader, node):
"""
Replaces environment variables in YAML file
"""
value = loader.construct_scalar(node)
for group in env_pattern.findall(value):
try:
value = value.replace(f"${{{group}}}", os.environ.get(group))
except TypeError as error:
print(
f"An error occured while parsing YAML file:\n\n\tENV variable {group} not set\n"
)
raise Exception(f"ENV variable {group} not set") from error
return value | 1,224 |
def version(include_copyright=False):
"""Get the version number of ``ssocr``.
Equivalent of running: ``ssocr --version``
Parameters
----------
include_copyright : :class:`bool`, optional
Whether to include the copyright information.
Returns
-------
:class:`str`
The version number (and possibly copyright information).
"""
out = _run([ssocr_exe, '--version'])
if include_copyright:
return out
return out.splitlines()[0].split()[-1] | 1,225 |
def intersection(n: np.ndarray,
d: float,
A: np.ndarray,
b: np.ndarray) -> List[np.ndarray]:
"""Return the intersection of the plane and convex ployhedron.
Returns a list of points which define the intersection between the plane
nx = d and the convex ployhedron defined by linear inequalities Ax <= b.
Args:
n (np.ndarray): Normal vector of the plane.
d (np.ndarray): Offset (or distance) vector of the plane.
A (np.ndarray): LHS coefficents defining the linear inequalities.
b (np.ndarray): RHS constants defining the linear inequalities.
Returns:
List[np.ndarray]: List of vertices defining the intersection (if any).
Raises:
ValueError: Normal vector must be length 3.
ValueError: Matrix A must be of shape (n,3).
"""
if len(n) != 3:
raise ValueError('Normal vector must be length 3.')
if len(A[0]) != 3:
raise ValueError('Matrix A must be of shape (n,3).')
pts = []
n_d = np.hstack((n,d))
A_b = np.hstack((A,b))
for indices in itertools.combinations(range(len(A)),2):
R_c = np.vstack((n,A[list(indices)]))
R_d = np.vstack((n_d,A_b[list(indices)]))
if np.linalg.matrix_rank(R_c) == 3 and np.linalg.matrix_rank(R_d) == 3:
det = np.linalg.det(R_c)
if det != 0:
x_1 = np.linalg.det(R_d[:,[3,1,2]])/det
x_2 = np.linalg.det(R_d[:,[0,3,2]])/det
x_3 = np.linalg.det(R_d[:,[0,1,3]])/det
x = np.array([[x_1],[x_2],[x_3]])
if all(np.matmul(A,x) <= b + 1e-10):
pts.append(np.round(x, 10))
return pts | 1,226 |
def create_session(checkpoint_path, target_device):
"""Create ONNX runtime session"""
if target_device == 'GPU':
providers = ['CUDAExecutionProvider']
elif target_device == 'CPU':
providers = ['CPUExecutionProvider']
else:
raise ValueError(
f'Unsupported target device {target_device}, '
f'Expected one of: "CPU", "GPU"'
)
session = ort.InferenceSession(checkpoint_path, providers=providers)
input_names = [x.name for x in session.get_inputs()]
return session, input_names | 1,227 |
def V_eN_int(cgf_1, cgf_2, mol):
"""
Compute electron-nuclear integral between two contracted gaussian functions.
"""
v = 0
for i, _ in enumerate(cgf_1.alpha):
for j, _ in enumerate(cgf_2.alpha):
for k in range(mol.num_atoms):
v += cgf_1.co[i] * cgf_2.co[j] * potential((cgf_1.alpha[i], cgf_1.coordinate),
(cgf_2.alpha[j], cgf_2.coordinate),
mol.coordinates[k], mol.charges[k])
return v | 1,228 |
def create_subword_vocab(input_data,
subword_size):
"""create subword vocab from input data"""
def generate_subword(word,
subword_size):
"""generate subword for word"""
subwords = []
chars = list(word)
char_length = len(chars)
for i in range(char_length-subword_size+1):
subword = ''.join(chars[i:i+subword_size])
subwords.append(subword)
return subwords
subword_vocab_lookup = {}
for sentence in input_data:
words = sentence.strip().split(' ')
for word in words:
word_vocabs = [word, word.lower(), word.capitalize(), word.upper()]
for word_vocab in word_vocabs:
subword_vocabs = generate_subword(word_vocab, subword_size)
for subword_vocab in subword_vocabs:
if subword_vocab not in subword_vocab_lookup:
subword_vocab_lookup[subword_vocab] = 1
else:
subword_vocab_lookup[subword_vocab] += 1
return subword_vocab_lookup | 1,229 |
def main() -> None:
"""Create a map of nodes with available SSH connection."""
map_ssh = folium.Map(location=[45.523, -122.675], zoom_start=2)
with open("lib/base_data.txt") as tsv:
for row in csv.reader(tsv, delimiter="\t"):
name = row[0]
try:
x = float(row[1])
y = float(row[2])
folium.Marker([x, y], popup=name).add_to(map_ssh)
except ValueError:
pass
map_ssh.save("map_ssh.html") | 1,230 |
def request_json(input_data):
"""Request JSON data from full node, given request data input.
More info: http://docs.python-requests.org/en/master/"""
requested_data = None # Prevent no state if all servers fail!
for full_node_url in full_node_list_http:
try:
requested_data = requests.get(full_node_url, data=input_data)
except requests.exceptions.ConnectionError as err:
print("...")
print("Error: {}".format(full_node_url))
print(err)
print("...")
continue
if requested_data.status_code is not 200:
# Fail! Move onto the next URL!
print("./\/\/\.")
print("Not online: {}".format(full_node_url))
print(".\/\/\/.")
continue
else:
print("---")
print("Online: {}".format(full_node_url))
print(requested_data)
num_workers = json.loads(json.dumps(requested_data.text))
print(num_workers)
print("===")
continue
return requested_data | 1,231 |
def rrange(x, y = 0):
""" Creates a reversed range (from x - 1 down to y).
Example:
>>> rrange(10, 0) # => [9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
"""
return range(x - 1, y - 1, -1) | 1,232 |
def registry_auth_gcloud(deployment, project, service_key):
"""
Setup GCR authentication with a service_key
This changes *global machine state* on where docker can push to!
"""
encrypted_service_key_path = os.path.join(
'deployments', deployment, 'secrets', service_key
)
with decrypt_file(encrypted_service_key_path) as decrypted_service_key_path:
subprocess.check_call([
'gcloud', 'auth',
'activate-service-account',
'--key-file', os.path.abspath(decrypted_service_key_path)
])
subprocess.check_call([
'gcloud', 'auth', 'configure-docker'
])
yield | 1,233 |
def einsum_outshape(subscripts, *operants):
"""Compute the shape of output from `numpy.einsum`.
Does not support ellipses.
"""
if "." in subscripts:
raise ValueError(f"Ellipses are not supported: {subscripts}")
insubs, outsubs = subscripts.replace(",", "").split("->")
if outsubs == "":
return ()
insubs = np.array(list(insubs))
innumber = np.concatenate([op.shape for op in operants])
outshape = []
for o in outsubs:
indices, = np.where(insubs == o)
try:
outshape.append(innumber[indices].max())
except ValueError:
raise ValueError(f"Invalid subscripts: {subscripts}")
return tuple(outshape) | 1,234 |
def random_points(region, color="00FFFF", points=100, seed=0):
"""Generates a specified number of random points inside a given area.
Args: region(feature): region to generate points
color(color code): default is red, I think
points(numeric): how many points do you want? Default is 100
seed:(numeric): default is 0
Returns: a feature collection of locations
"""
if not isinstance(region, ee.Geometry):
err_str = "\n\nThe region of interest must be an ee.Geometry."
raise AttributeError(err_str)
color = "000000"
if color is None:
color = "00FFFF"
if points is None:
points = 100
points_rand = ee.FeatureCollection.randomPoints(
region=region, points=points, seed=seed
)
return points_rand | 1,235 |
def test_init_smart_sleep_mode():
"""Test that the new state array is populated correctly."""
const = get_const("1.4")
sensor_id = 1
sensor = Sensor(sensor_id)
sensor.add_child_sensor(0, const.Presentation.S_LIGHT_LEVEL)
sensor.add_child_sensor(1, const.Presentation.S_LIGHT_LEVEL)
assert not sensor.new_state
sensor.init_smart_sleep_mode()
assert 0 in sensor.new_state
assert isinstance(sensor.new_state[0], ChildSensor)
assert 1 in sensor.new_state
assert isinstance(sensor.new_state[1], ChildSensor) | 1,236 |
def GridSearch(X_train_df, Y_train_df, hps_NaN_dict, features_l,
hps_models_dict, cv=5, n_jobs=-1, randomise=True):
"""Launch a grid search over different value of the hps."""
# Compute all the possible combinations of hps
tuples_hp = BuildHpTuples(X_train_df, hps_NaN_dict,
features_l, hps_models_dict)
# Creates dataframe in which all results will be stored
# (allows early stopping of grid search)
pd_res_df = pd.DataFrame()
# Executes a Cross Validation for all possible tuples
scores_param = []
# Randomisation of the tuples
if randomise:
np.random.shuffle(tuples_hp)
for tuple_i in tqdm(tuples_hp):
[best_score, best_params_n,
best_params_v, pd_res_df] = subGridSearch(X_train_df, Y_train_df,
tuple_i,
pd_res_df, cv=cv,
n_jobs=n_jobs)
results = (best_score, best_params_n, best_params_v)
scores_param.append(results)
# Extract best scores and parameters
maxi = 0
best_params_names = 0
best_params_values = 0
for sublist in scores_param:
if sublist[0] > maxi:
maxi = sublist[0]
best_params_names = sublist[1]
best_params_values = sublist[2]
# Return result
return maxi, best_params_names, best_params_values | 1,237 |
def atm():
"""Fixture to compute atmospheric properties just once before tests.
Returns:
Atmosphere object
"""
return Atmosphere(h_geom_truth_arr) | 1,238 |
def toPaf(inputFile, fileformat):
"""
This function converts the file (input) into a Preference-based Argumentation Framework.
Here the PAF is represented by one set and 3 dictionnaries:
- the set contains the arguments
- the first dictionnary contains the attacks from an argument a to another
- the second one is filled with the opposite relation, it is used to go faster when searching 'who is attacking this argument'
- the last one contains the preferences, the keys are the prefered arguments and the values are the one they are prefered over
file --> set*dict*dict*dict
"""
assert type(inputFile) is str, "The first argument of this method must be the name of the inputFile. (type String)"
assert type(fileformat) is str, "The second argument of this method must be the extension of the inputFile. (type String)"
args.clear()
attacksFrom.clear()
preferences.clear()
try:
file = open(inputFile, "r")
except FileNotFoundError:
print("Unable to open the file.")
raise FileNotFoundError("Unable to find the file.")
except(OSError, IOError):
print("System error")
raise
if fileformat == "ptgf":
parse_ptgf(file)
elif fileformat == "papx":
parse_papx(file)
else:
print("Unsupported format ", fileformat,", suported formats are : ")
print_formats()
raise UnsupportedFormatException("Unsuported format : ", fileformat)
file.flush()
file.close() | 1,239 |
def get_key(my_dict: dict, val):
"""Get key value form dictionary using key value.
Args:
collection_name: dict: collection in dictionary format
val: Value in dictionary
Returns:
Key from dictionary.
"""
for key, value in my_dict.items():
if val == value:
return key
return "key doesn't exist" | 1,240 |
def test_get_mesh_grid_as_point_cloud_downsample():
"""
Sample a regular grid and return the (x,y) coordinates
of the sampled points.
"""
min_x = -3 # integer, minimum x-coordinate of 2D grid
max_x = 0 # integer, maximum x-coordinate of 2D grid
min_y = 2 # integer, minimum y-coordinate of 2D grid
max_y = 5 # integer, maximum y-coordinate of 2D grid
# return pts, a Numpy array of shape (N,2)
pts = get_mesh_grid_as_point_cloud(min_x, max_x, min_y, max_y, downsample_factor=2.0)
assert pts.shape == (4, 2)
gt_pts = [[-3.0, 2.0], [0.0, 2.0], [-3.0, 5.0], [0.0, 5.0]]
assert np.allclose(gt_pts, pts) | 1,241 |
def closest(point, points):
"""works, but @@DEPRECATED!!
return index into points of closest-to-point
"""
da = dist_array(point, points)
return N.argmin(da) | 1,242 |
def generate_provenance_json(script="unknown", params={}):
"""Generate the provenance in a format which can later be output as valid json.
Inputs:
string: The name of the script used to trigger the data generation/deidentification/synthesis process
dict: The parameters used to tune the data generation etc. process; should include random seeds and other
options as appropriate for the method
Returns:
dict: Details of the script called by the user and any relevant parameters
"""
commit = get_git_commit_hash()
local_mods = get_local_changes()
provenance = {"script": script,
"commit": commit,
"local_modifications": local_mods,
"parameters": params}
return provenance | 1,243 |
def dot(v, w):
"""v_1 * w_1 + ... + v_n * w_n"""
return sum(v_i * w_i for v_i, w_i in zip(v, w)) | 1,244 |
def get_users():
"""Query for user accounts."""
return JsonResponse(queryFor(UserAccount)) | 1,245 |
def test_create_project_pi_too_short(client):
"""Create a project with too short PI."""
create_unit_admins(num_admins=2)
current_unit_admins = models.UnitUser.query.filter_by(unit_id=1, is_admin=True).count()
assert current_unit_admins == 3
proj_data_short_pi = proj_data.copy()
proj_data_short_pi["pi"] = ""
response = client.post(
tests.DDSEndpoint.PROJECT_CREATE,
headers=tests.UserAuth(tests.USER_CREDENTIALS["unituser"]).token(client),
json=proj_data_short_pi,
)
assert response.status_code == http.HTTPStatus.BAD_REQUEST
created_proj = models.Project.query.filter_by(
created_by="unituser",
title=proj_data_short_pi["title"],
pi=proj_data_short_pi["pi"],
description=proj_data_short_pi["description"],
).one_or_none()
assert not created_proj | 1,246 |
def get_added_and_removed_pitches(
chord_root_tpc: int,
chord_type: ChordType,
changes: str,
key_tonic_tpc: int,
key_mode: KeyMode,
) -> Dict[str, str]:
"""
Get a mapping of pitch alterations from the given chord. Pitches are given
and returned with PitchType TPC because accidental-specific math is required
to correctly apply accidentals.
Parameters
----------
chord_root_tpc : int
The root pitch of the given chord, in TPC notation.
chord_type : ChordType
The type of the given chord.
changes : str
A string of the changes or alterations of a given chord, like "64" or "+b2".
key_tonic_tpc : int
The tonic pitch of the current key, including any relative root, in TPC notation.
key_mode : KeyMode
The mode of the current key, including any relative root.
Returns
-------
changed_pitches : Dict[str, str]
A dictionary representing pitch alterations to the given chord. Each entry represents
a mapping of original_pitch -> new_pitch, represented as a string of their TPC integer.
If original_pitch is empty, then the new_pitch is simply added. If new_pitch begins
with "+", then it is added in an upper octave.
"""
added_pitches = []
removed_pitches = []
# First, we have to find the chord numeral degree, since changes are notated numerically
# relative to the chord's tonal pitch class.
# i.e., any "2" change to a IV chord will have some V in it, regardless of any accidentals.
chord_root_str = get_pitch_string(chord_root_tpc, PitchType.TPC)
for degree in range(1, 8):
interval = get_interval_from_scale_degree(str(degree), True, key_mode, PitchType.TPC)
pitch_str = get_pitch_string(interval + key_tonic_tpc, PitchType.TPC)
if pitch_str[0] == chord_root_str[0]:
break
changes_list = split_changes_into_list(changes)
# Calculate added pitches first
for change in changes_list:
while change[0] in "v^+":
change = change[1:]
# Find the scale degree for this change
accidental_count, new_change = get_accidental_adjustment(change, in_front=True)
accidental_count = abs(accidental_count)
octave = "+" if int(new_change) >= 8 else ""
# Convert change to be relative to the key tonic, including accidentals
change_degree = (int(new_change) + degree - 2) % 7 # -2 since both are 1-indexed
change_degree += 1 # Conver back to 1-indexing
change_degree_str = change[:accidental_count] + str(change_degree)
# Calculate interval above scale degree, including additional octaves
interval = get_interval_from_scale_degree(change_degree_str, True, key_mode, PitchType.TPC)
# Store added pitch, including "+" if the pitch is an octave up
added_pitches.append(octave + str(interval + key_tonic_tpc))
# Calculate chord vector in ascending pitch order
chord_vector = get_vector_from_chord_type(chord_type, PitchType.TPC, chord_root_tpc)
chord_vector = np.where(chord_vector == 1)[0]
ascending_chord_vector = []
for degree in range(1, 8):
interval = get_interval_from_scale_degree(str(degree), True, key_mode, PitchType.TPC)
pitch_str = get_pitch_string(interval + chord_root_tpc, PitchType.TPC)
for pitch in chord_vector:
if get_pitch_string(pitch, PitchType.TPC)[0] == pitch_str[0]:
ascending_chord_vector.append(pitch)
# Calculate removed pitches
for change in changes_list:
if change[0] == "+":
# Added pitch only - no deletion
removed_pitches.append("")
_, new_change = get_accidental_adjustment(change, in_front=True)
if change[0] == "^" or (new_change in "246" and change[0] == "#"):
# Replaces the above pitch
if change == "#6" and len(ascending_chord_vector) == 3:
# Special case: If #6 occurs for a triad, it is an addition,
# since it cannot be a lower replacement to a non-existent 7
removed_pitches.append("")
continue
# 2 replaces the 2nd chord pitch, 4 replaces the 3rd, etc.
removed_pitches.append(str(ascending_chord_vector[int(change[-1]) // 2]))
elif change[0] == "v" or (new_change in "246" and change[0] != "#"):
# Replaces the below pitch
# 2 replaces the 1st chord pitch, 4 replaces the 2nd, etc.
removed_pitches.append(str(ascending_chord_vector[int(change[-1]) // 2 - 1]))
else:
# No removed pitch
removed_pitches.append("")
return {removed: added for removed, added in zip(removed_pitches, added_pitches)} | 1,247 |
def get_n_random_points_in_region(region_mesh, N, s=None):
"""
Gets N random points inside (or on the surface) of a mes
"""
region_bounds = region_mesh.bounds()
if s is None:
s = int(N * 2)
X = np.random.randint(region_bounds[0], region_bounds[1], size=s)
Y = np.random.randint(region_bounds[2], region_bounds[3], size=s)
Z = np.random.randint(region_bounds[4], region_bounds[5], size=s)
pts = [[x, y, z] for x, y, z in zip(X, Y, Z)]
ipts = region_mesh.insidePoints(pts).points()
if N <= ipts.shape[0]:
return ipts[np.random.choice(ipts.shape[0], N, replace=False), :]
else:
return get_n_random_points_in_region(region_mesh, N, s=int(N * 4)) | 1,248 |
def test_get_issues_for_org_merges_issues_pull_requests(github, requests_mock):
"""
The '_get_issues_for_org' helper should merge both issues with
pull requests and treat them both as issues
"""
repo1 = fixtures.repository(
issues=[fixtures.issue(), fixtures.issue(), fixtures.issue()],
pull_requests=[fixtures.issue(pr=True)],
private=False
)
repo2 = fixtures.repository(
issues=[fixtures.issue(), fixtures.issue()],
pull_requests=[fixtures.issue(pr=True), fixtures.issue(pr=True)],
private=False
)
expected_titles_are_pr = {}
for repo in [repo1, repo2]:
for issue in repo['issues']['nodes']:
expected_titles_are_pr[issue['title']] = False
for pull_request in repo['pullRequests']['nodes']:
expected_titles_are_pr[pull_request['title']] = True
api_response_body = fixtures.api_response_body(repos=[repo1, repo2])
requests_mock.add_github_graphql(json=api_response_body)
issues = github._get_issues_for_org(requests.Session(), 'org')
titles_are_pr = {i['title']: i['is_pull_request'] for i in issues}
assert titles_are_pr == expected_titles_are_pr | 1,249 |
def create_computer_query(tx, computer, query, value, rel):
"""Creates the queries for a computer.
Arguments:
tx {neo4j.Session} -- Neo4j session
computer {dict} -- Single computer object.
query {str} -- Query to use.
value {[type]} -- Value to read from: LocalAdmins, DcomUsers or RemoteDesktopUsers
rel {[type]} -- Value to set: AdminTo, ExecuteDCOM or CanRDP
"""
for entry in computer[value]:
aType = entry['Type']
aName = entry['Name']
statement = query.format(aType, rel)
props = {'name': computer['Name'], 'target': aName}
tx.run(statement, props=props) | 1,250 |
def make_octad_tables(basis):
"""Return tables for encoding an decoding octads.
Octads are numbered in the lexicographical order as given by the
numbers of the corresponding Golay codewords in 'gcode'
representation.
The function returns a triple
(oct_enc_table, oct_dec_table, oct_enc_offset)
Given octad o, the correspondig Golay code word in gcode
representation is oct_dec_table(o), for 0 <= 0 < 759.
Given an octad (or a complement of an octad) v in 'gcode'
representation, the number of the corresponding octad is:
(oct_enc_table[v1] >> 1) + 3 * (v1 >> 3) - oct_enc_offset ,
where v1 = v & 0x7ff.
The vector v is a (possibly complemeted) octad if the following
condition holds:
oct_enc_table[v1] < 255 .
It is not a complemented octad if in addition we have:
(v >> 12) & oct_enc_table[v1] & 1 == 0
"""
codewords = lin_table(basis[:11])
oct_dec_table = numpy.zeros(759, dtype = uint16)
octad = 0
d = {}
w = {}
for gcode, vector in enumerate(codewords[:2048]):
weight = bw24(vector)
if weight in [8, 16]:
oct_dec_table[octad] = gcode + ((weight & 16) << 7)
d[gcode] = octad - 3 * (gcode >> 3)
w[gcode] = weight >> 4
octad += 1
assert octad == 759
d_min, d_max = min(d.values()), max(d.values())
assert d_min <= 0
assert d_max - d_min < 127
oct_enc_table = numpy.full(2048, 255, dtype = uint8)
for gcode, dict_value in d.items():
new_value = dict_value - d_min
oct_enc_table[gcode] = w[gcode] + 2 * new_value
return oct_enc_table, oct_dec_table, -d_min | 1,251 |
def fetch_profile(request):
""" attaches the user.profile object into the request object"""
context = {}
if request.user.is_authenticated():
profile_module_name = get_my_profile_module_name()
profile = getattr(request, profile_module_name, None)
if profile != None:
context[profile_module_name] = profile
return context | 1,252 |
def storeLabledImagesInFile():
"""Consolidates the images in the emotion directories and stores them in data.npy and lables.npy
file. Does virtual sampling for classes which do not have sufficient samples"""
data = []
labels = []
if os.path.exists(OUTPUT_DIRECTORY):
images = []
noOfImages = []
for dir in EMOTION_DIRECTORIES:
if os.path.exists(OUTPUT_DIRECTORY + dir):
images.append(os.listdir(OUTPUT_DIRECTORY + dir))
noOfImages.append(len(images[-1]))
targetCount = max(noOfImages)
for i in range(0, len(EMOTION_DIRECTORIES)):
if os.path.exists(OUTPUT_DIRECTORY + EMOTION_DIRECTORIES[i]):
mask = np.zeros((100, 100))
for j in range(0, targetCount):
if (j != 0 and j % noOfImages[i] == 0):
mask = np.random.randint(0, 3, (100, 100))
face = cv2.imread(OUTPUT_DIRECTORY + EMOTION_DIRECTORIES[i] + "/" + images[i][j % noOfImages[i]])[:,
:, 1]
face = face + mask
face[np.where(face >= 256)] = 255
data.append(face)
labels.append(i)
np.save(OUTPUT_DIRECTORY + "/data", np.array(data))
np.save(OUTPUT_DIRECTORY + "/labels", np.array(labels))
else:
print("Invalid path " + OUTPUT_DIRECTORY)
return False | 1,253 |
def test_device_put_method_empty_model_name(flask_app, db): # pylint: disable=unused-argument
""" To verify that registration device
method is working properly and response is correct"""
registration = create_registration(REG_REQ_DATA, uuid.uuid4())
registration.update_status('Pending Review')
headers = {'Content-Type': 'multipart/form-data'}
request_data = copy.deepcopy(REQUEST_DATA)
request_data['reg_id'] = registration.id
request_data['model_name'] = ''
rv = flask_app.put(DEVICE_REGISTRATION_API, data=request_data, headers=headers)
data = json.loads(rv.data.decode('utf-8'))
assert rv.status_code == 422
assert 'model_name' in data
assert data['model_name'][0] == 'model name value should be between 1 and 1000' | 1,254 |
def to_local_op(input):
"""Returns the local tensor of a consistent tensor.
Args:
input (Tensor): the input tensor.
For example:
.. code-block:: python
>>> import oneflow as flow
>>> import numpy as np
>>> np_arr = np.array([0.5, 0.6, 0.7]).astype(np.float32)
>>> input = flow.Tensor(np_arr)
>>> placement = flow.placement("cpu", {0:range(1)})
>>> consistent_tensor = input.to_consistent(placement, [flow.sbp.split(0)])
>>> consistent_tensor.to_local()
tensor([0.5, 0.6, 0.7], dtype=oneflow.float32)
"""
assert input.is_consistent, "input must be a consistent tensor!"
return flow.F.to_local(input) | 1,255 |
def col_round(x):
"""
As Python 3 rounds 0.5 fraction to closest even,
floor and cell round methods used here to round 0.5
up to next digit and 0.4 down back to previos.
"""
frac = x - math.floor(x)
if frac < 0.5:
return math.floor(x)
return math.ceil(x) | 1,256 |
def _create_notebook(client, headers: dict[str, str]) -> str:
"""Create a notebook.
:param client: Test API client.
:param headers: Headers with the access token.
:return: Notebook ID.
"""
n = {"name": "Test Notebook"}
r = client.post("/notebooks/notebook", headers=headers, json=n)
return r.json["result"]["id"] | 1,257 |
def iterate_steps(n):
"""Calculate derivatives for different parameter classes, and plot"""
for vary in ['bary', 'halo', 'progenitor']:
print(n, vary)
step_convergence(n, Nstep=10, vary=vary)
choose_step(n, Nstep=10, vary=vary) | 1,258 |
def createTables():
""" Populate the array with names of sql DDL files """
for sqlFileName in ["Address.sql", "Electricity.sql", "CodeViolationsReport.sql",
"FireRescueEMSResponse.sql", "NaturalGasReport.sql",
"WaterReport.sql"]:
try:
runSqlFile("create/" + sqlFileName)
print "Created table '{}'".format(sqlFileName.split(".sql")[0])
except Exception as e:
pass | 1,259 |
def plot_range_range_rate(x_sat_orbdyn_stm:np.ndarray, x_obs_multiple:np.ndarray, t_sec: np.array):
""" Plots range and range relative to the station
Args:
x_sat_orbdyn_stm (np.ndarray): satellite trajectory array.
x_obs_multiple (np.ndarray): observer positions.
t_sec (np.ndarray): array of timesteps.
"""
if len(x_obs_multiple.shape) == 2:
x_obs_multiple = np.expand_dims(x_obs_multiple)
fig = plt.figure(figsize=(14,14))
n_obs = x_obs_multiple.shape[2]
for i in range(n_obs):
r, rr = range_range_rate(x_sat_orbdyn_stm, x_obs_multiple[:,:,i])
ax1 = fig.add_subplot(n_obs, 2, i*2+1)
ax1.plot(t_sec, r)
ax1.set_xlabel('Time (s)')
ax1.set_ylabel('Range (m)')
ax1.grid(':')
ax1.title.set_text('Station 1 - Range')
ax2 = fig.add_subplot(n_obs, 2, i*2+2)
ax2.plot(t_sec, rr)
ax2.set_xlabel('Time (s)')
ax2.set_ylabel('Range rate (m/s)')
ax2.grid(':')
ax2.title.set_text('Station 1 - Range Rate')
fig.subplots_adjust(hspace=0.3)
return fig | 1,260 |
def parse_autostep(rule):
"""
Parse the autostep line
"""
parser = argparse.ArgumentParser()
rules = shlex.split(rule)
rules.pop(0)
parser.add_argument("--autoscreenshot", dest="autoscreenshot", action="store")
args = clean_args(vars(parser.parse_args(rules)))
parser = None
return args | 1,261 |
def AUTO_TECHSUPPORT_GLOBAL_state(db, state):
""" Knob to make techsupport invocation event-driven based on core-dump generation """
table = "AUTO_TECHSUPPORT"
key = "GLOBAL"
data = {
"state": state,
}
try:
update_entry_validated(db.cfgdb, table, key, data, create_if_not_exists=True)
except Exception as err:
exit_with_error(f"Error: {err}", fg="red") | 1,262 |
def _make_tag(tagname: str, content: str = "", **attrs) -> str:
"""Creates a tag."""
tag = f"<{tagname} "
for key, value in attrs.items():
if key == "raw":
tag += " " + value
continue
if key == "cls":
key = "class"
if isinstance(value, float):
value = round(value, 2)
tag += f"{_slugify(key)}='{value}' "
tag += f">{content}</{tagname}>"
return tag | 1,263 |
def download(url: str, dest: Optional[str] = None, extract: bool=True, ignore_if_exists: bool = False,
compression: Optional[str] = None):
"""
Download a file from the internet.
Args:
url: the url to download
dest: destination file if extract=False, or destionation dir if extract=True. If None, it will be the last part of URL.
extract: extract a tar.gz or zip file?
ignore_if_exists: don't do anything if file exists
Returns:
the destination filename.
"""
base_url = url.split("?")[0]
if dest is None:
dest = [f for f in base_url.split("/") if f][-1]
if os.path.exists(dest) and ignore_if_exists:
return dest
stream = UrlStream(url)
extension = base_url.split(".")[-1].lower()
if extract and extension in ['gz', 'bz2', 'zip', 'tgz', 'tar']:
os.makedirs(dest, exist_ok=True)
if extension == "gz" and not base_url.endswith(".tar.gz"):
decompressed_file = gzip.GzipFile(fileobj=stream)
with open(os.path.join(dest, url.split("/")[-1][:-3]), 'wb') as f:
while True:
d = decompressed_file.read(1024 * 1024)
if not d:
break
f.write(d)
else:
if extension in ['gz', 'bz2', "tgz", "tar"]:
decompressed_file = tarfile.open(fileobj=stream, mode='r|' +
(compression or (
"gz" if extension == "tgz" else extension)))
elif extension == 'zip':
decompressed_file = zipfile.ZipFile(stream, mode='r')
else:
assert False, "Invalid extension: %s" % extension
decompressed_file.extractall(dest)
else:
try:
with open(dest, 'wb') as f:
for d in stream.iter_content(1024 * 1024):
f.write(d)
except:
os.remove(dest)
raise
return dest | 1,264 |
def action_functions(action_id: str):
"""Determines which function needs to be run."""
action_mappings = {
NewIncidentSubmission.form_slack_view: [report_incident_from_submitted_form],
UpdateParticipantCallbacks.submit_form: [update_participant_from_submitted_form],
UpdateParticipantCallbacks.update_view: [update_update_participant_modal],
}
# this allows for unique action blocks e.g. invite-user or invite-user-1, etc
for key in action_mappings.keys():
if key in action_id:
return action_mappings[key]
return [] | 1,265 |
def get_default_sender():
"""
Determines the sender / to address for outgoing emails.
"""
try:
return os.environ["EMAIL"]
except KeyError:
pass
else:
# Guess.
# Not sure if euid is the right one to use here.
user = pwd.getpwuid(os.geteuid()).pw_name
host = socket.getfqdn()
return f"{user}@{host}" | 1,266 |
def setup_function(function):
"""
Make sure there are no adapters defined before start of test
"""
clear_adapters()
# Setup a basic int adapter for all tests
@adapter((str, float, int), (int, str))
def to_int(obj, to_cls):
return to_cls(obj) | 1,267 |
def get_best_response_actions_as_string(best_response_actions):
"""Turns a dict<bytes, int> into a bytestring compatible with C++.
i.e. the bytestring can be copy-pasted as the brace initialization for a
{std::unordered_,std::,absl::flat_hash_}map<std::string, int>.
Args:
best_response_actions: A dict mapping bytes to ints.
Returns:
A bytestring that can be copy-pasted to brace-initialize a C++
std::map<std::string, T>.
"""
best_response_keys = sorted(best_response_actions.keys())
best_response_strings = [
"%s: %i" % (k, best_response_actions[k]) for k in best_response_keys
]
return "{%s}" % (", ".join(best_response_strings)) | 1,268 |
def rank_velocity_genes(adata, vkey="velocity_S", prefix_store="rank", **kwargs):
"""Rank genes based on their raw and absolute velocities for each cell group.
Parameters
----------
adata: :class:`~anndata.AnnData`
AnnData object that contains the gene-wise velocities.
vkey: str (default: 'velocity_S')
The velocity key.
prefix_store: str (default: 'rank')
The prefix added to the key for storing the returned in adata.
kwargs:
Keyword arguments passed to `vf.rank_genes`.
Returns
-------
adata: :class:`~anndata.AnnData`
AnnData object which has the rank dictionary for velocities in `.uns`.
"""
rdict = rank_genes(adata, vkey, **kwargs)
rdict_abs = rank_genes(adata, vkey, abs=True, **kwargs)
adata.uns[prefix_store + "_" + vkey] = rdict
adata.uns[prefix_store + "_abs_" + vkey] = rdict_abs
return adata | 1,269 |
def build_genome(tree, genome):
"""
Goes through a tree and builds a genome from all codons in the subtree.
:param tree: An individual's derivation tree.
:param genome: The list of all codons in a subtree.
:return: The fully built genome of a subtree.
"""
if tree.codon:
# If the current node has a codon, append it to the genome.
genome.append(tree.codon)
for child in tree.children:
# Recurse on all children.
genome = child.build_genome(genome)
return genome | 1,270 |
def fixture_yaml_formatting_fixtures(fixture_filename: str) -> Tuple[str, str, str]:
"""Get the contents for the formatting fixture files.
To regenerate these fixtures, please run ``test/fixtures/test_regenerate_formatting_fixtures.py``.
Ideally, prettier should not have to change any ``formatting-after`` fixtures.
"""
before_path = formatting_before_fixtures_dir / fixture_filename
prettier_path = formatting_prettier_fixtures_dir / fixture_filename
after_path = formatting_after_fixtures_dir / fixture_filename
before_content = before_path.read_text()
prettier_content = prettier_path.read_text()
formatted_content = after_path.read_text()
return before_content, prettier_content, formatted_content | 1,271 |
def test_partial_trace_4_by_4():
"""Test for 4-by-4 matrix."""
test_input_mat = np.arange(1, 17).reshape(4, 4)
pt_1 = partial_trace(test_input_mat, [1], [2, 2])
pt_2 = partial_trace(test_input_mat, [2], [2, 2])
expected_pt_1 = np.array([[12, 14], [20, 22]])
bool_mat = np.isclose(expected_pt_1, pt_1)
np.testing.assert_equal(np.all(bool_mat), True)
expected_pt_2 = np.array([[7, 11], [23, 27]])
bool_mat = np.isclose(expected_pt_2, pt_2)
np.testing.assert_equal(np.all(bool_mat), True) | 1,272 |
def get_base_parser(*args, **kwargs):
"""
Main parser
"""
parser=argparse.ArgumentParser(*args, **kwargs)
# formatter_class=argparse.ArgumentDefaultsHelpFormatter,
# )
# parser.add_argument('--help_all', '--help_model', '--help_dataset', '--help_strategy', '--help_task', '--help_ptracker',
# action=PrintHelpAction, nargs=0,
# help="Print help for given model, dataset, task, strategy args")
parser.add_argument('--task', type=str, default='fsl', choices=TASKS.keys(),
help='Task name')
parser.add_argument('--dataset', type=str, default='mini', choices=DATASETS.keys(),
help='Dataset name')
parser.add_argument('--model', type=str, default='protonet', choices=MODELS.keys(),
help='FSL method name')
parser.add_argument('--backbone', type=str, default='Conv4', choices=BACKBONES.keys(),
help='Backbone neural network name')
parser.add_argument('--strategy', type=str, default=None, choices=STRATEGIES.keys(),
help='Imbalance strategy. If None, no imbalance strategy is used')
parser.add_argument('--gpu', default='0',
help='gpu number or "cpu"')
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--deterministic', type=str2bool, nargs='?', const=True, default=True,
help='If true, the tasks are generated deteministically based on the given seed')
parser.add_argument('--results_folder', type=str, default="../experiments/dummy/", # default="../../experiments/",
help='parent folder where all experiments are saved')
parser.add_argument('--experiment_name', type=str, default="default")
parser.add_argument('--experiment_folder', type=str, default=None,
help='experiment folder used to save checkpoints and results')
parser.add_argument('--clean_folder', type=str2bool, nargs='?', const=True, default=False,
help='Clears the experiment folder if it exisits')
parser.add_argument('--storage_friendly', type=str2bool, nargs='?', const=True, default=True,
help='Deletes previously saved models systematically, only keeps best, latest model')
parser.add_argument('--data_path', type=str, default="data/",
help='Data folder with datasets in named subdirectories.')
parser.add_argument('--continue_from', type=str, default=None,
help="Continue from a checkpoint file, epoch, or 'latest', 'best', or 'from_scratch'/None.")
parser.add_argument('--load_backbone_only', type=str2bool, nargs='?', const=True, default=False,
help="Loads the backbone only from 'continue_from'")
parser.add_argument('--dummy_run', type=str2bool, nargs='?', const=True, default=False,
help='A dry run of the settings with a 1 epoch and validation, a reduced number of tasks, no saving')
parser.add_argument('--conventional_split', type=str2bool, nargs='?', const=True, default=None,
help='Joins classes in meta-training and meta-validation datests. '
'Then conventional 80%%-20%% split for train-val datasets. '
'If None, will be split automatically based on model.')
parser.add_argument('--conventional_split_from_train_only', type=str2bool, nargs='?', const=True, default=False,
help='Performs conventional 80%%-20%% data split from the train dataset only,'
' without joining with the validation split. Working only when meta-dataset reduced, see'
' data.dataset_utils.prep_datasets() for details.')
parser.add_argument('--backbone_channel_dim', type=int, default=64,
help='Number of channels of the backbone model.')
parser.add_argument('--tqdm', type=str2bool, nargs='?', const=True, default=False,
help="Enable/Disable tqdm, especially useful when running experiment and redirecting to files")
group = parser.add_argument_group('TASK SAMPLING OPTIONS')
group.add_argument('--num_epochs', type=int, default=100,
help="If none, then will stop training after achieving a stopping criterion, see ExperimentBuilder")
group.add_argument('--num_tasks_per_epoch', type=int, default=500)
group.add_argument('--num_tasks_per_validation', type=int, default=200,
help="Number of tasks to evaluate on after every epoch.")
group.add_argument('--num_tasks_per_testing', type=int, default=600,
help="Number of tasks to evaluate on after meta-training.")
group.add_argument('--evaluate_on_test_set_only', '--test', type=str2bool, nargs='?', const=True, default=False,
help="If present, no (further) training is performed and only the test dataset is evaluated.")
group.add_argument('--val_or_test', type=str, choices=["test","val"], default="val",
help="Dataset to perform validation on. Default val")
group.add_argument('--no_val_loop', type=str2bool, nargs='?', const=True, default=False,
help="No validation loop. Default=False, meaning assume there is a validation loop.")
group.add_argument('--test_performance_tag', type=str, default="test",
help='The tag name for the performance file evaluated on test set, eg "test" in epoch-###_test.json')
group = parser.add_argument_group('VISUALISATION OPTIONS')
group.add_argument('--fix_class_distribution', type=str2bool, nargs='?', const=True, default=False,
help='If present, will fix the class distribution such that the model will be evaluated and tested '
'on the same set of classes between tasks.')
group.add_argument('--count_samples_stats', type=str2bool, nargs='?', const=True, default=False,
help='If true, counts the images and stores the distribution stats of images shown during the run')
return parser | 1,273 |
def MakeBuildDirectory(context=None):
"""Prepares the build and work directories."""
if context is None:
raise ValueError("context can't be None")
build_dir = config.CONFIG.Get("PyInstaller.build_dir", context=context)
work_path = config.CONFIG.Get("PyInstaller.workpath_dir", context=context)
CleanDirectory(build_dir)
CleanDirectory(work_path) | 1,274 |
def conv_bboxinfo_bboxXYHW_to_centerscale(bbox_xyhw, bLooseBox = False):
"""
from (bbox_xyhw) -> (center, scale)
Args:
bbox_xyhw: [minX,minY,W,H]
bLooseBox: if true, draw less tight box with sufficient margin (SPIN's default setting)
Output:
center: bbox center
scale: scaling images before cropping. reference size is 200 pix (why??). >1.0 means size up, <1.0 means size down. See get_transform()
h = 200 * scale
t = np.zeros((3, 3))
t[0, 0] = float(res[1]) / h
t[1, 1] = float(res[0]) / h
t[0, 2] = res[1] * (-float(center[0]) / h + .5)
t[1, 2] = res[0] * (-float(center[1]) / h + .5)
t[2, 2] = 1
"""
center = [bbox_xyhw[0] + bbox_xyhw[2]/2, bbox_xyhw[1] + bbox_xyhw[3]/2]
if bLooseBox:
scaleFactor =1.2
scale = scaleFactor*max(bbox_xyhw[2], bbox_xyhw[3])/200 #This is the one used in SPIN's pre-processing. See preprocessdb/coco.py
else:
scale = max(bbox_xyhw[2], bbox_xyhw[3])/200
return center, scale | 1,275 |
def add_video(db: Session, video: schemas.Video):
"""
Adds video to table video_library
model used is Video.
Attributes:
- video_user_id: int, non-nullable, foreign_key
- video_link: string, non-nullable, unique
- video_name: string, non-nullable,
- video_height: int, non-nullable,
- video_width: int, non-nullable,
- file_format: string, non-nullable,
- ts_upload: datetime, non-nullable,
- categories: string, nullable,
- description: string, nullable,
- length: int, non-nullable,
- views: int, non-nullable
- no_likes: int, non-nullable,
- no_dislikes: int, non-nullable,
Args:
- db: Session
- video: schemas.Video
Returns:
- db_video object
"""
db_video = models.Video(
video_username=video.video_username,
video_link=video.video_link,
video_name=video.video_name,
video_height=video.video_height,
video_width=video.video_width,
file_format=video.file_format,
ts_upload=get_timestamp_now(),
categories=video.categories,
description=video.description,
length=video.length,
views=video.views,
no_likes=video.no_likes,
no_dislikes=video.no_dislikes,
)
# add to database
db.add(db_video)
db.commit()
db.refresh(db_video)
return db_video | 1,276 |
def compute_principal_axes(xyz_centered, weights=None, twodim=True):
"""
:param xyz_centered: [list_of_xs, lst_of_ys, list_of_zs]
:param weights: weights of each pixel
:param twodim: whether to compute two main axes in xy plane, or three axes in 3D image.
:return: ax1, ax2, (ax3 if not twodim else None)
"""
if twodim:
xyz_centered = xyz_centered[:2]
cov = np.cov(xyz_centered, aweights=weights)#covariance between the variables x,y,z. pixels are the observations
evals, evecs = np.linalg.eig(cov)#MB: it seems to be for finding the main axis of the worm
# sort eigenvalues in decreasing order
sort_indices = np.argsort(evals)[::-1]
ax1 = evecs[:, sort_indices[0]]
ax2 = evecs[:, sort_indices[1]]
if twodim:
ax3 = None
else:
ax3 = evecs[:, sort_indices[2]]
return ax1, ax2, ax3 | 1,277 |
def stream_http_get(S, dest):
"""Get contents of http://dest/ via HTTP/1.0 and
samclasses.StreamSession S."""
C = S.connect(dest)
C.send('GET / HTTP/1.0\r\n\r\n')
while True:
line = stream_readline(C).strip()
if line.find('Content-Length: ') == 0:
clen = int(line.split()[1])
if line == '': break
s = C.recv(clen, timeout=None)
time.sleep(2.0)
C.close()
return s | 1,278 |
def get_definition(division_id, path=None):
"""
Returns the expected contents of a definition file.
"""
config = {}
division = Division.get(division_id, from_csv=ocd_division_csv)
# Determine slug, domain and authority.
name = division.name
if not name:
print('%-60s unknown name: check slug and domain manually' % division.id)
if division._type == 'country':
slug = 'Federal electoral districts'
config['domain'] = name
config['authority'] = ['Her Majesty the Queen in Right of Canada']
elif division._type in ('province', 'territory'):
slug = '%s electoral districts' % name
config['domain'] = name
config['authority'] = ['Her Majesty the Queen in Right of %s' % name]
elif division._type in ('cd', 'csd'):
province_or_territory_sgc_code = type_id(division.id)[:2]
if province_or_territory_sgc_code == '24' and division.id in divisions_with_boroughs():
slug = re.compile(r'\A%s (boroughs|districts)\Z' % name)
elif province_or_territory_sgc_code == '12' and division.attrs['classification'] != 'T':
slug = '%s districts' % name
elif province_or_territory_sgc_code == '47' and division.attrs['classification'] != 'CY':
slug = '%s divisions' % name
elif province_or_territory_sgc_code == '48' and division.attrs['classification'] == 'MD':
slug = '%s divisions' % name
elif province_or_territory_sgc_code == '24':
if division.id in quartiers:
slug = '%s quartiers' % name
else:
slug = '%s districts' % name
else:
slug = '%s wards' % name
config['domain'] = '%s, %s' % (name, province_or_territory_abbreviation(division.id))
if province_or_territory_sgc_code == '12' and 'boundaries/ca_ns_districts/' in path:
config['authority'] = ['Her Majesty the Queen in Right of Nova Scotia']
elif province_or_territory_sgc_code == '13' and 'boundaries/ca_nb_wards/' in path:
config['authority'] = ['Her Majesty the Queen in Right of New Brunswick']
elif province_or_territory_sgc_code == '24' and 'boundaries/ca_qc_' in path:
config['authority'] = ['Directeur général des élections du Québec']
elif province_or_territory_sgc_code == '47' and division.attrs['classification'] != 'CY':
config['authority'] = ['MuniSoft']
elif division._type == 'csd':
config['authority'] = authorities + [division.attrs['organization_name']]
else:
config['authority'] = [''] # We have no expectation for the authority of a Census division
elif division._type == 'borough':
province_or_territory_sgc_code = type_id(division.parent.id)[:2]
if name:
slug = '%s districts' % name
config['domain'] = '%s, %s, %s' % (name, division.parent.name, province_or_territory_abbreviation(division.parent.id))
else:
slug = None
config['domain'] = None
if province_or_territory_sgc_code == '24':
config['authority'] = ['Directeur général des élections du Québec']
else:
config['authority'] = [division.parent.attrs['organization_name']]
else:
raise Exception('%s: Unrecognized OCD type %s' % (division.id, division._type))
return (slug, config) | 1,279 |
def api_last_blog_update(request):
"""Return the date of the last blog update.
This is a PRIVATE API.
Format: __lastblogupdate.json
JSON return:
{'lastupdate': '2019-01-31'}
or if none available:
{'lastupdate': None}
"""
api_code = enter_api_call('api_last_blog_update', request)
if not request or request.GET is None:
ret = Http404(HTTP404_NO_REQUEST('/__lastblogupdate.json'))
exit_api_call(api_code, ret)
raise ret
lastupdate = None
try:
with open(settings.OPUS_LAST_BLOG_UPDATE_FILE, 'r') as fp:
lastupdate = fp.read().strip()
except:
try:
log.error('api_last_blog_update: Failed to read file "%s"',
settings.OPUS_LAST_BLOG_UPDATE_FILE)
except:
log.error('api_last_blog_update: Failed to read file UNKNOWN')
ret = json_response({'lastupdate': lastupdate})
exit_api_call(api_code, ret)
return ret | 1,280 |
def main():
"""
测试当前类的方法的主方法入口
:return:
"""
# DataProcessing("../data_example/test.tsv","../data_example/test.tfrecords").test_txt2tfrecords()
# DataProcessing("../data_example/train.tsv","../data_example/train.tfrecords").train_txt2tfrecords()
# DataProcessing("../feature_data/tsz_submission_12.tfrecords","../submission/sub.csv").parase_tfrecords_to_dataFrame(1500)
# data = DataProcessing("../data_example/train.tfrecords",False).load_train_data(2000)
# data = DataProcessing("../data_example/test.tfrecords",False).load_test_data(1500)
# print(data.head()) | 1,281 |
def pearson(arr1, arr2):
"""
calculate pearson correlation between two numpy arrays.
:param arr1: one array, the feature is a column. the shape is `m * n`
:param arr2: the other array, the feature is a column. the shape is `m * k`
:return: a pearson score np.array , the shape is `k * n`
"""
assert arr1.shape[0] == arr2.shape[0]
n = arr1.shape[0]
sums = np.multiply.outer(arr2.sum(0), arr1.sum(0))
stds = np.multiply.outer(arr2.std(0), arr1.std(0))
return (arr2.T.dot(arr1) - sums / n) / stds / n | 1,282 |
def check_input(image):
"""Check that the provided image consists of a single connected domain of pixels.
"""
# Check that the input image has no floating pixels.
labeled_array, num_features = label(image.astype(int)+1)
assert num_features==1, "The input image must contain a single solid domain of connected pixels but it appears to have floating pixels"
#
# Check that the input image has no holes.
s = np.sum( np.abs(image.astype(int)[1:,:]-image.astype(int)[0:-1,:]), axis=0 )
assert np.alltrue( s <= 2 ), "The input image must contain a single solid domain of connected pixels but it appears to have holes"
# | 1,283 |
def exact_match_filter(query_set, field, values):
"""Check if a field exactly matches a value."""
return field_filter(lambda x, y: Q(**{x: y}), query_set, field, values) | 1,284 |
def clean_savepoints(using=None):
"""
Resets the counter used to generate unique savepoint ids in this thread.
"""
get_connection(using).clean_savepoints() | 1,285 |
def get_move_descriptions(get_moved_ids, initial_state, current_state, obj_stuff, sort_attributes, obj_attributes):
"""
Get all 'move' descriptions from the current state (if any).
Parameters
----------
get_moved_ids: function
Function that extracts the id of objects that are being moved.
initial_state: nd.array
Initial state of the environment.
current_state: nd.array
Current state of the environment.
obj_stuff: list of objects and their sizes
List of initial objects {type, color, category} and their sizes.
sort_attributes: function
Function that separates adjective and name attributes.
obj_attributes: list of list
List of the list of object attributes for each object.
Returns
-------
descr: list of str
List of 'move' descriptions satisfied by the current state.
"""
obj_moved = get_moved_ids(initial_state, current_state)
verb = 'Move'
move_descriptions = []
for i_obj in obj_moved:
att = obj_attributes[i_obj]
adj_att, name_att = sort_attributes(att)
for adj in adj_att:
quantifier = 'any'
for name in name_att:
move_descriptions.append('{} {} {}'.format(verb, adj, name))
move_descriptions.append('{} {} {} object'.format(verb, quantifier, adj))
for name in name_att:
move_descriptions.append('{} any {}'.format(verb, name))
return move_descriptions.copy() | 1,286 |
def reliability_diagram(labels,
probs,
class_conditional=False,
y_axis='accuracy',
img=False):
"""Reliability Diagram plotting confidence against accuracy.
Note that this reliability diagram is created by looking at the calibration of
the set of datapoints that surround each datapoint, not through mutually
exclusive bins.
Args:
labels: label vector.
probs: probability matrix out of a softmax.
class_conditional: whether to visualize every class independently, or
conflate classes.
y_axis: takes 'accuracy or 'error'. Set y_axis to 'error' to graph the
calibration error (confidence - accuracy) against the accuracy instead.
img: return as image rather than as a plot.
Returns:
fig: matplotlib.pyplot figure.
"""
probs = np.array(probs)
labels = np.array(labels)
probs, _ = verify_probability_shapes(probs)
labels_matrix = one_hot_encode(labels, probs.shape[1])
if class_conditional:
for class_index in range(probs.shape[1]):
if img:
return to_image(plot_diagram(
probs[:, class_index], labels_matrix[:, class_index], y_axis))
else:
return plot_diagram(
probs[:, class_index], labels_matrix[:, class_index], y_axis)
else:
if img:
return to_image(
plot_diagram(probs.flatten(), labels_matrix.flatten(), y_axis))
else:
return plot_diagram(probs.flatten(), labels_matrix.flatten(), y_axis) | 1,287 |
def GuessSlugFromPath(path):
"""Returns the slug."""
if path.endswith('index.md'):
# If it ends with index, get the second last path component.
return path.split('/')[-2]
else:
# Otherwise, just get the filename.
return path.split('/')[-1].split('.')[0] | 1,288 |
def get_file(fname, origin, cache_subdir='datasets', file_hash=None):
"""Downloads a file from a URL if not already in the cache.
ref: https://github.com/keras-team/keras/blob/7a39b6c62d43c25472b2c2476bd2a8983ae4f682/keras/utils/data_utils.py#L123
By default the file at the url `origin` is downloaded to the
CACHE_DIR `~/.kerasy`, placed in the cache_subdir `datasets`,
and given the filename `fname`. The final location of a file
`example.txt` would therefore be `~/.kerasy/datasets/example.txt`.
You have to make a directory `~/.kerasy` and `~./kerasy/datasets`,
and check whether you can access these directories using `os.access("DIRECOTRY", os.W_OK)`
If this method returns False, you have to change the ownership of them like
```
$ sudo chown iwasakioshuto: ~/.kerasy
$ sudo chown iwasakioshuto: ~/.kerasy/datasets
```
"""
# /Users/<username>/.kerasy/`cache_subdir`
DATADIR = os.path.join(DATADIR_BASE, cache_subdir)
if not os.path.exists(DATADIR):
os.makedirs(DATADIR)
fpath = os.path.join(DATADIR, fname)
if not os.path.exists(fpath):
print('Downloading data from', origin)
error_msg = 'URL fetch failure on {} : {} -- {}'
try:
try:
request.urlretrieve(origin, fpath)
except HTTPError as e:
raise Exception(error_msg.format(origin, e.code, e.msg))
except URLError as e:
raise Exception(error_msg.format(origin, e.errno, e.reason))
except (Exception, KeyboardInterrupt):
if os.path.exists(fpath):
os.remove(fpath)
raise
return fpath | 1,289 |
def simplified_fit(train_loader, val_loader, model, loss_fn, optimizer, n_epochs, is_cuda_available, metrics=[],
start_epoch=0, scheduler = None, log_interval=1):
"""
TODO
"""
train_list = []
valid_list = []
log_interval = len(train_loader)//2
if scheduler != None:
for epoch in range(0, start_epoch):
scheduler.step()
for epoch in range(start_epoch, n_epochs):
if scheduler != None:
scheduler.step()
# Train stage
train_loss, _metrics = train_epoch(train_loader, model, loss_fn, optimizer, is_cuda_available, log_interval, metrics)
message = 'Epoch: {}/{}. Train set: Average loss: {:.4f}'.format(epoch + 1, n_epochs, train_loss)
for metric in _metrics:
message += '\t{}: {}'.format(metric.name(), metric.value())
train_list.append(metric.value())
# Validation stage
if val_loader != None:
val_loss, _metrics = test_epoch(val_loader, model, loss_fn, is_cuda_available, metrics)
val_loss /= len(val_loader)
message += '\nEpoch: {}/{}. Validation set: Avg loss: {:.4f}'.format(epoch + 1, n_epochs,val_loss)
for metric in _metrics:
message += '\t{}: {}'.format(metric.name(), metric.value())
valid_list.append(metric.value())
print(message)
return (train_list, valid_list) | 1,290 |
def _onenorm_matrix_power_nnm(A, p):
"""
Compute the 1-norm of a non-negative integer power of a non-negative matrix.
Parameters
----------
A : a square ndarray or matrix or sparse matrix
Input matrix with non-negative entries.
p : non-negative integer
The power to which the matrix is to be raised.
Returns
-------
out : float
The 1-norm of the matrix power p of A.
"""
# check input
if int(p) != p or p < 0:
raise ValueError('expected non-negative integer p')
p = int(p)
if len(A.shape) != 2 or A.shape[0] != A.shape[1]:
raise ValueError('expected A to be like a square matrix')
# Explicitly make a column vector so that this works when A is a
# numpy matrix (in addition to ndarray and sparse matrix).
v = torch.ones((A.shape[0], 1), dtype=A.dtype, device=A.device)
M = A.t()
for _ in range(p):
v = M.mm(v)
return torch.max(v).item() | 1,291 |
def _stiff_terms_null(states, *args, **kwargs):
"""Dummy function"""
return states | 1,292 |
def add_dataset(dset_fp, dset_fromroot, list_ids, up3d_fp, # pylint: disable=too-many-locals, too-many-arguments, too-many-statements, too-many-branches
train_list_f, val_list_f, train_val_list_f, test_list_f, scale_f,
train_spec, val_spec, test_spec,
target_person_size, landmarks, train_crop, test_crop, running_idx,
only_missing=False, with_rlswap=True, write_gtjoints_as_lm=False,
human_annotations=False):
"""Add a dataset to the collection."""
test_ids = [int(id_[1:6]) for id_ in test_spec]
train_ids = [int(id_[1:6]) for id_ in train_spec]
val_ids = [int(id_[1:6]) for id_ in val_spec]
LOGGER.info("Split: %d train, %d val, %d test.",
len(train_ids), len(val_ids), len(test_ids))
LOGGER.info("Writing dataset...")
for im_idx in tqdm.tqdm(train_ids + val_ids + test_ids):
image = scipy.misc.imread(path.join(up3d_fp, '%05d_image.png' % (im_idx)))
with open(path.join(up3d_fp, '%05d_fit_crop_info.txt' % (im_idx)), 'r') as inf:
cropinfo = [int(val) for val in inf.readline().strip().split()]
assert image.ndim == 3
out_exists = (path.exists(path.join(dset_fp, '%05d_image.png' % (running_idx))) and
path.exists(path.join(dset_fp, '%05d_ann_vis.png' % (running_idx))))
if with_rlswap and im_idx not in test_ids:
out_exists = out_exists and (
path.exists(path.join(dset_fp, '%05d_image.png' % (running_idx + 1))) and
path.exists(path.join(dset_fp, '%05d_ann_vis.png' % (running_idx + 1))))
if not (only_missing and out_exists or write_gtjoints_as_lm):
if human_annotations:
landmark_pos = np.load(path.join(up3d_fp, '%05d_joints.npy' % (im_idx)))
else:
landmark_pos = get_landmark_positions(path.join(up3d_fp, '%05d_body.pkl' % (im_idx)),
(cropinfo[1], cropinfo[0]),
landmarks)
fac_y = cropinfo[0] / float(cropinfo[3] - cropinfo[2])
fac_x = cropinfo[1] / float(cropinfo[5] - cropinfo[4])
landmark_pos[:2, :] /= np.mean([fac_x, fac_y])
landmark_pos[0, :] += cropinfo[4]
landmark_pos[1, :] += cropinfo[2]
joints = np.load(path.join(up3d_fp, '%05d_joints.npy' % (im_idx)))
joints = np.vstack((joints, np.all(joints > 0, axis=0)[None, :]))
person_size = robust_person_size(joints)
norm_factor = float(target_person_size) / person_size
joints[:2, :] *= norm_factor
if not (only_missing and out_exists or write_gtjoints_as_lm):
landmark_pos[:2, :] *= norm_factor
if write_gtjoints_as_lm:
landmark_pos = joints.copy()
image = scipy.misc.imresize(image, norm_factor, interp='bilinear')
if im_idx in test_ids:
crop = test_crop
else:
crop = train_crop
if image.shape[0] > crop or image.shape[1] > crop:
LOGGER.debug("Image (original %d, here %d) too large (%s)! Cropping...",
im_idx, running_idx, str(image.shape[:2]))
person_center = np.mean(joints[:2, joints[2, :] == 1], axis=1)
crop_y, crop_x = get_crop(image, person_center, crop)
image = image[crop_y[0]:crop_y[1],
crop_x[0]:crop_x[1], :]
landmark_pos[0, :] -= crop_x[0]
landmark_pos[1, :] -= crop_y[0]
assert image.shape[0] == crop or image.shape[1] == crop, (
"Error cropping image (original %d, here %d)!" % (im_idx,
running_idx))
assert image.shape[0] <= crop and image.shape[1] <= crop and image.shape[2] == 3, (
"Wrong image shape (original %d, here %d)!" % (im_idx, running_idx))
vis_im = vs.visualize_pose(image, landmark_pos, scale=1.)
if not (only_missing and out_exists):
scipy.misc.imsave(path.join(dset_fp, '%05d_image.png' % (running_idx)), image)
scipy.misc.imsave(path.join(dset_fp, '%05d_ann_vis.png' % (running_idx)), vis_im)
if with_rlswap and im_idx not in test_ids:
if landmark_pos.shape[1] == 14:
landmark_pos_swapped = landmark_pos[:, rlswap_lsp]
else:
landmark_pos_swapped = landmark_pos[:, rlswap_landmarks_91]
landmark_pos_swapped[0, :] = image.shape[1] - landmark_pos_swapped[0, :]
image_swapped = image[:, ::-1, :]
# Use core visualization for 14 joints.
vis_im_swapped = vs.visualize_pose(image_swapped,
landmark_pos_swapped,
scale=1)
if not (only_missing and out_exists):
scipy.misc.imsave(path.join(dset_fp, '%05d_image.png' % (running_idx + 1)),
image_swapped)
scipy.misc.imsave(path.join(dset_fp, '%05d_ann_vis.png' % (running_idx + 1)),
vis_im_swapped)
list_fs = []
list_id_ids = []
if im_idx in train_ids:
list_fs.append(train_val_list_f)
list_id_ids.append(2)
list_fs.append(train_list_f)
list_id_ids.append(0)
elif im_idx in val_ids:
list_fs.append(train_val_list_f)
list_id_ids.append(2)
list_fs.append(val_list_f)
list_id_ids.append(1)
elif im_idx in test_ids:
list_fs.append(test_list_f)
list_id_ids.append(3)
for list_f, list_id_idx in zip(list_fs, list_id_ids):
# pylint: disable=bad-continuation
list_f.write(
"""# %d
%s
3
%d
%d
%d
""" % (
list_ids[list_id_idx],
path.join('/' + dset_fromroot, '%05d_image.png' % (running_idx)),
image.shape[0],
image.shape[1],
landmark_pos.shape[1]))
for landmark_idx, landmark_point in enumerate(landmark_pos.T):
list_f.write("%d %d %d\n" % (landmark_idx + 1,
int(landmark_point[0]),
int(landmark_point[1])))
list_f.flush()
list_ids[list_id_idx] += 1
scale_f.write("%05d_image.png %f\n" % (running_idx, norm_factor))
scale_f.flush()
running_idx += 1
if with_rlswap and im_idx not in test_ids:
for list_f, list_id_idx in zip(list_fs, list_id_ids):
# pylint: disable=bad-continuation
list_f.write(
"""# %d
%s
3
%d
%d
%d
""" % (
list_ids[list_id_idx],
path.join('/' + dset_fromroot, '%05d_image.png' % (running_idx)),
image.shape[0],
image.shape[1],
landmark_pos.shape[1]))
for landmark_idx, landmark_point in enumerate(landmark_pos_swapped.T):
list_f.write("%d %d %d\n" % (landmark_idx + 1,
int(landmark_point[0]),
int(landmark_point[1])))
list_f.flush()
list_ids[list_id_idx] += 1
scale_f.write("%05d_image.png %f\n" % (running_idx, norm_factor))
scale_f.flush()
running_idx += 1
return running_idx | 1,293 |
def _compute_non_batch_kl(mu_a, sigma_a, mu_b, sigma_b):
"""Non-batch KL for N(mu_a, sigma_a), N(mu_b, sigma_b)."""
# Check using numpy operations
# This mostly repeats the tensorflow code _kl_mvn_mvn(), but in numpy.
# So it is important to also check that KL(mvn, mvn) = 0.
sigma_b_inv = np.linalg.inv(sigma_b)
t = np.trace(sigma_b_inv.dot(sigma_a))
q = (mu_b - mu_a).dot(sigma_b_inv).dot(mu_b - mu_a)
k = mu_a.shape[0]
l = np.log(np.linalg.det(sigma_b) / np.linalg.det(sigma_a))
return 0.5 * (t + q - k + l) | 1,294 |
def wait_until(fn, timeout, period, message):
"""
:param fn: callable function
:param timeout:
:param period:
:param message:
:return: bool
"""
mustend = time() + timeout
while time() < mustend:
if fn():
return True
sleep(period)
raise TimeoutError(message) | 1,295 |
def test_atomic_normalized_string_length_nistxml_sv_iv_atomic_normalized_string_length_1_4(mode, save_output, output_format):
"""
Type atomic/normalizedString is restricted by facet length with value
0.
"""
assert_bindings(
schema="nistData/atomic/normalizedString/Schema+Instance/NISTSchema-SV-IV-atomic-normalizedString-length-1.xsd",
instance="nistData/atomic/normalizedString/Schema+Instance/NISTXML-SV-IV-atomic-normalizedString-length-1-4.xml",
class_name="NistschemaSvIvAtomicNormalizedStringLength1",
version="1.1",
mode=mode,
save_output=save_output,
output_format=output_format,
structure_style="filenames",
) | 1,296 |
def proxy_wasm_cpp_host_fetch_remote_crates():
"""This function defines a collection of repos and should be called in a WORKSPACE file"""
maybe(
http_archive,
name = "proxy_wasm_cpp_host__addr2line__0_16_0",
url = "https://crates.io/api/v1/crates/addr2line/0.16.0/download",
type = "tar.gz",
sha256 = "3e61f2b7f93d2c7d2b08263acaa4a363b3e276806c68af6134c44f523bf1aacd",
strip_prefix = "addr2line-0.16.0",
build_file = Label("//bazel/cargo/remote:BUILD.addr2line-0.16.0.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__addr2line__0_17_0",
url = "https://crates.io/api/v1/crates/addr2line/0.17.0/download",
type = "tar.gz",
sha256 = "b9ecd88a8c8378ca913a680cd98f0f13ac67383d35993f86c90a70e3f137816b",
strip_prefix = "addr2line-0.17.0",
build_file = Label("//bazel/cargo/remote:BUILD.addr2line-0.17.0.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__adler__1_0_2",
url = "https://crates.io/api/v1/crates/adler/1.0.2/download",
type = "tar.gz",
sha256 = "f26201604c87b1e01bd3d98f8d5d9a8fcbb815e8cedb41ffccbeb4bf593a35fe",
strip_prefix = "adler-1.0.2",
build_file = Label("//bazel/cargo/remote:BUILD.adler-1.0.2.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__aho_corasick__0_7_18",
url = "https://crates.io/api/v1/crates/aho-corasick/0.7.18/download",
type = "tar.gz",
sha256 = "1e37cfd5e7657ada45f742d6e99ca5788580b5c529dc78faf11ece6dc702656f",
strip_prefix = "aho-corasick-0.7.18",
build_file = Label("//bazel/cargo/remote:BUILD.aho-corasick-0.7.18.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__ansi_term__0_11_0",
url = "https://crates.io/api/v1/crates/ansi_term/0.11.0/download",
type = "tar.gz",
sha256 = "ee49baf6cb617b853aa8d93bf420db2383fab46d314482ca2803b40d5fde979b",
strip_prefix = "ansi_term-0.11.0",
build_file = Label("//bazel/cargo/remote:BUILD.ansi_term-0.11.0.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__anyhow__1_0_45",
url = "https://crates.io/api/v1/crates/anyhow/1.0.45/download",
type = "tar.gz",
sha256 = "ee10e43ae4a853c0a3591d4e2ada1719e553be18199d9da9d4a83f5927c2f5c7",
strip_prefix = "anyhow-1.0.45",
build_file = Label("//bazel/cargo/remote:BUILD.anyhow-1.0.45.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__atty__0_2_14",
url = "https://crates.io/api/v1/crates/atty/0.2.14/download",
type = "tar.gz",
sha256 = "d9b39be18770d11421cdb1b9947a45dd3f37e93092cbf377614828a319d5fee8",
strip_prefix = "atty-0.2.14",
build_file = Label("//bazel/cargo/remote:BUILD.atty-0.2.14.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__autocfg__1_0_1",
url = "https://crates.io/api/v1/crates/autocfg/1.0.1/download",
type = "tar.gz",
sha256 = "cdb031dd78e28731d87d56cc8ffef4a8f36ca26c38fe2de700543e627f8a464a",
strip_prefix = "autocfg-1.0.1",
build_file = Label("//bazel/cargo/remote:BUILD.autocfg-1.0.1.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__backtrace__0_3_63",
url = "https://crates.io/api/v1/crates/backtrace/0.3.63/download",
type = "tar.gz",
sha256 = "321629d8ba6513061f26707241fa9bc89524ff1cd7a915a97ef0c62c666ce1b6",
strip_prefix = "backtrace-0.3.63",
build_file = Label("//bazel/cargo/remote:BUILD.backtrace-0.3.63.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__bincode__1_3_3",
url = "https://crates.io/api/v1/crates/bincode/1.3.3/download",
type = "tar.gz",
sha256 = "b1f45e9417d87227c7a56d22e471c6206462cba514c7590c09aff4cf6d1ddcad",
strip_prefix = "bincode-1.3.3",
build_file = Label("//bazel/cargo/remote:BUILD.bincode-1.3.3.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__bitflags__1_3_2",
url = "https://crates.io/api/v1/crates/bitflags/1.3.2/download",
type = "tar.gz",
sha256 = "bef38d45163c2f1dde094a7dfd33ccf595c92905c8f8f4fdc18d06fb1037718a",
strip_prefix = "bitflags-1.3.2",
build_file = Label("//bazel/cargo/remote:BUILD.bitflags-1.3.2.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__byteorder__1_4_3",
url = "https://crates.io/api/v1/crates/byteorder/1.4.3/download",
type = "tar.gz",
sha256 = "14c189c53d098945499cdfa7ecc63567cf3886b3332b312a5b4585d8d3a6a610",
strip_prefix = "byteorder-1.4.3",
build_file = Label("//bazel/cargo/remote:BUILD.byteorder-1.4.3.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__cc__1_0_72",
url = "https://crates.io/api/v1/crates/cc/1.0.72/download",
type = "tar.gz",
sha256 = "22a9137b95ea06864e018375b72adfb7db6e6f68cfc8df5a04d00288050485ee",
strip_prefix = "cc-1.0.72",
build_file = Label("//bazel/cargo/remote:BUILD.cc-1.0.72.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__cfg_if__1_0_0",
url = "https://crates.io/api/v1/crates/cfg-if/1.0.0/download",
type = "tar.gz",
sha256 = "baf1de4339761588bc0619e3cbc0120ee582ebb74b53b4efbf79117bd2da40fd",
strip_prefix = "cfg-if-1.0.0",
build_file = Label("//bazel/cargo/remote:BUILD.cfg-if-1.0.0.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__clap__2_33_3",
url = "https://crates.io/api/v1/crates/clap/2.33.3/download",
type = "tar.gz",
sha256 = "37e58ac78573c40708d45522f0d80fa2f01cc4f9b4e2bf749807255454312002",
strip_prefix = "clap-2.33.3",
build_file = Label("//bazel/cargo/remote:BUILD.clap-2.33.3.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__cpp_demangle__0_3_3",
url = "https://crates.io/api/v1/crates/cpp_demangle/0.3.3/download",
type = "tar.gz",
sha256 = "8ea47428dc9d2237f3c6bc134472edfd63ebba0af932e783506dcfd66f10d18a",
strip_prefix = "cpp_demangle-0.3.3",
build_file = Label("//bazel/cargo/remote:BUILD.cpp_demangle-0.3.3.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__cranelift_bforest__0_78_0",
url = "https://crates.io/api/v1/crates/cranelift-bforest/0.78.0/download",
type = "tar.gz",
sha256 = "cc0cb7df82c8cf8f2e6a8dd394a0932a71369c160cc9b027dca414fced242513",
strip_prefix = "cranelift-bforest-0.78.0",
build_file = Label("//bazel/cargo/remote:BUILD.cranelift-bforest-0.78.0.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__cranelift_codegen__0_78_0",
url = "https://crates.io/api/v1/crates/cranelift-codegen/0.78.0/download",
type = "tar.gz",
sha256 = "fe4463c15fa42eee909e61e5eac4866b7c6d22d0d8c621e57a0c5380753bfa8c",
strip_prefix = "cranelift-codegen-0.78.0",
build_file = Label("//bazel/cargo/remote:BUILD.cranelift-codegen-0.78.0.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__cranelift_codegen_meta__0_78_0",
url = "https://crates.io/api/v1/crates/cranelift-codegen-meta/0.78.0/download",
type = "tar.gz",
sha256 = "793f6a94a053a55404ea16e1700202a88101672b8cd6b4df63e13cde950852bf",
strip_prefix = "cranelift-codegen-meta-0.78.0",
build_file = Label("//bazel/cargo/remote:BUILD.cranelift-codegen-meta-0.78.0.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__cranelift_codegen_shared__0_78_0",
url = "https://crates.io/api/v1/crates/cranelift-codegen-shared/0.78.0/download",
type = "tar.gz",
sha256 = "44aa1846df275bce5eb30379d65964c7afc63c05a117076e62a119c25fe174be",
strip_prefix = "cranelift-codegen-shared-0.78.0",
build_file = Label("//bazel/cargo/remote:BUILD.cranelift-codegen-shared-0.78.0.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__cranelift_entity__0_78_0",
url = "https://crates.io/api/v1/crates/cranelift-entity/0.78.0/download",
type = "tar.gz",
sha256 = "a3a45d8d6318bf8fc518154d9298eab2a8154ec068a8885ff113f6db8d69bb3a",
strip_prefix = "cranelift-entity-0.78.0",
build_file = Label("//bazel/cargo/remote:BUILD.cranelift-entity-0.78.0.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__cranelift_frontend__0_78_0",
url = "https://crates.io/api/v1/crates/cranelift-frontend/0.78.0/download",
type = "tar.gz",
sha256 = "e07339bd461766deb7605169de039e01954768ff730fa1254e149001884a8525",
strip_prefix = "cranelift-frontend-0.78.0",
build_file = Label("//bazel/cargo/remote:BUILD.cranelift-frontend-0.78.0.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__cranelift_native__0_78_0",
url = "https://crates.io/api/v1/crates/cranelift-native/0.78.0/download",
type = "tar.gz",
sha256 = "03e2fca76ff57e0532936a71e3fc267eae6a19a86656716479c66e7f912e3d7b",
strip_prefix = "cranelift-native-0.78.0",
build_file = Label("//bazel/cargo/remote:BUILD.cranelift-native-0.78.0.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__cranelift_wasm__0_78_0",
url = "https://crates.io/api/v1/crates/cranelift-wasm/0.78.0/download",
type = "tar.gz",
sha256 = "1f46fec547a1f8a32c54ea61c28be4f4ad234ad95342b718a9a9adcaadb0c778",
strip_prefix = "cranelift-wasm-0.78.0",
build_file = Label("//bazel/cargo/remote:BUILD.cranelift-wasm-0.78.0.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__crc32fast__1_2_1",
url = "https://crates.io/api/v1/crates/crc32fast/1.2.1/download",
type = "tar.gz",
sha256 = "81156fece84ab6a9f2afdb109ce3ae577e42b1228441eded99bd77f627953b1a",
strip_prefix = "crc32fast-1.2.1",
build_file = Label("//bazel/cargo/remote:BUILD.crc32fast-1.2.1.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__ed25519_compact__0_1_11",
url = "https://crates.io/api/v1/crates/ed25519-compact/0.1.11/download",
type = "tar.gz",
sha256 = "f1f45ef578ef75efffba301628066d951042f6e988f21f8b548928468ba5877b",
strip_prefix = "ed25519-compact-0.1.11",
build_file = Label("//bazel/cargo/remote:BUILD.ed25519-compact-0.1.11.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__either__1_6_1",
url = "https://crates.io/api/v1/crates/either/1.6.1/download",
type = "tar.gz",
sha256 = "e78d4f1cc4ae33bbfc157ed5d5a5ef3bc29227303d595861deb238fcec4e9457",
strip_prefix = "either-1.6.1",
build_file = Label("//bazel/cargo/remote:BUILD.either-1.6.1.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__env_logger__0_8_4",
url = "https://crates.io/api/v1/crates/env_logger/0.8.4/download",
type = "tar.gz",
sha256 = "a19187fea3ac7e84da7dacf48de0c45d63c6a76f9490dae389aead16c243fce3",
strip_prefix = "env_logger-0.8.4",
build_file = Label("//bazel/cargo/remote:BUILD.env_logger-0.8.4.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__errno__0_2_8",
url = "https://crates.io/api/v1/crates/errno/0.2.8/download",
type = "tar.gz",
sha256 = "f639046355ee4f37944e44f60642c6f3a7efa3cf6b78c78a0d989a8ce6c396a1",
strip_prefix = "errno-0.2.8",
build_file = Label("//bazel/cargo/remote:BUILD.errno-0.2.8.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__errno_dragonfly__0_1_2",
url = "https://crates.io/api/v1/crates/errno-dragonfly/0.1.2/download",
type = "tar.gz",
sha256 = "aa68f1b12764fab894d2755d2518754e71b4fd80ecfb822714a1206c2aab39bf",
strip_prefix = "errno-dragonfly-0.1.2",
build_file = Label("//bazel/cargo/remote:BUILD.errno-dragonfly-0.1.2.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__fallible_iterator__0_2_0",
url = "https://crates.io/api/v1/crates/fallible-iterator/0.2.0/download",
type = "tar.gz",
sha256 = "4443176a9f2c162692bd3d352d745ef9413eec5782a80d8fd6f8a1ac692a07f7",
strip_prefix = "fallible-iterator-0.2.0",
build_file = Label("//bazel/cargo/remote:BUILD.fallible-iterator-0.2.0.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__getrandom__0_2_3",
url = "https://crates.io/api/v1/crates/getrandom/0.2.3/download",
type = "tar.gz",
sha256 = "7fcd999463524c52659517fe2cea98493cfe485d10565e7b0fb07dbba7ad2753",
strip_prefix = "getrandom-0.2.3",
build_file = Label("//bazel/cargo/remote:BUILD.getrandom-0.2.3.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__gimli__0_25_0",
url = "https://crates.io/api/v1/crates/gimli/0.25.0/download",
type = "tar.gz",
sha256 = "f0a01e0497841a3b2db4f8afa483cce65f7e96a3498bd6c541734792aeac8fe7",
strip_prefix = "gimli-0.25.0",
build_file = Label("//bazel/cargo/remote:BUILD.gimli-0.25.0.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__gimli__0_26_1",
url = "https://crates.io/api/v1/crates/gimli/0.26.1/download",
type = "tar.gz",
sha256 = "78cc372d058dcf6d5ecd98510e7fbc9e5aec4d21de70f65fea8fecebcd881bd4",
strip_prefix = "gimli-0.26.1",
build_file = Label("//bazel/cargo/remote:BUILD.gimli-0.26.1.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__hashbrown__0_11_2",
url = "https://crates.io/api/v1/crates/hashbrown/0.11.2/download",
type = "tar.gz",
sha256 = "ab5ef0d4909ef3724cc8cce6ccc8572c5c817592e9285f5464f8e86f8bd3726e",
strip_prefix = "hashbrown-0.11.2",
build_file = Label("//bazel/cargo/remote:BUILD.hashbrown-0.11.2.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__hermit_abi__0_1_19",
url = "https://crates.io/api/v1/crates/hermit-abi/0.1.19/download",
type = "tar.gz",
sha256 = "62b467343b94ba476dcb2500d242dadbb39557df889310ac77c5d99100aaac33",
strip_prefix = "hermit-abi-0.1.19",
build_file = Label("//bazel/cargo/remote:BUILD.hermit-abi-0.1.19.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__hmac_sha512__0_1_9",
url = "https://crates.io/api/v1/crates/hmac-sha512/0.1.9/download",
type = "tar.gz",
sha256 = "77e806677ce663d0a199541030c816847b36e8dc095f70dae4a4f4ad63da5383",
strip_prefix = "hmac-sha512-0.1.9",
build_file = Label("//bazel/cargo/remote:BUILD.hmac-sha512-0.1.9.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__humantime__2_1_0",
url = "https://crates.io/api/v1/crates/humantime/2.1.0/download",
type = "tar.gz",
sha256 = "9a3a5bfb195931eeb336b2a7b4d761daec841b97f947d34394601737a7bba5e4",
strip_prefix = "humantime-2.1.0",
build_file = Label("//bazel/cargo/remote:BUILD.humantime-2.1.0.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__indexmap__1_7_0",
url = "https://crates.io/api/v1/crates/indexmap/1.7.0/download",
type = "tar.gz",
sha256 = "bc633605454125dec4b66843673f01c7df2b89479b32e0ed634e43a91cff62a5",
strip_prefix = "indexmap-1.7.0",
build_file = Label("//bazel/cargo/remote:BUILD.indexmap-1.7.0.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__io_lifetimes__0_3_3",
url = "https://crates.io/api/v1/crates/io-lifetimes/0.3.3/download",
type = "tar.gz",
sha256 = "278e90d6f8a6c76a8334b336e306efa3c5f2b604048cbfd486d6f49878e3af14",
strip_prefix = "io-lifetimes-0.3.3",
build_file = Label("//bazel/cargo/remote:BUILD.io-lifetimes-0.3.3.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__itertools__0_10_1",
url = "https://crates.io/api/v1/crates/itertools/0.10.1/download",
type = "tar.gz",
sha256 = "69ddb889f9d0d08a67338271fa9b62996bc788c7796a5c18cf057420aaed5eaf",
strip_prefix = "itertools-0.10.1",
build_file = Label("//bazel/cargo/remote:BUILD.itertools-0.10.1.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__itoa__0_4_8",
url = "https://crates.io/api/v1/crates/itoa/0.4.8/download",
type = "tar.gz",
sha256 = "b71991ff56294aa922b450139ee08b3bfc70982c6b2c7562771375cf73542dd4",
strip_prefix = "itoa-0.4.8",
build_file = Label("//bazel/cargo/remote:BUILD.itoa-0.4.8.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__lazy_static__1_4_0",
url = "https://crates.io/api/v1/crates/lazy_static/1.4.0/download",
type = "tar.gz",
sha256 = "e2abad23fbc42b3700f2f279844dc832adb2b2eb069b2df918f455c4e18cc646",
strip_prefix = "lazy_static-1.4.0",
build_file = Label("//bazel/cargo/remote:BUILD.lazy_static-1.4.0.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__libc__0_2_107",
url = "https://crates.io/api/v1/crates/libc/0.2.107/download",
type = "tar.gz",
sha256 = "fbe5e23404da5b4f555ef85ebed98fb4083e55a00c317800bc2a50ede9f3d219",
strip_prefix = "libc-0.2.107",
build_file = Label("//bazel/cargo/remote:BUILD.libc-0.2.107.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__linux_raw_sys__0_0_28",
url = "https://crates.io/api/v1/crates/linux-raw-sys/0.0.28/download",
type = "tar.gz",
sha256 = "687387ff42ec7ea4f2149035a5675fedb675d26f98db90a1846ac63d3addb5f5",
strip_prefix = "linux-raw-sys-0.0.28",
build_file = Label("//bazel/cargo/remote:BUILD.linux-raw-sys-0.0.28.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__log__0_4_14",
url = "https://crates.io/api/v1/crates/log/0.4.14/download",
type = "tar.gz",
sha256 = "51b9bbe6c47d51fc3e1a9b945965946b4c44142ab8792c50835a980d362c2710",
strip_prefix = "log-0.4.14",
build_file = Label("//bazel/cargo/remote:BUILD.log-0.4.14.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__mach__0_3_2",
url = "https://crates.io/api/v1/crates/mach/0.3.2/download",
type = "tar.gz",
sha256 = "b823e83b2affd8f40a9ee8c29dbc56404c1e34cd2710921f2801e2cf29527afa",
strip_prefix = "mach-0.3.2",
build_file = Label("//bazel/cargo/remote:BUILD.mach-0.3.2.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__memchr__2_4_1",
url = "https://crates.io/api/v1/crates/memchr/2.4.1/download",
type = "tar.gz",
sha256 = "308cc39be01b73d0d18f82a0e7b2a3df85245f84af96fdddc5d202d27e47b86a",
strip_prefix = "memchr-2.4.1",
build_file = Label("//bazel/cargo/remote:BUILD.memchr-2.4.1.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__memoffset__0_6_4",
url = "https://crates.io/api/v1/crates/memoffset/0.6.4/download",
type = "tar.gz",
sha256 = "59accc507f1338036a0477ef61afdae33cde60840f4dfe481319ce3ad116ddf9",
strip_prefix = "memoffset-0.6.4",
build_file = Label("//bazel/cargo/remote:BUILD.memoffset-0.6.4.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__miniz_oxide__0_4_4",
url = "https://crates.io/api/v1/crates/miniz_oxide/0.4.4/download",
type = "tar.gz",
sha256 = "a92518e98c078586bc6c934028adcca4c92a53d6a958196de835170a01d84e4b",
strip_prefix = "miniz_oxide-0.4.4",
build_file = Label("//bazel/cargo/remote:BUILD.miniz_oxide-0.4.4.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__more_asserts__0_2_1",
url = "https://crates.io/api/v1/crates/more-asserts/0.2.1/download",
type = "tar.gz",
sha256 = "0debeb9fcf88823ea64d64e4a815ab1643f33127d995978e099942ce38f25238",
strip_prefix = "more-asserts-0.2.1",
build_file = Label("//bazel/cargo/remote:BUILD.more-asserts-0.2.1.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__object__0_27_1",
url = "https://crates.io/api/v1/crates/object/0.27.1/download",
type = "tar.gz",
sha256 = "67ac1d3f9a1d3616fd9a60c8d74296f22406a238b6a72f5cc1e6f314df4ffbf9",
strip_prefix = "object-0.27.1",
build_file = Label("//bazel/cargo/remote:BUILD.object-0.27.1.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__once_cell__1_8_0",
url = "https://crates.io/api/v1/crates/once_cell/1.8.0/download",
type = "tar.gz",
sha256 = "692fcb63b64b1758029e0a96ee63e049ce8c5948587f2f7208df04625e5f6b56",
strip_prefix = "once_cell-1.8.0",
build_file = Label("//bazel/cargo/remote:BUILD.once_cell-1.8.0.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__parity_wasm__0_42_2",
url = "https://crates.io/api/v1/crates/parity-wasm/0.42.2/download",
type = "tar.gz",
sha256 = "be5e13c266502aadf83426d87d81a0f5d1ef45b8027f5a471c360abfe4bfae92",
strip_prefix = "parity-wasm-0.42.2",
build_file = Label("//bazel/cargo/remote:BUILD.parity-wasm-0.42.2.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__paste__1_0_6",
url = "https://crates.io/api/v1/crates/paste/1.0.6/download",
type = "tar.gz",
sha256 = "0744126afe1a6dd7f394cb50a716dbe086cb06e255e53d8d0185d82828358fb5",
strip_prefix = "paste-1.0.6",
build_file = Label("//bazel/cargo/remote:BUILD.paste-1.0.6.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__ppv_lite86__0_2_15",
url = "https://crates.io/api/v1/crates/ppv-lite86/0.2.15/download",
type = "tar.gz",
sha256 = "ed0cfbc8191465bed66e1718596ee0b0b35d5ee1f41c5df2189d0fe8bde535ba",
strip_prefix = "ppv-lite86-0.2.15",
build_file = Label("//bazel/cargo/remote:BUILD.ppv-lite86-0.2.15.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__proc_macro2__1_0_32",
url = "https://crates.io/api/v1/crates/proc-macro2/1.0.32/download",
type = "tar.gz",
sha256 = "ba508cc11742c0dc5c1659771673afbab7a0efab23aa17e854cbab0837ed0b43",
strip_prefix = "proc-macro2-1.0.32",
build_file = Label("//bazel/cargo/remote:BUILD.proc-macro2-1.0.32.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__psm__0_1_16",
url = "https://crates.io/api/v1/crates/psm/0.1.16/download",
type = "tar.gz",
sha256 = "cd136ff4382c4753fc061cb9e4712ab2af263376b95bbd5bd8cd50c020b78e69",
strip_prefix = "psm-0.1.16",
build_file = Label("//bazel/cargo/remote:BUILD.psm-0.1.16.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__quote__1_0_10",
url = "https://crates.io/api/v1/crates/quote/1.0.10/download",
type = "tar.gz",
sha256 = "38bc8cc6a5f2e3655e0899c1b848643b2562f853f114bfec7be120678e3ace05",
strip_prefix = "quote-1.0.10",
build_file = Label("//bazel/cargo/remote:BUILD.quote-1.0.10.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__rand__0_8_4",
url = "https://crates.io/api/v1/crates/rand/0.8.4/download",
type = "tar.gz",
sha256 = "2e7573632e6454cf6b99d7aac4ccca54be06da05aca2ef7423d22d27d4d4bcd8",
strip_prefix = "rand-0.8.4",
build_file = Label("//bazel/cargo/remote:BUILD.rand-0.8.4.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__rand_chacha__0_3_1",
url = "https://crates.io/api/v1/crates/rand_chacha/0.3.1/download",
type = "tar.gz",
sha256 = "e6c10a63a0fa32252be49d21e7709d4d4baf8d231c2dbce1eaa8141b9b127d88",
strip_prefix = "rand_chacha-0.3.1",
build_file = Label("//bazel/cargo/remote:BUILD.rand_chacha-0.3.1.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__rand_core__0_6_3",
url = "https://crates.io/api/v1/crates/rand_core/0.6.3/download",
type = "tar.gz",
sha256 = "d34f1408f55294453790c48b2f1ebbb1c5b4b7563eb1f418bcfcfdbb06ebb4e7",
strip_prefix = "rand_core-0.6.3",
build_file = Label("//bazel/cargo/remote:BUILD.rand_core-0.6.3.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__rand_hc__0_3_1",
url = "https://crates.io/api/v1/crates/rand_hc/0.3.1/download",
type = "tar.gz",
sha256 = "d51e9f596de227fda2ea6c84607f5558e196eeaf43c986b724ba4fb8fdf497e7",
strip_prefix = "rand_hc-0.3.1",
build_file = Label("//bazel/cargo/remote:BUILD.rand_hc-0.3.1.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__regalloc__0_0_32",
url = "https://crates.io/api/v1/crates/regalloc/0.0.32/download",
type = "tar.gz",
sha256 = "a6304468554ed921da3d32c355ea107b8d13d7b8996c3adfb7aab48d3bc321f4",
strip_prefix = "regalloc-0.0.32",
build_file = Label("//bazel/cargo/remote:BUILD.regalloc-0.0.32.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__regex__1_5_4",
url = "https://crates.io/api/v1/crates/regex/1.5.4/download",
type = "tar.gz",
sha256 = "d07a8629359eb56f1e2fb1652bb04212c072a87ba68546a04065d525673ac461",
strip_prefix = "regex-1.5.4",
build_file = Label("//bazel/cargo/remote:BUILD.regex-1.5.4.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__regex_syntax__0_6_25",
url = "https://crates.io/api/v1/crates/regex-syntax/0.6.25/download",
type = "tar.gz",
sha256 = "f497285884f3fcff424ffc933e56d7cbca511def0c9831a7f9b5f6153e3cc89b",
strip_prefix = "regex-syntax-0.6.25",
build_file = Label("//bazel/cargo/remote:BUILD.regex-syntax-0.6.25.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__region__2_2_0",
url = "https://crates.io/api/v1/crates/region/2.2.0/download",
type = "tar.gz",
sha256 = "877e54ea2adcd70d80e9179344c97f93ef0dffd6b03e1f4529e6e83ab2fa9ae0",
strip_prefix = "region-2.2.0",
build_file = Label("//bazel/cargo/remote:BUILD.region-2.2.0.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__rsix__0_23_9",
url = "https://crates.io/api/v1/crates/rsix/0.23.9/download",
type = "tar.gz",
sha256 = "1f64c5788d5aab8b75441499d99576a24eb09f76fb267b36fec7e3d970c66431",
strip_prefix = "rsix-0.23.9",
build_file = Label("//bazel/cargo/remote:BUILD.rsix-0.23.9.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__rustc_demangle__0_1_21",
url = "https://crates.io/api/v1/crates/rustc-demangle/0.1.21/download",
type = "tar.gz",
sha256 = "7ef03e0a2b150c7a90d01faf6254c9c48a41e95fb2a8c2ac1c6f0d2b9aefc342",
strip_prefix = "rustc-demangle-0.1.21",
build_file = Label("//bazel/cargo/remote:BUILD.rustc-demangle-0.1.21.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__rustc_hash__1_1_0",
url = "https://crates.io/api/v1/crates/rustc-hash/1.1.0/download",
type = "tar.gz",
sha256 = "08d43f7aa6b08d49f382cde6a7982047c3426db949b1424bc4b7ec9ae12c6ce2",
strip_prefix = "rustc-hash-1.1.0",
build_file = Label("//bazel/cargo/remote:BUILD.rustc-hash-1.1.0.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__rustc_version__0_4_0",
url = "https://crates.io/api/v1/crates/rustc_version/0.4.0/download",
type = "tar.gz",
sha256 = "bfa0f585226d2e68097d4f95d113b15b83a82e819ab25717ec0590d9584ef366",
strip_prefix = "rustc_version-0.4.0",
build_file = Label("//bazel/cargo/remote:BUILD.rustc_version-0.4.0.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__semver__1_0_4",
url = "https://crates.io/api/v1/crates/semver/1.0.4/download",
type = "tar.gz",
sha256 = "568a8e6258aa33c13358f81fd834adb854c6f7c9468520910a9b1e8fac068012",
strip_prefix = "semver-1.0.4",
build_file = Label("//bazel/cargo/remote:BUILD.semver-1.0.4.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__serde__1_0_130",
url = "https://crates.io/api/v1/crates/serde/1.0.130/download",
type = "tar.gz",
sha256 = "f12d06de37cf59146fbdecab66aa99f9fe4f78722e3607577a5375d66bd0c913",
strip_prefix = "serde-1.0.130",
build_file = Label("//bazel/cargo/remote:BUILD.serde-1.0.130.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__serde_derive__1_0_130",
url = "https://crates.io/api/v1/crates/serde_derive/1.0.130/download",
type = "tar.gz",
sha256 = "d7bc1a1ab1961464eae040d96713baa5a724a8152c1222492465b54322ec508b",
strip_prefix = "serde_derive-1.0.130",
build_file = Label("//bazel/cargo/remote:BUILD.serde_derive-1.0.130.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__smallvec__1_7_0",
url = "https://crates.io/api/v1/crates/smallvec/1.7.0/download",
type = "tar.gz",
sha256 = "1ecab6c735a6bb4139c0caafd0cc3635748bbb3acf4550e8138122099251f309",
strip_prefix = "smallvec-1.7.0",
build_file = Label("//bazel/cargo/remote:BUILD.smallvec-1.7.0.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__stable_deref_trait__1_2_0",
url = "https://crates.io/api/v1/crates/stable_deref_trait/1.2.0/download",
type = "tar.gz",
sha256 = "a8f112729512f8e442d81f95a8a7ddf2b7c6b8a1a6f509a95864142b30cab2d3",
strip_prefix = "stable_deref_trait-1.2.0",
build_file = Label("//bazel/cargo/remote:BUILD.stable_deref_trait-1.2.0.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__strsim__0_8_0",
url = "https://crates.io/api/v1/crates/strsim/0.8.0/download",
type = "tar.gz",
sha256 = "8ea5119cdb4c55b55d432abb513a0429384878c15dde60cc77b1c99de1a95a6a",
strip_prefix = "strsim-0.8.0",
build_file = Label("//bazel/cargo/remote:BUILD.strsim-0.8.0.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__syn__1_0_81",
url = "https://crates.io/api/v1/crates/syn/1.0.81/download",
type = "tar.gz",
sha256 = "f2afee18b8beb5a596ecb4a2dce128c719b4ba399d34126b9e4396e3f9860966",
strip_prefix = "syn-1.0.81",
build_file = Label("//bazel/cargo/remote:BUILD.syn-1.0.81.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__target_lexicon__0_12_2",
url = "https://crates.io/api/v1/crates/target-lexicon/0.12.2/download",
type = "tar.gz",
sha256 = "d9bffcddbc2458fa3e6058414599e3c838a022abae82e5c67b4f7f80298d5bff",
strip_prefix = "target-lexicon-0.12.2",
build_file = Label("//bazel/cargo/remote:BUILD.target-lexicon-0.12.2.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__termcolor__1_1_2",
url = "https://crates.io/api/v1/crates/termcolor/1.1.2/download",
type = "tar.gz",
sha256 = "2dfed899f0eb03f32ee8c6a0aabdb8a7949659e3466561fc0adf54e26d88c5f4",
strip_prefix = "termcolor-1.1.2",
build_file = Label("//bazel/cargo/remote:BUILD.termcolor-1.1.2.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__textwrap__0_11_0",
url = "https://crates.io/api/v1/crates/textwrap/0.11.0/download",
type = "tar.gz",
sha256 = "d326610f408c7a4eb6f51c37c330e496b08506c9457c9d34287ecc38809fb060",
strip_prefix = "textwrap-0.11.0",
build_file = Label("//bazel/cargo/remote:BUILD.textwrap-0.11.0.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__thiserror__1_0_30",
url = "https://crates.io/api/v1/crates/thiserror/1.0.30/download",
type = "tar.gz",
sha256 = "854babe52e4df1653706b98fcfc05843010039b406875930a70e4d9644e5c417",
strip_prefix = "thiserror-1.0.30",
build_file = Label("//bazel/cargo/remote:BUILD.thiserror-1.0.30.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__thiserror_impl__1_0_30",
url = "https://crates.io/api/v1/crates/thiserror-impl/1.0.30/download",
type = "tar.gz",
sha256 = "aa32fd3f627f367fe16f893e2597ae3c05020f8bba2666a4e6ea73d377e5714b",
strip_prefix = "thiserror-impl-1.0.30",
build_file = Label("//bazel/cargo/remote:BUILD.thiserror-impl-1.0.30.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__unicode_width__0_1_9",
url = "https://crates.io/api/v1/crates/unicode-width/0.1.9/download",
type = "tar.gz",
sha256 = "3ed742d4ea2bd1176e236172c8429aaf54486e7ac098db29ffe6529e0ce50973",
strip_prefix = "unicode-width-0.1.9",
build_file = Label("//bazel/cargo/remote:BUILD.unicode-width-0.1.9.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__unicode_xid__0_2_2",
url = "https://crates.io/api/v1/crates/unicode-xid/0.2.2/download",
type = "tar.gz",
sha256 = "8ccb82d61f80a663efe1f787a51b16b5a51e3314d6ac365b08639f52387b33f3",
strip_prefix = "unicode-xid-0.2.2",
build_file = Label("//bazel/cargo/remote:BUILD.unicode-xid-0.2.2.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__vec_map__0_8_2",
url = "https://crates.io/api/v1/crates/vec_map/0.8.2/download",
type = "tar.gz",
sha256 = "f1bddf1187be692e79c5ffeab891132dfb0f236ed36a43c7ed39f1165ee20191",
strip_prefix = "vec_map-0.8.2",
build_file = Label("//bazel/cargo/remote:BUILD.vec_map-0.8.2.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__wasi__0_10_2_wasi_snapshot_preview1",
url = "https://crates.io/api/v1/crates/wasi/0.10.2+wasi-snapshot-preview1/download",
type = "tar.gz",
sha256 = "fd6fbd9a79829dd1ad0cc20627bf1ed606756a7f77edff7b66b7064f9cb327c6",
strip_prefix = "wasi-0.10.2+wasi-snapshot-preview1",
build_file = Label("//bazel/cargo/remote:BUILD.wasi-0.10.2+wasi-snapshot-preview1.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__wasmparser__0_81_0",
url = "https://crates.io/api/v1/crates/wasmparser/0.81.0/download",
type = "tar.gz",
sha256 = "98930446519f63d00a836efdc22f67766ceae8dbcc1571379f2bcabc6b2b9abc",
strip_prefix = "wasmparser-0.81.0",
build_file = Label("//bazel/cargo/remote:BUILD.wasmparser-0.81.0.bazel"),
)
maybe(
new_git_repository,
name = "proxy_wasm_cpp_host__wasmsign__0_1_2",
remote = "https://github.com/jedisct1/wasmsign",
commit = "fa4d5598f778390df09be94232972b5b865a56b8",
build_file = Label("//bazel/cargo/remote:BUILD.wasmsign-0.1.2.bazel"),
init_submodules = True,
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__wasmtime__0_31_0",
url = "https://crates.io/api/v1/crates/wasmtime/0.31.0/download",
type = "tar.gz",
sha256 = "311d06b0c49346d1fbf48a17052e844036b95a7753c1afb34e8c0af3f6b5bb13",
strip_prefix = "wasmtime-0.31.0",
build_file = Label("//bazel/cargo/remote:BUILD.wasmtime-0.31.0.bazel"),
)
maybe(
new_git_repository,
name = "proxy_wasm_cpp_host__wasmtime_c_api_macros__0_19_0",
remote = "https://github.com/bytecodealliance/wasmtime",
commit = "c1a6a0523dbc59d176f708ea3d04e6edb48480ec",
build_file = Label("//bazel/cargo/remote:BUILD.wasmtime-c-api-macros-0.19.0.bazel"),
init_submodules = True,
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__wasmtime_cranelift__0_31_0",
url = "https://crates.io/api/v1/crates/wasmtime-cranelift/0.31.0/download",
type = "tar.gz",
sha256 = "ab3083a47e1ede38aac06a1d9831640d673f9aeda0b82a64e4ce002f3432e2e7",
strip_prefix = "wasmtime-cranelift-0.31.0",
build_file = Label("//bazel/cargo/remote:BUILD.wasmtime-cranelift-0.31.0.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__wasmtime_environ__0_31_0",
url = "https://crates.io/api/v1/crates/wasmtime-environ/0.31.0/download",
type = "tar.gz",
sha256 = "1c2d194b655321053bc4111a1aa4ead552655c8a17d17264bc97766e70073510",
strip_prefix = "wasmtime-environ-0.31.0",
build_file = Label("//bazel/cargo/remote:BUILD.wasmtime-environ-0.31.0.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__wasmtime_jit__0_31_0",
url = "https://crates.io/api/v1/crates/wasmtime-jit/0.31.0/download",
type = "tar.gz",
sha256 = "864ac8dfe4ce310ac59f16fdbd560c257389cb009ee5d030ac6e30523b023d11",
strip_prefix = "wasmtime-jit-0.31.0",
build_file = Label("//bazel/cargo/remote:BUILD.wasmtime-jit-0.31.0.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__wasmtime_runtime__0_31_0",
url = "https://crates.io/api/v1/crates/wasmtime-runtime/0.31.0/download",
type = "tar.gz",
sha256 = "ab97da813a26b98c9abfd3b0c2d99e42f6b78b749c0646344e2e262d212d8c8b",
strip_prefix = "wasmtime-runtime-0.31.0",
build_file = Label("//bazel/cargo/remote:BUILD.wasmtime-runtime-0.31.0.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__wasmtime_types__0_31_0",
url = "https://crates.io/api/v1/crates/wasmtime-types/0.31.0/download",
type = "tar.gz",
sha256 = "ff94409cc3557bfbbcce6b14520ccd6bd3727e965c0fe68d63ef2c185bf379c6",
strip_prefix = "wasmtime-types-0.31.0",
build_file = Label("//bazel/cargo/remote:BUILD.wasmtime-types-0.31.0.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__winapi__0_3_9",
url = "https://crates.io/api/v1/crates/winapi/0.3.9/download",
type = "tar.gz",
sha256 = "5c839a674fcd7a98952e593242ea400abe93992746761e38641405d28b00f419",
strip_prefix = "winapi-0.3.9",
build_file = Label("//bazel/cargo/remote:BUILD.winapi-0.3.9.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__winapi_i686_pc_windows_gnu__0_4_0",
url = "https://crates.io/api/v1/crates/winapi-i686-pc-windows-gnu/0.4.0/download",
type = "tar.gz",
sha256 = "ac3b87c63620426dd9b991e5ce0329eff545bccbbb34f3be09ff6fb6ab51b7b6",
strip_prefix = "winapi-i686-pc-windows-gnu-0.4.0",
build_file = Label("//bazel/cargo/remote:BUILD.winapi-i686-pc-windows-gnu-0.4.0.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__winapi_util__0_1_5",
url = "https://crates.io/api/v1/crates/winapi-util/0.1.5/download",
type = "tar.gz",
sha256 = "70ec6ce85bb158151cae5e5c87f95a8e97d2c0c4b001223f33a334e3ce5de178",
strip_prefix = "winapi-util-0.1.5",
build_file = Label("//bazel/cargo/remote:BUILD.winapi-util-0.1.5.bazel"),
)
maybe(
http_archive,
name = "proxy_wasm_cpp_host__winapi_x86_64_pc_windows_gnu__0_4_0",
url = "https://crates.io/api/v1/crates/winapi-x86_64-pc-windows-gnu/0.4.0/download",
type = "tar.gz",
sha256 = "712e227841d057c1ee1cd2fb22fa7e5a5461ae8e48fa2ca79ec42cfc1931183f",
strip_prefix = "winapi-x86_64-pc-windows-gnu-0.4.0",
build_file = Label("//bazel/cargo/remote:BUILD.winapi-x86_64-pc-windows-gnu-0.4.0.bazel"),
) | 1,297 |
def single_test(model, testdata, max_seq_len=20):
"""Get accuracy for a single model and dataloader.
Args:
model (nn.Module): MCTN2 Model
testdata (torch.utils.data.DataLoader): Test Dataloader
max_seq_len (int, optional): Maximum sequence length. Defaults to 20.
Returns:
_type_: _description_
"""
model.eval()
print('Start Testing ---------->>')
pred = []
true = []
with torch.no_grad():
for i, inputs in enumerate(testdata):
# process input
src, _, _, labels, _ = _process_input_L2(inputs, max_seq_len)
# We only need the source text as input! No need for target!
_, _, _, head_out = model(src)
pred.append(head_out)
true.append(labels)
eval_results_include = eval_mosei_senti_return(
torch.cat(pred, 0), torch.cat(true, 0), exclude_zero=False)
eval_results_exclude = eval_mosei_senti_return(
torch.cat(pred, 0), torch.cat(true, 0), exclude_zero=True)
mae = eval_results_include[0]
Acc1 = eval_results_include[-1]
Acc2 = eval_results_exclude[-1]
print('Test: MAE: {}, Acc1: {}, Acc2: {}'.format(mae, Acc1, Acc2))
return {'Acc:': Acc2} | 1,298 |
def generate_tiled_html_result(slide_nums, tile_summaries_dict, data_link):
"""
Generate HTML to view the tiled images.
Args:
slide_nums: List of slide numbers.
tile_summaries_dict: Dictionary of TileSummary objects keyed by slide number.
data_link: If True, add link to tile data csv file.
"""
slide_nums = sorted(slide_nums)
if not slide.TILE_SUMMARY_PAGINATE:
html = ""
html += filter.html_header("Tiles")
html += " <table>\n"
for slide_num in slide_nums:
html += image_row(slide_num, data_link)
html += " </table>\n"
html += filter.html_footer()
text_file = open(os.path.join(slide.TILE_SUMMARY_HTML_DIR, "tiles.html"), "w")
text_file.write(html)
text_file.close()
else:
total_len = len(slide_nums)
page_size = slide.TILE_SUMMARY_PAGINATION_SIZE
num_pages = math.ceil(total_len / page_size)
for page_num in range(1, num_pages + 1):
start_index = (page_num - 1) * page_size
end_index = (page_num * page_size) if (page_num < num_pages) else total_len
page_slide_nums = slide_nums[start_index:end_index]
html = ""
html += filter.html_header("Tiles, Page %d" % page_num)
html += " <div style=\"font-size: 20px\">"
if page_num > 1:
if page_num == 2:
html += "<a href=\"tiles.html\"><</a> "
else:
html += "<a href=\"tiles-%d.html\"><</a> " % (page_num - 1)
html += "Page %d" % page_num
if page_num < num_pages:
html += " <a href=\"tiles-%d.html\">></a> " % (page_num + 1)
html += "</div>\n"
html += " <table>\n"
for slide_num in page_slide_nums:
tile_summary = tile_summaries_dict[slide_num]
html += image_row(slide_num, tile_summary, data_link)
html += " </table>\n"
html += filter.html_footer()
if page_num == 1:
text_file = open(os.path.join(slide.TILE_SUMMARY_HTML_DIR, "tiles.html"), "w")
else:
text_file = open(os.path.join(slide.TILE_SUMMARY_HTML_DIR, "tiles-%d.html" % page_num), "w")
text_file.write(html)
text_file.close() | 1,299 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.