content
stringlengths 35
416k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
---|---|---|
def test_bitwise_and(a, b):
"""
>>> test_bitwise_and(0b01, 0b10)
0L
>>> test_bitwise_and(0b01, 0b11)
1L
>>> test_bitwise_and(0b01, 2.0)
Traceback (most recent call last):
...
NumbaError: 27:15: Expected an int, or object, or bool
>>> test_bitwise_and(2.0, 0b01)
Traceback (most recent call last):
...
NumbaError: 27:11: Expected an int, or object, or bool
"""
return a & b | 0855921300751368eb0ad3f3cba37b6ddac759fd | 4,494 |
def offer_in_influencing_offers(offerId, influencing_offers):
"""
Find if a passed offerId is in the influencing_offers list
Parameters
----------
offerId: Offer Id from portfolio dataframe.
influencing_offers : List of offers found for a customer
Returns
-------
1 if offer is found 0 if not found
"""
if (offerId in influencing_offers):
return 1
else:
return 0 | 81c4a8bcb7432222a1fc5175449192681002539c | 4,496 |
def compara_dv(cpf, primeiro_dv, segundo_dv):
"""Valida se dígitos verificadores calculados são iguais aos inseridos."""
return "válido" if primeiro_dv == int(cpf[9]) and segundo_dv == int(cpf[10]) else "inválido" | 4b1794f466ce8c00e91c8c5f281996ea262591f8 | 4,497 |
def write_file(file_name, data, line_length):
""" Writes the results to a text file using a name based on file_name
input: string, list
returns: int
"""
pos = file_name.rfind('.')
fn_o = file_name[:pos] + '.OUT' + file_name[pos:]
f = open(fn_o, "w")
for fsn, sequence in data:
f.write(fsn + '\n')
l_length = len(sequence) if line_length == 0 else line_length
for p in range(0, len(sequence), l_length):
f.write(sequence[p:p+l_length] + '\n')
f.close()
return len(data) | 0ad1b25106a6c9120289e8d55caafbebf475f9d5 | 4,498 |
def poisson_moment( k, n):
"""
returns the moment of x**n with expectation value k
CURRENTLY A SET OF HARD CODED EXPRESSIONS! VERY FRAGILE!
--> would be *much* better if we could do this algorithmically
"""
if n==0:
return 1
elif n==1:
return k
elif n==2:
return k**2 + k
elif n==3:
return k**3 + 3*k**2 + k
elif n==4:
return k**4 + 6*k**3 + 7*k**2 + k
elif n==5:
return k**5 + 10*k**4 + 25*k**3 + 15*k**2 + k
elif n==6:
return k**6 + 15*k**5 + 65*k**4 + 90*k**3 + 31*k**2 + k
elif n==7:
return k**7 + 21*k**6 + 140*k**5 + 350*k**4 + 301*k**3 + 63*k**2 + k
elif n==8:
return k**8 + 28*k**7 + 266*k**6 + 1050*k*85 + 1701*k**4 + 966*k**3 + 127*k**2 + k
else:
raise NotImplementedError('currently only support n<=8') | d2af07d550b0cf6ac9a410296b4ec12c78cc1505 | 4,499 |
import calendar
def generate_days(year):
"""Generates all tuples (YYYY, MM, DD) of days in a year
"""
cal = calendar.Calendar()
days = []
for m in range(1,13):
days.extend(list(cal.itermonthdays3(year, m)))
days = [d for d in set(days) if d[0] == year]
days.sort()
return days | 6d87910572957d21c9d5df668dfb5f2d02627817 | 4,501 |
import asyncio
async def start(actual_coroutine):
"""
Start the testing coroutine and wait 1 second for it to complete.
:raises asyncio.CancelledError when the coroutine fails to finish its work
in 1 second.
:returns: the return value of the actual_coroutine.
:rtype: Any
"""
try:
return await asyncio.wait_for(actual_coroutine, 2)
except asyncio.CancelledError:
pass | 26e3737091ca798dbf8c0f6f2a18a1de4b0ec42b | 4,502 |
def generate_input_types():
"""
Define the different input types that are used in the factory
:return: list of items
"""
input_types = ["Angle_irons", "Tubes", "Channels", "Mig_wire", "Argon_gas", "Galvanised_sheets", "Budget_locks",
"Welding_rods", "Body_filler", "Grinding_discs", "Drill_bits", "Primer", "Paints", "Thinner",
"Sand_paper", "Masking_tapes", "Carpet", "Pop_rivets", "Electrical_wires", "Bulbs", "Switch",
"Insulation_tapes", "Fasteners", "Adhesives", "Reflectors", "Accessories", "Rubbers",
"Aluminum_mouldings", "Glasses", "Window_locks"]
return input_types | d9e10624daaf5dae92f15512c9b19c47af002139 | 4,503 |
import os
def get_project_path_info():
"""
获取项目路径
project_path 指整个git项目的目录
poseidon_path 指git项目中名字叫poseidon的目录
"""
_poseidon_path = os.path.dirname(os.path.dirname(os.path.dirname(__file__)))
_project_path = os.path.dirname(_poseidon_path)
return {"project_path": _project_path,
"poseidon_path": _poseidon_path} | 758748df0befedc46ae913c0b9193d3ddb175d95 | 4,504 |
def prepare_data(song: dict) -> dict:
"""
Prepares song dataa for database insertion to cut down on duplicates
:param song: Song data
:return: The song data
"""
song['artist'] = song['artist'].upper().strip()
song['title'] = song['title'].upper().strip()
return song | f8f8c9a3a0fe510cb3fb2e7d6d5bd361721337e7 | 4,505 |
import networkx
import torch
def generate_erdos_renyi_netx(p, N):
""" Generate random Erdos Renyi graph """
g = networkx.erdos_renyi_graph(N, p)
W = networkx.adjacency_matrix(g).todense()
return g, torch.as_tensor(W, dtype=torch.float) | fbb8e293a1b35958301c2e376a03c30012b0c33b | 4,506 |
from typing import Union
from pathlib import Path
import yaml
def load_cfg(cfg_file: Union[str, Path]) -> dict:
"""Load the PCC algs config file in YAML format with custom tag
!join.
Parameters
----------
cfg_file : `Union[str, Path]`
The YAML config file.
Returns
-------
`dict`
A dictionary object loaded from the YAML config file.
"""
# [ref.] https://stackoverflow.com/a/23212524
## define custom tag handler
def join(loader, node):
seq = loader.construct_sequence(node)
return ''.join([str(i) for i in seq])
## register the tag handler
yaml.add_constructor('!join', join)
with open(cfg_file, 'r') as f:
cfg = yaml.load(f, Loader=yaml.FullLoader)
return cfg | c9137c5052adf8fa62913c352df2bfe9e79fc7ce | 4,507 |
def get_model_defaults(cls):
"""
This function receives a model class and returns the default values
for the class in the form of a dict.
If the default value is a function, the function will be executed. This is meant for simple functions such as datetime and uuid.
Args:
cls: (obj) : A Model class.
Returns:
defaults: (dict) : A dictionary of the default values.
"""
tmp = {}
for key in cls.__dict__.keys():
col = cls.__dict__[key]
if hasattr(col, "expression"):
if col.expression.default is not None:
arg = col.expression.default.arg
if callable(arg):
tmp[key] = arg(cls.db)
else:
tmp[key] = arg
return tmp | 93c29af27446c558b165159cee4bb41bbb3cad4d | 4,508 |
def create_property_map(cls, property_map=None):
""" Helper function for creating property maps """
_property_map = None
if property_map:
if callable(property_map):
_property_map = property_map(cls)
else:
_property_map = property_map.copy()
else:
_property_map = {}
return _property_map | b67d0fdcd75c592f3443993f2948a2686e22322d | 4,510 |
def read_k_bytes(sock, remaining=0):
"""
Read exactly `remaining` bytes from the socket.
Blocks until the required bytes are available and
return the data read as raw bytes. Call to this
function blocks until required bytes are available
in the socket.
Arguments
---------
sock : Socket to inspect
remaining : Number of bytes to read from socket.
"""
ret = b"" # Return byte buffer
while remaining > 0:
d = sock.recv(remaining)
ret += d
remaining -= len(d)
return ret | 3d75eaa43b84ac99ac37b4b1a048f1a6615901b1 | 4,511 |
def total_minutes(data):
"""
Calcula a quantidade total de minutos com base nas palestras
submetidas.
"""
soma = 0
for item in data.keys():
soma += (item*len(data[item]))
return soma | c85f6ac0a1d58b67d1e53ae5ff87b8762e3d050c | 4,512 |
def rowcount_fetcher(cursor):
""" Return the rowcount returned by the cursor. """
return cursor.rowcount | 21b30665391aa16d158083ccb37149bd6ec0f548 | 4,513 |
def xsthrow_format(formula):
"""formats the string to follow the xstool_throw convention for toy
vars
"""
return (formula.
replace('accum_level[0]', 'accum_level[xstool_throw]').
replace('selmu_mom[0]', 'selmu_mom[xstool_throw]').
replace('selmu_theta[0]', 'selmu_theta[xstool_throw]')) | b36183df77e681b967ce48a9164fe37861ffd11c | 4,515 |
def getParInfo(sourceOp, pattern='*', names=None,
includeCustom=True, includeNonCustom=True):
"""
Returns parInfo dict for sourceOp. Filtered in the following order:
pattern is a pattern match string
names can be a list of names to include, default None includes all
includeCustom to include custom parameters
includeNonCustom to include non-custom parameters
parInfo is {<parName>:(par.val, par.expr, par.mode string, par.bindExpr,
par.default)...}
"""
parInfo = {}
for p in sourceOp.pars(pattern):
if (names is None or p.name in names) and \
((p.isCustom and includeCustom) or \
(not p.isCustom and includeNonCustom)):
parInfo[p.name] = [p.val, p.expr if p.expr else '', p.mode.name,
p.bindExpr, p.default]
return parInfo | 01eafb065ef98e1fd4676898aeb8d0c5a7a74b9d | 4,516 |
def _landstat(landscape, updated_model, in_coords):
"""
Compute the statistic for transforming coordinates onto an existing
"landscape" of "mountains" representing source positions. Since the
landscape is an array and therefore pixellated, the precision is limited.
Parameters
----------
landscape: nD array
synthetic image representing locations of sources in reference plane
updated_model: Model
transformation (input -> reference) being investigated
in_coords: nD array
input coordinates
Returns
-------
float:
statistic representing quality of fit to be minimized
"""
def _element_if_in_bounds(arr, index):
try:
return arr[index]
except IndexError:
return 0
out_coords = updated_model(*in_coords)
if len(in_coords) == 1:
out_coords = (out_coords,)
out_coords2 = tuple((coords - 0.5).astype(int) for coords in out_coords)
result = sum(_element_if_in_bounds(landscape, coord[::-1]) for coord in zip(*out_coords2))
################################################################################
# This stuff replaces the above 3 lines if speed doesn't hold up
# sum = np.sum(landscape[i] for i in out_coords if i>=0 and i<len(landscape))
# elif len(in_coords) == 2:
# xt, yt = out_coords
# sum = np.sum(landscape[iy,ix] for ix,iy in zip((xt-0.5).astype(int),
# (yt-0.5).astype(int))
# if ix>=0 and iy>=0 and ix<landscape.shape[1]
# and iy<landscape.shape[0])
################################################################################
return -result | 0205654ef8580a0d6731155d7d0c2b2c1a360e9c | 4,517 |
def presence(label):
"""Higher-order function to test presence of a given label
"""
return lambda x, y: 1.0 * ((label in x) == (label in y)) | 49c7e0b4b7af69c808917af7ab4d6b56a7a4ef89 | 4,518 |
def select(population, to_retain):
"""Go through all of the warroirs and check which ones are best fit to breed and move on."""
#This starts off by sorting the population then gets all of the population dived by 2 using floor divison I think
#that just makes sure it doesn't output as a pesky decimal. Then it takes one half of memebers which shall be females.
# which tend to be not as strong as males(Not being sexist just science thats how we are built.) So the front half will be
#The lower digits because we sorted it then the upper half will be males. Then it finishes off by getting the strongest males and
#females and returns them.
sorted_pop = sorted(population)
to_keep_by_sex = to_retain//2
members = len(sorted_pop)//2
females = sorted_pop[:members]
males = sorted_pop[members:]
strong_females = females[-to_keep_by_sex:]
strong_males = males[-to_keep_by_sex:]
return strong_males, strong_females | 4dc1251f09e6bd976d170017bbd328563e9ef786 | 4,519 |
def remove_duplicates(l):
"""
Remove any duplicates from the original list.
Return a list without duplicates.
"""
new_l = l[:]
tmp_l = new_l[:]
for e in l:
tmp_l.remove(e)
if e in tmp_l:
new_l.remove(e)
return new_l | 81132e3b23592589c19ddb11f661e80be6984782 | 4,520 |
import re
def ResolveWikiLinks(html):
"""Given an html file, convert [[WikiLinks]] into links to the personal wiki:
<a href="https://z3.ca/WikiLinks">WikiLinks</a>"""
wikilink = re.compile(r'\[\[(?:[^|\]]*\|)?([^\]]+)\]\]')
def linkify(match):
wiki_root = 'https://z3.ca'
wiki_name = match.group(1).replace('\n', ' ')
wiki_slug = wiki_name.replace(' ', '_')
return f'<a class="wiki" href="{wiki_root}/{wiki_slug}">{wiki_name}</a>'
return wikilink.sub(linkify, html) | bef3e309aa2489e720a1742e327e9dd4edf6d720 | 4,523 |
import sys
def getArg(flag):
"""
Devolve o argumento de uma dada flag
"""
try:
a = sys.argv[sys.argv.index(flag) + 1]
except:
return ""
else:
return a | 7400d0f449334350910bc5926b5fbf5333d3ea10 | 4,524 |
def get_band_params(meta, fmt='presto'):
"""
Returns (fmin, fmax, nchans) given a metadata dictionary loaded from
a specific file format.
"""
if fmt == 'presto':
fbot = meta['fbot']
nchans = meta['nchan']
ftop = fbot + nchans * meta['cbw']
fmin = min(fbot, ftop)
fmax = max(fbot, ftop)
elif fmt == 'sigproc':
raise ValueError("Cannot parse observing band parameters from data in sigproc format")
else:
raise ValueError(f"Unknown format: {fmt}")
return fmin, fmax, nchans | 61e9b0781559de431e5189b89f69a0763b039d8f | 4,525 |
import functools
def logging(f):
"""Decorate a function to log its calls."""
@functools.wraps(f)
def decorated(*args, **kwargs):
sargs = map(str, args)
skwargs = (f'{key}={value}' for key, value in kwargs.items())
print(f'{f.__name__}({", ".join([*sargs, *skwargs])})...')
try:
value = f(*args, **kwargs)
except Exception as cause:
print(f'! {cause}')
raise
print(f'=> {value}')
return value
return decorated | 25822434fe331c59ce64b6f9cd5ec89b70b2542a | 4,526 |
import math
def calculate_distance(p1, p2):
"""
Calculate distance between two points
param p1: tuple (x,y) point1
param p2: tuple (x,y) point2
return: distance between two points
"""
x1, y1 = p1
x2, y2 = p2
d = math.sqrt(pow(x2 - x1, 2) + pow(y2 - y1, 2))
return d | 756b609a91e17299eb879e27e83cd663800e46dd | 4,528 |
from textwrap import dedent
def package_load_instructions(inst_distributions):
"""Load instructions, displayed in the package notes"""
per_package_inst = ''
for dist in inst_distributions:
if dist.type == 'zip':
per_package_inst += dedent(
"""
# Loading the ZIP Package
Zip packages are compressed, so large resources may load faster.
import metapack as mp
pkg = mp.open_package('{url}')
""".format(url=dist.package_url.inner))
elif dist.type == 'csv':
per_package_inst += dedent(
"""
# Loading the CSV Package
CSV packages load resources individually, so small resources may load faster.
import metapack as mp
pkg = mp.open_package('{url}')
""".format(url=dist.package_url.inner))
if per_package_inst:
return '\n---\n'+per_package_inst
else:
return '' | 321a7486f27a3cb327ae7556e317bc53c24726ac | 4,529 |
def deindented_source(src):
"""De-indent source if all lines indented.
This is necessary before parsing with ast.parse to avoid "unexpected
indent" syntax errors if the function is not module-scope in its
original implementation (e.g., staticmethods encapsulated in classes).
Parameters
----------
src : str
input source
Returns
-------
str :
de-indented source; the first character of at least one line is
non-whitespace, and all other lines are deindented by the same
"""
lines = src.splitlines()
n_chars = float("inf")
for line in lines:
len_line = len(line)
idx = 0
# we're Python 3, so we assume you're not mixing tabs and spaces
while idx < n_chars and idx < len_line and line[idx] in [" ", '\t']:
idx += 1
if len_line > idx:
n_chars = min(idx, n_chars)
lines = [line[n_chars:] for line in lines]
src = "\n".join(lines)
return src | 227d5e8e35b251f02ce5e9237f8120d2dd9c7e4b | 4,530 |
from pathlib import Path
def maybe_start_with_home_prefix(p: Path) -> Path:
"""
If the input path starts with the home directory path string, then return
a path that starts with the home directory and points to the same location.
Otherwise, return the path unchanged.
"""
try:
return Path("~", p.relative_to(Path.home()))
except ValueError:
return p | 6ee4e49e8dfb9bc68a1c10f5ea792715fb5d5336 | 4,531 |
import requests
from datetime import datetime
def get_time_string(place: str = "Europe/Moscow"):
"""
Get time data from worldtimeapi.org and return simple string
Parameters
----------
place : str
Location, i.e. 'Europe/Moscow'.
Returns
-------
string
Time in format '%Y-%m-%d %H:%M:%S'
Examples
--------
>>> get_time_string()
2021-08-16 16:03:34
"""
url = "http://worldtimeapi.org/api/timezone/" + place
data = requests.get(url).json()
date = datetime.fromisoformat(data["datetime"])
string = date.strftime("%Y-%m-%d %H:%M:%S")
return string | f15ef5a843317c55d3c60bf2ee8c029258e1cd78 | 4,533 |
def add_suffix(input_dict, suffix):
"""Add suffix to dict keys."""
return dict((k + suffix, v) for k,v in input_dict.items()) | 7dbedd523d24bfdf194c999b8927a27b110aad3e | 4,536 |
import json
from typing import OrderedDict
def build_list_of_dicts(val):
"""
Converts a value that can be presented as a list of dict.
In case top level item is not a list, it is wrapped with a list
Valid values examples:
- Valid dict: {"k": "v", "k2","v2"}
- List of dict: [{"k": "v"}, {"k2","v2"}]
- JSON decodable string: '{"k": "v"}', or '[{"k": "v"}]'
- List of JSON decodable strings: ['{"k": "v"}', '{"k2","v2"}']
Invalid values examples:
- ["not", "a", "dict"]
- [123, None],
- [["another", "list"]]
:param val: Input value
:type val: Union[list, dict, str]
:return: Converted(or original) list of dict
:raises: ValueError in case value cannot be converted to a list of dict
"""
if val is None:
return []
if isinstance(val, str):
# use OrderedDict to preserve order
val = json.loads(val, object_pairs_hook=OrderedDict)
if isinstance(val, dict):
val = [val]
for index, item in enumerate(val):
if isinstance(item, str):
# use OrderedDict to preserve order
val[index] = json.loads(item, object_pairs_hook=OrderedDict)
if not isinstance(val[index], dict):
raise ValueError("Expected a list of dicts")
return val | dfd92f619ff1ec3ca5cab737c74af45c86a263e0 | 4,537 |
def arg(prevs, newarg):
""" Joins arguments to list """
retval = prevs
if not isinstance(retval, list):
retval = [retval]
return retval + [newarg] | 8d591595add095542ad697b4bd54642a4a14a17c | 4,538 |
def hasTable(cur, table):
"""checks to make sure this sql database has a specific table"""
cur.execute("SELECT name FROM sqlite_master WHERE type='table' AND name='table_name'")
rows = cur.fetchall()
if table in rows:
return True
else:
return False | dfdb3db0901832330083da8b645ae90e28cfb26d | 4,540 |
import socket
def getipbyhost(hostname):
""" return the IP address for a hostname
"""
return socket.gethostbyname(hostname) | 9556f537e16fd710a566a96a51d4262335967893 | 4,542 |
import sys
def reset_syspath():
"""
Return a function to remove given path from sys.path.
This is to use at the end (after all assertions) of test which
use ``setup_project.setup_project`` to add base directory to sys.path
and avoid clash with next tests doing the same.
"""
def reset_func(path):
if path in sys.path:
del sys.path[sys.path.index(path)]
return reset_func | b169c51bb86d6e4e713309526ca402872d353766 | 4,543 |
import sys
def valid_capture_area(top_left, bottom_right):
"""Check the capture area extents for sanity.
"""
tl_x = top_left['x']
tl_y = top_left['y']
br_x = bottom_right['x']
br_y = bottom_right['y']
if (br_x <= tl_x) or (br_y <= tl_y):
print('The capture area ({},{}) ({},{}) '
'is invalid.'.format(tl_x, tl_y, br_x, br_y),
file=sys.stderr)
return False
print('Capture area: ({},{}) ({},{})'.format(tl_x, tl_y, br_x, br_y))
return True | 654cbb1123ed5536d0ae217d0d70e9eabd36d0b3 | 4,545 |
def IsMultiPanel(hcuts, vcuts) -> bool:
"""
Check if the image is multi-panel or not.
Could have more logic.
"""
return bool(hcuts or vcuts) | fc62a31007445eac90b6f5ceb3a7c9c006dd2eef | 4,546 |
def collapse_umi(cells):
"""
Input set of genotypes for each read
Return list with one entry for each UMI, per cell barcode
"""
collapsed_data = {}
for cell_barcode, umi_set in cells.items():
for _, genotypes in umi_set.items():
if len(set(genotypes)) > 1:
pass
else:
try:
collapsed_data[cell_barcode]
except KeyError:
collapsed_data[cell_barcode] = [genotypes[0]]
else:
collapsed_data[cell_barcode].append(genotypes[0])
# count total ref, total alt UMIs for each genotype
for key, value in collapsed_data.items():
collapsed_data[key] = [value.count("ref"), value.count("alt")]
assert len(collapsed_data[key]) == 2
return collapsed_data | e98b44193487691fb04e8e0f4ec25c3438175c65 | 4,548 |
def is_vertex_cover(G, vertex_cover):
"""Determines whether the given set of vertices is a vertex cover of graph G.
A vertex cover is a set of vertices such that each edge of the graph
is incident with at least one vertex in the set.
Parameters
----------
G : NetworkX graph
The graph on which to check the vertex cover.
vertex_cover :
Iterable of nodes.
Returns
-------
is_cover : bool
True if the given iterable forms a vertex cover.
Examples
--------
This example checks two covers for a graph, G, of a single Chimera
unit cell. The first uses the set of the four horizontal qubits, which
do constitute a cover; the second set removes one node.
>>> import dwave_networkx as dnx
>>> G = dnx.chimera_graph(1, 1, 4)
>>> cover = [0, 1, 2, 3]
>>> dnx.is_vertex_cover(G,cover)
True
>>> cover = [0, 1, 2]
>>> dnx.is_vertex_cover(G,cover)
False
"""
cover = set(vertex_cover)
return all(u in cover or v in cover for u, v in G.edges) | 4213db1953ec976b1606c3756fa73ff0cae9f578 | 4,549 |
import os
def __get_out_file(in_file, out_dir):
"""
Get the path of the output file.
Parameters
----------
in_file: str
Path to input file.
out_dir: str
Path to output directory.
Returns
-------
file_no_ext: str
The file name without extension.
out_dir: str
The path to the output directory.
out_file: str
The path of the output file.
"""
if out_dir == '':
out_dir = os.path.dirname(in_file)
file_no_ext = os.path.splitext(in_file)[0].split(os.sep)[-1]
if out_dir == '':
out_dir = '.'
out_file = '/'.join([out_dir, file_no_ext])
return file_no_ext, out_dir, out_file | e191d45becc7df330f359baf6e11d72d30343a4b | 4,550 |
def get_embedding_tids(tids, mapping):
"""Obtain token IDs based on our own tokenization, through the mapping to BERT tokens."""
mapped = []
for t in tids:
mapped += mapping[t]
return mapped | a31c9b0cf5b791590d6e30d8238cf0eb6ae2272b | 4,554 |
import requests
def extract_stream_url(ashx_url):
""" Extract real stream url from tunein stream url """
r = requests.get(ashx_url)
for l in r.text.splitlines():
if len(l) != 0:
return l | 679ca261510413f652d0953551b65db8e5c2a62e | 4,555 |
def none_to_null(value):
""" Returns None if the specified value is null, else returns the value
"""
return "null" if value == None else value | 394b1f9620cf69c862905171f4aec96838ffc631 | 4,556 |
def get_dsd_url():
"""Returns the remote URL to the global SDMX DSD for the SDGs."""
return 'https://registry.sdmx.org/ws/public/sdmxapi/rest/datastructure/IAEG-SDGs/SDG/latest/?format=sdmx-2.1&detail=full&references=children' | 996568a92825aa7a7bf1be1db8ac2cac0828360a | 4,557 |
def cal_pivot(n_losses,network_block_num):
"""
Calculate the inserted layer for additional loss
"""
num_segments = n_losses + 1
num_block_per_segment = (network_block_num // num_segments) + 1
pivot_set = []
for i in range(num_segments - 1):
pivot_set.append(min(num_block_per_segment * (i + 1), network_block_num - 1))
return pivot_set | d23324fc39f2f1aeec807a4d65a51234a2b76cde | 4,560 |
import numpy as np
def uniquePandasIndexMapping(inputColumn):
"""quickly mapps the unique name entries back to input entries
Keyword arguments:
inputDataToAssess -- a SINGLE column from a pandas dataframe, presumably with
duplications. Will create a frequency table and a mapping back to the source entries.
"""
inputColumn.sort_values(by=['company'], inplace=True)
sortedInputColumn=inputColumn.reset_index()
sortedInputColumn.rename(columns={"index":"userIndex"},inplace=True)
tableUniqueFullNameCounts=inputColumn.iloc[:,0].value_counts()
tableUniqueFullNameCounts=tableUniqueFullNameCounts.reset_index()
tableUniqueFullNameCounts.rename(columns={"company":"count","index":"company"},inplace=True)
tableUniqueFullNameCounts.sort_values(by=['company'], inplace=True)
sortedTableUniqueFullNameCounts=tableUniqueFullNameCounts.reset_index()
sortedTableUniqueFullNameCounts['inputIndexMapping']=''
currentSum=0
for index, row in sortedTableUniqueFullNameCounts.iterrows():
currentRange=np.arange(currentSum,currentSum+sortedTableUniqueFullNameCounts['count'].iloc[index])
sortedTableUniqueFullNameCounts['inputIndexMapping'].iloc[index]=sortedInputColumn['userIndex'].iloc[currentRange].array
currentSum=currentSum+sortedTableUniqueFullNameCounts['count'].iloc[index]
return sortedInputColumn, sortedTableUniqueFullNameCounts; | c26fce9b8617963737c4b8dd05c0e8429c92daa3 | 4,561 |
def is_text_serializer(serializer):
"""Checks whether a serializer generates text or binary."""
return isinstance(serializer.dumps({}), str) | f08f40662da7fd34f5984028e601d664cac943df | 4,562 |
def Transition_rep(source_State_name, target_State_name):
"""Representation of a transition
:param source_State_name: The sequence of "name" values of State objects referred to by attribute "source" in this Transition
:type source_State_name: Array
:param target_State_name: The sequence of "name" values of State objects referred to by attribute "target" in this Transition
:type target_State_name: Array
"""
return [f' {source_name}--{target_name}' for source_name, target_name in zip(source_State_name, target_State_name)] | 2e5f7048722997e0931fd6ec3a2d9e880a160359 | 4,563 |
import glob
import os
import ast
def list_class_names(dir_path):
"""
Return the mapping of class names in all files
in dir_path to their file path.
Args:
dir_path (str): absolute path of the folder.
Returns:
dict: mapping from the class names in all python files in the
folder to their file path.
"""
py_files = glob.glob(os.path.join(dir_path, "*.py"))
py_files = [f for f in py_files if os.path.isfile(f) and
not f.endswith('__init__.py')]
cls_name_to_path = dict()
for py_file in py_files:
with open(py_file) as f:
node = ast.parse(f.read())
classes_in_file = [n for n in node.body if isinstance(n, ast.ClassDef)]
cls_names_in_file = [c.name for c in classes_in_file]
for cls_name in cls_names_in_file:
cls_name_to_path[cls_name] = py_file
return cls_name_to_path | 612f386330a494cfffcd4a7d2f296bf8020bae6f | 4,564 |
def chunks(l, k):
"""
Take a list, l, and create k sublists.
"""
n = len(l)
return [l[i * (n // k) + min(i, n % k):(i+1) * (n // k) + min(i+1, n % k)] for i in range(k)] | 7cf0c39941ed8f358c576046154af6b3ee54b70a | 4,566 |
import math
def floor(base):
"""Get the floor of a number"""
return math.floor(float(base)) | 8b00ffccf30765f55ff024b35de364c617b4b20c | 4,568 |
import random
def random_binary():
"""
测试 cached 缓存视图的装饰器 设置 key
:return:
"""
return [random.randrange(0, 2) for i in range(500)] | 3c30014d1222c136cb7d3d2fbe6e0d972decc776 | 4,569 |
def remove_from_end(string, text_to_remove):
"""
Remove a String from the end of a string if it exists
Args:
string (str): string to edit
text_to_remove (str): the text to remove
Returns: the string with the text removed
"""
if string is not None and string.endswith(text_to_remove):
return string[:-len(text_to_remove)]
return string | 19cebd002fcf5aea5290a6998129427363342319 | 4,570 |
def _variable_map_by_name(variables):
"""
Returns Dict,representing referenced variable fields mapped by name.
Keyword Parameters:
variables -- list of 'variable_python_type' Warehouse support DTOs
>>> from pprint import pprint
>>> var1 = { 'column':'frob_hz', 'title':'Frobniz Resonance (Hz)'
... ,'python_type': 'float'
... ,'table': 'foo_fact'}
>>> list1 = [var1]
>>> pprint(_variable_map_by_name(list1))
{'frob_hz': {'column': 'frob_hz',
'python_type': 'float',
'table': 'foo_fact',
'title': 'Frobniz Resonance (Hz)'}}
"""
variable_by_field = {}
for var in variables:
field_name = var['column']
variable_by_field[field_name] = var
return variable_by_field | 91c27ceb84614313d036ec216ef4c4d567a68255 | 4,572 |
def ObjectNotFoundError(NDARError):
"""S3 object not found"""
def __init__(self, object):
self.object = object
return
def __str__(self):
return 'Object not found: %s' % self.object | 3cc552f7074f8117ed18fd975bc5ac0b09f8016a | 4,573 |
def read_length(file_obj): # pragma: no cover
""" Numpy trick to get a 32-bit length from four bytes
Equivalent to struct.unpack('<i'), but suitable for numba-jit
"""
sub = file_obj.read(4)
return sub[0] + sub[1]*256 + sub[2]*256*256 + sub[3]*256*256*256 | 82c311c3a8e2d2e277979c19aaae665b0227f9cd | 4,574 |
from typing import List
def readOneLineFileWithCommas(filepath: str) -> List[str]:
"""
Reads a file that is one line long, separated by commas
"""
try:
with open(filepath) as fp:
s: str = fp.readline()
return s.split(",")
except:
raise Exception(f"Failed to open {filepath}") | 4c181523192fab0ea01ae5da0883c543565119c6 | 4,575 |
def check_canopy_height(region_info, regional_lookup):
"""
Check the regional canopy height.
"""
mean_canopy_height = region_info['mean_canopy_height']
if mean_canopy_height == 'no data':
mean_canopy_height = 0
return mean_canopy_height | 5f04ad71df7f0b1c9ef73e97bbe99bea1916ae5e | 4,578 |
def build_dict_conforming_to_schema(schema, **kwargs):
"""
Given a schema object (for example, TIMESTAMP_SCHEMA from this module) and
a set of keyword arguments, create a dictionary that conforms to the given
schema, using the keyword arguments to define the elements of the new dict.
Checks the result to make sure that it conforms to the given schema, raising
an error if not.
Returns the new dict conforming to the schema if there are no problems.
"""
# Check that schema supports a check_match call.
# Duck typing version of this check:
if not hasattr(schema, 'check_match'):
raise ValueError(
'The given "schema" does not seem to be a schema. It has no '
'"check_match" method. Given schema: ' + repr(schema))
# # Strict typing version of this check:
# # Check that schema_name is a SCHEMA.Object.
# if not isinstance(schema, schema.Schema):
# raise ValueError(
# 'The first argument must be a schema.Schema object, but is not. '
# 'Given schema: ' + repr(schema))
# The return value.
d = {}
for key, value in kwargs.items():
d[key] = value
schema.check_match(d)
return d | 8971b7c6e1df8fd16a1b0e0946c9f21a3c601512 | 4,580 |
def make_09f9():
"""倉庫インベントリーフッタ"""
return "" | 91d21aeb58fc004865db91846d73f978f48f9be4 | 4,582 |
def empty_call_false(*args, **kwargs) -> bool:
"""
Do nothing and return False
"""
return False | 3b3964c859a47698f0000e1b26963953980fad51 | 4,583 |
def cookie_is_encoded(data):
""" Tests whether or not a cookie is encoded / HMAC signed
-> #bool True if encoded
..
from vital.security import cookie_is_encoded
cookie_is_encoded(
"!YuOoKwDp8GhrwwojdjTxSCj1c2Z+7yz7r6cC7E3hBWo=?IkhlbGxvLCB3b3JsZC4i")
# -> True
..
"""
return data.startswith('!') and '?' in data | baf2a05b516a23cacca4985944974112019abfda | 4,584 |
def _id_to_box(id_, dim):
"""Convert id to box ID"""
row = id_ // (dim ** 3)
col = (id_ % (dim ** 2)) // dim
return row * dim + col | 8e6c4779872fff5cdc5a6ca6b4143a1519d8aaf2 | 4,586 |
import os
def create_readme(top_dir,package_name,description="",docs=False):
"""
README requires the name of the package and the directory in which to write the file in.
Optionally, give a description and whether or not to create a 'docs' directory.
"""
readme_str="""
# {package}
## Description
{description}
## Examples
## Repo Structure
{package}:<br/>
┣━ README.md<br/>
┣━ LICENSE<br/>
┣━ setup.py<br/>
┣━ {package}:<br/>
┃ ┗━ __init__.py<br/>
"""
if docs:
readme_str= readme_str + \
"""┣━ tests:<br/>
┃ ┗━ test_basic.py<br/>
┗━ docs:<br/>
┗━"""
else:
readme_str= readme_str + \
"""┗━ tests:
┗━ test_basic.py
"""
readme_str=readme_str.format(package=package_name,description=description)
# Write to file
with open(os.path.join(top_dir,'README.md'),'w') as f:
f.write(readme_str)
return readme_str | 70f7221536078a5d5c13eb97b28c394b12621941 | 4,587 |
def estimate_responsivity(mis_MU, norm_MU):
"""from the estimated base intensities, we return onlu users which have zero base intensity for misinformation
and greater than zero base intensity for normal content. """
no_bad_intentions_ids = []
for id in range(len(mis_MU)):
if mis_MU[id] == 0 and norm_MU[id] != 0:
no_bad_intentions_ids.append(id)
return no_bad_intentions_ids | 4d944478694f1be1474eea963fad284079d5fe57 | 4,588 |
def compute_embeddings(image):
"""A mock function for a call to a deep learning model or a web service."""
del image # this is just a mock and doesn't do anything with the input
return 42 | 31536d4a2371140e962aadb63b8645685328b3df | 4,589 |
def text_to_string(filename):
"""Read a text file and return a string."""
with open(filename) as infile:
return infile.read() | dbd79e78c84c3374c0252544086885b909ae9bd9 | 4,590 |
def lgsvlToScenicElevation(pos):
"""Convert LGSVL positions to Scenic elevations."""
return pos.y | d90f7509285b08c791eac56c1a119f91120cf556 | 4,591 |
def false_discovery(alpha,beta,rho):
"""The false discovery rate.
The false discovery rate is the probability that an observed edge is
incorrectly identified, namely that is doesn't exist in the 'true' network.
This is one measure of how reliable the results are.
Parameters
----------
alpha : float
The estimate of the true-positive rate.
beta : float
The estimate of the false-positive rate.
rho : float
The estimate of network density.
Returns
-------
float
The false discovery rate (probability).
References
----------
.. [1] Newman, M.E.J. 2018. “Network structure from rich but noisy data.”
Nature Physics 14 6 (June 1): 542–545. doi:10.1038/s41567-018-0076-1.
"""
return (1-rho)*beta/(rho*alpha + (1-rho)*beta) | 849c236157070c5d1becfec3e4e5f46a63d232d2 | 4,593 |
import re
def eval_formula(formula, assignment):
""" Evaluates a formula represented as a string.
**Attention**: Be extremely careful about what to pass to this function.
All parameters are plugged into the formula and evaluated using `eval()`
which executes arbitrary python code.
Parameters
----------
formula : str
String representation of the formula to be evaluated.
assignment : dict
Dictionary containing parameter names and values as keys and values,
respectively.
Returns
-------
float
Evaluation result.
Examples
--------
>>> eval_formula('a + (1 - b) * a', {'a': 0.1, 'b': 0.8})
0.12
"""
expression = formula
for param, value in sorted(assignment.items(), reverse=True):
expression = expression.replace(param, str(value))
# remove leading 0's
expression = re.sub(r'\d-0\d', lambda x: re.sub(r'-0', '-', x[0]), expression)
# pylint: disable=eval-used
return eval(expression)
# pylint: enable=eval-used | c1f344fc0049e20e86feb2428a46d51f9eee5898 | 4,595 |
import json
def case_structure_generator(path):
"""Create test cases from reference data files."""
with open(str(path), 'r') as in_f:
case_data = json.load(in_f)
system_dict = case_data['namelists']['SYSTEM']
ibrav = system_dict['ibrav']
ins = {'ibrav': ibrav, 'cell': case_data['cell']}
if '-' in path.name:
_, qe_version_with_suffix = path.name.split('-')
qe_version, _ = qe_version_with_suffix.rsplit('.', 1)
else:
qe_version = None
ins = {'ibrav': ibrav, 'cell': case_data['cell'], 'qe_version': qe_version}
if ibrav == 0:
return ins, None, ValueError
outs = dict()
for key in (['a', 'b', 'c', 'cosab', 'cosac', 'cosbc'] +
['celldm({})'.format(i) for i in range(1, 7)]):
if key in system_dict:
outs[key] = system_dict[key]
return ins, outs, None | 1c7249c207032ed623bbfe274ed117283cd6ef4d | 4,596 |
import psutil
def available_memory():
"""
Returns total system wide available memory in bytes
"""
return psutil.virtual_memory().available | 5071312f64aa37e1d777c8f20009fa38137381a4 | 4,597 |
import math
def ceil(base):
"""Get the ceil of a number"""
return math.ceil(float(base)) | ebe78a5eb8fa47e6cfba48327ebb1bdc469b970d | 4,599 |
def get_attr_counts(datas, attr):
"""
不同属性值的数量.
:param datas:
:type datas: list[BaseDataSample]
:param attr:
:type attr: str
:return:
"""
results = {}
for data in datas:
value = data.get_value(attr)
if isinstance(value, list):
for v in value:
results.setdefault(attr + "-" + v, 0)
results[attr + "-" + v] += 1
else:
results.setdefault(value, 0)
results[value] += 1
return results | bea8e6e1c99efe1ad18894831006f0e218517c74 | 4,600 |
def split(string: str, separator: str = " ") -> list:
"""
Will split the string up into all the values separated by the separator (defaults to spaces)
>>> split("apple#banana#cherry#orange",separator='#')
['apple', 'banana', 'cherry', 'orange']
>>> split("Hello there")
['Hello', 'there']
>>> split("11/22/63",separator = '/')
['11', '22', '63']
>>> split("12:43:39",separator = ":")
['12', '43', '39']
"""
split_words = []
last_index = 0
for index, char in enumerate(string):
if char == separator:
split_words.append(string[last_index:index])
last_index = index + 1
elif index + 1 == len(string):
split_words.append(string[last_index : index + 1])
return split_words | 73e01d7ff9111d949f31f37b36c3b0656d06e340 | 4,601 |
import torch
def _find_quantized_op_num(model, white_list, op_count=0):
"""This is a helper function for `_fallback_quantizable_ops_recursively`
Args:
model (object): input model
white_list (list): list of quantizable op types in pytorch
op_count (int, optional): count the quantizable op quantity in this module
Returns:
the quantizable op quantity in this module
"""
quantize_op_num = op_count
for name_tmp, child_tmp in model.named_children():
if type(child_tmp) in white_list \
and not (isinstance(child_tmp, torch.quantization.QuantStub)
or isinstance(child_tmp, torch.quantization.DeQuantStub)):
quantize_op_num += 1
else:
quantize_op_num = _find_quantized_op_num(
child_tmp, white_list, quantize_op_num)
return quantize_op_num | c51b06e476ff4804d5bdfca5a187717536a0418f | 4,602 |
def list_to_string(the_list):
"""Converts list into one string."""
strings_of_list_items = [str(i) + ", " for i in the_list]
the_string = "".join(strings_of_list_items)
return the_string | f580dd8646526e64bb50297608e8ad8e338d9197 | 4,604 |
def _split_header_params(s):
"""Split header parameters."""
result = []
while s[:1] == b';':
s = s[1:]
end = s.find(b';')
while end > 0 and s.count(b'"', 0, end) % 2:
end = s.find(b';', end + 1)
if end < 0:
end = len(s)
f = s[:end]
result.append(f.strip())
s = s[end:]
return result | fabbfb0959133e70019742c6661cb3bb443ca34d | 4,605 |
def countDigits(string):
"""return number of digits in a string (Helper for countHaveTenDigits)"""
count = 0
for char in string:
if char == '0' or char == '1' or char == '2' or char == '3' or char == '4' or \
char == '5' or char == '6' or char == '7' or char == '8' or char == '9':
count += 1
return count | f8d2327e022efc7a117b744588dfe16a3a7ba75e | 4,606 |
def jsonDateTimeHandler(obj):
"""Takes an object and tries to serialize it in JSON
by using strftime or isoformat."""
if hasattr(obj, "strftime"):
# To avoid problems with the js date-time format
return obj.strftime("%a %b %d, %Y %I:%M %p")
elif hasattr(obj, 'isoformat'):
return obj.isoformat()
# elif isinstance(obj, ...):
# return ...
else:
raise TypeError(
'Object of type %s with value of %s is not JSON serializable' %
(type(obj), repr(obj))) | 605f8a379575d185bc2a8b16810252511eec52af | 4,608 |
def name(ndims=2, ndepth=2):
""" encrypt n and version into a standardized string """
# Model name, depth and version
value = 'care_denoise_%dDdepth%d' % (ndims, ndepth)
return value | 1933ac0454eac4c860d70683e58c922074498b63 | 4,610 |
import re
def run_job(answer: str, job: dict, grade: float, feedback: str):
"""
Match answer to regex inside job dictionary.
Add weight to grade if successful, else add comment to feedback.
:param answer: Answer.
:param job: Dictionary with regex, weight, and comment.
:param grade: Current grade for the answer.
:param feedback: Current feedback for the answer.
:return: Modified answer, grade, and feedback.
"""
match = re.search(job["regex"], answer)
if match:
grade += job["weight"]
answer = answer.replace(match[0], "", 1)
else:
feedback += job["comment"] + "\n"
return answer, grade, feedback | 487916da129b8958f8427b11f0118135268f9245 | 4,612 |
def timefstring(dtobj, tz_name=True):
"""Standardize the format used for timestamp string format.
Include 3 letter string for timezone if set to True.
"""
if tz_name:
return f'{dtobj.strftime("%Y-%m-%d_%H:%M:%S%Z")}'
else:
return f'{dtobj.strftime("%Y-%m-%d_%H:%M:%S")}NTZ' | 5bbf0454a76ed1418cbc9c44de909940065fb51f | 4,613 |
def supported_coins_balance(balance, tickers):
"""
Return the balance with non-supported coins removed
"""
supported_coins_balance = {}
for coin in balance.keys():
if coin != "BTC":
if f"{coin}/BTC" in tickers:
supported_coins_balance[coin] = balance[coin]
else:
try:
supported_coins_balance["BTC"] = balance[coin]
except KeyError:
print("BTC not in balance")
return supported_coins_balance | aaea856c728d04f47f52c1b07c66be57ff17d8cf | 4,615 |
def _identity_map(size):
"""Function returning list of lambdas mapping vector to itself."""
return [lambda x, id: x[id] for _ in range(size)] | 6236d42d359fdc9b006bffcc597fccbc161eb53d | 4,616 |
def center_vertices(vertices, faces, flip_y=True):
"""
Centroid-align vertices.
Args:
vertices (V x 3): Vertices.
faces (F x 3): Faces.
flip_y (bool): If True, flips y verts to keep with image coordinates convention.
Returns:
vertices, faces
"""
vertices = vertices - vertices.mean(dim=0, keepdim=True)
if flip_y:
vertices[:, 1] *= -1
faces = faces[:, [2, 1, 0]]
return vertices, faces | 85743c3b3e3838533e78c66b137cc9c8c7702519 | 4,617 |
def get_bridge_interfaces(yaml):
"""Returns a list of all interfaces that are bridgedomain members"""
ret = []
if not "bridgedomains" in yaml:
return ret
for _ifname, iface in yaml["bridgedomains"].items():
if "interfaces" in iface:
ret.extend(iface["interfaces"])
return ret | dad9e634a1c5306289e73d465b08b7ea857518e4 | 4,618 |
def _gen_sieve_array(M, factor_base):
"""Sieve Stage of the Quadratic Sieve. For every prime in the factor_base
that doesn't divide the coefficient `a` we add log_p over the sieve_array
such that ``-M <= soln1 + i*p <= M`` and ``-M <= soln2 + i*p <= M`` where `i`
is an integer. When p = 2 then log_p is only added using
``-M <= soln1 + i*p <= M``.
Parameters:
===========
M : sieve interval
factor_base : factor_base primes
"""
sieve_array = [0]*(2*M + 1)
for factor in factor_base:
if factor.soln1 is None: #The prime does not divides a
continue
for idx in range((M + factor.soln1) % factor.prime, 2*M, factor.prime):
sieve_array[idx] += factor.log_p
if factor.prime == 2:
continue
#if prime is 2 then sieve only with soln_1_p
for idx in range((M + factor.soln2) % factor.prime, 2*M, factor.prime):
sieve_array[idx] += factor.log_p
return sieve_array | 98a8e5bedaa56dbe53aa8a152c20a015d7b3556d | 4,620 |
def getObjDetRoI(imgSize, imgPatchSize, objx1, objy1, objx2, objy2):
"""
Get region of interest (ROI) for a given object detection with respect to image and image patch boundaries.
:param imgSize: size of the image of interest (e.g., [1920x1080]).
:param imgPatchSize: Patch size of the image patch of interest (e.g., 192).
:param objx1: Upper left x coordinate of the object detection.
:param objy1: Upper left y coordinate of the object detection.
:param objx2: Lower right x coordinate of the object detection.
:param objy2: Lower right y coordinate of the object detection.
"""
# Cast to float values for calculations
startX = float(objx1);
startY = float(objy1);
endX = float(objx2);
endY = float(objy2);
# Ensure image and image patch boundaries
xRange = endX - startX;
yRange = endY - startY;
addX = (imgPatchSize - (xRange % imgPatchSize));
addY = (imgPatchSize - (yRange % imgPatchSize));
endX = endX + addX;
endY = endY + addY;
if endX > imgSize[1]:
endX = imgSize[1]
if endY > imgSize[0]:
endY = imgSize[0]
return startX, startY, endX, endY | 2feedb9a5f79c24d0fda4eaa9b8db5bd6922b4ce | 4,622 |
def get_solubility(molecular_weight, density):
"""
Estimate the solubility of each oil pseudo-component
Estimate the solubility (mol/L) of each oil pseudo-component using the
method from Huibers and Lehr given in the huibers_lehr.py module of
py_gnome in the directory gnome/utilities/weathering/. This method is from
Huibers & Katrisky in a 2012 EPA report and was further modified by Lehr
to better match measured values. The equation used here is adapted to
return results in mol/L.
Parameters
----------
molecular_weight : np.array
Molecular weights of each pseudo-component as recorded in the NOAA
Oil Library (g/mol)
density : np.array
Density of each pseudo-component as recorded in the NOAA Oil Library
(kg/m^3)
Returns
-------
solubility : np.array
Array of solubilities (mol/L) for each pseudo-component of the oil.
"""
return 46.4 * 10. ** (-36.7 * molecular_weight / density) | 64a951e8a6d9579cf934893fe5c9bc0a9181d4cc | 4,625 |
import torch
def cal_head_bbox(kps, image_size):
"""
Args:
kps (torch.Tensor): (N, 19, 2)
image_size (int):
Returns:
bbox (torch.Tensor): (N, 4)
"""
NECK_IDS = 12 # in cocoplus
kps = (kps + 1) / 2.0
necks = kps[:, NECK_IDS, 0]
zeros = torch.zeros_like(necks)
ones = torch.ones_like(necks)
# min_x = int(max(0.0, np.min(kps[HEAD_IDS:, 0]) - 0.1) * image_size)
min_x, _ = torch.min(kps[:, NECK_IDS:, 0] - 0.05, dim=1)
min_x = torch.max(min_x, zeros)
max_x, _ = torch.max(kps[:, NECK_IDS:, 0] + 0.05, dim=1)
max_x = torch.min(max_x, ones)
# min_x = int(max(0.0, np.min(kps[HEAD_IDS:, 0]) - 0.1) * image_size)
min_y, _ = torch.min(kps[:, NECK_IDS:, 1] - 0.05, dim=1)
min_y = torch.max(min_y, zeros)
max_y, _ = torch.max(kps[:, NECK_IDS:, 1], dim=1)
max_y = torch.min(max_y, ones)
min_x = (min_x * image_size).long() # (T,)
max_x = (max_x * image_size).long() # (T,)
min_y = (min_y * image_size).long() # (T,)
max_y = (max_y * image_size).long() # (T,)
rects = torch.stack((min_x, max_x, min_y, max_y), dim=1)
return rects | 546b4d4fcf756a75dd588c85ab467c21e9f45550 | 4,630 |
def _process_input(data, context):
""" pre-process request input before it is sent to
TensorFlow Serving REST API
Args:
data (obj): the request data, in format of dict or string
context (Context): object containing request and configuration details
Returns:
(dict): a JSON-serializable dict that contains request body and headers
"""
if context.request_content_type == 'application/json':
data = data.read().decode("utf-8")
return data if len(data) else ''
raise ValueError('{{"error": "unsupported content type {}"}}'.format(
context.request_content_type or "unknown"
)) | 05d48d327613df156a5a3b6ec76e6e5023fa54ca | 4,631 |
def remove_duplicates(iterable):
"""Removes duplicates of an iterable without meddling with the order"""
seen = set()
seen_add = seen.add # for efficiency, local variable avoids check of binds
return [x for x in iterable if not (x in seen or seen_add(x))] | d98fdf8a4be281008fa51344610e5d052aa77cae | 4,632 |
def _orbit_bbox(partitions):
""" Takes a granule's partitions 'partitions' and returns the bounding box
containing all of them. Bounding box is ll, ur format
[[lon, lat], [lon, lat]]. """
lon_min = partitions[0]['lon_min']
lat_min = partitions[0]['lat_min']
lon_max = partitions[0]['lon_max']
lat_max = partitions[0]['lat_max']
for p in partitions[1:]:
if p['lon_min'] < lon_min:
lon_min = p['lon_min']
if p['lat_min'] < lat_min:
lat_min = p['lat_min']
if p['lon_max'] > lon_max:
lon_max = p['lon_max']
if p['lat_max'] > lat_max:
lat_max = p['lat_max']
return [[lon_min, lat_min], [lon_max, lat_max]] | 8e040b549cbdf9587f08a285bd6f867ae580d584 | 4,633 |
def db_to_dict(s_str, i = 0, d = {}):
""" Converts a dotbracket string to a dictionary of indices and their pairs
Args:
s_str -- str: secondary_structure in dotbracket notation
KWargs:
i -- int: start index
d -- dict<index1, index2>: the dictionary so far
Returns:
dictionary
"""
j = i
while j < len(s_str):
c = s_str[j]
if c == "(":
d = db_to_dict(s_str, j + 1, d)
j = d[j]
elif c == ")":
d[i - 1] = j
d[j] = i - 1
if(i != 0): return d # Don't return from the first iteration yet
else:
d[j] = None
j = j + 1
return d | 5440bc318b0b5c8a137e0a3f739031603994e89c | 4,634 |
from typing import Any
from typing import List
def is_generic_list(annotation: Any):
"""Checks if ANNOTATION is List[...]."""
# python<3.7 reports List in __origin__, while python>=3.7 reports list
return getattr(annotation, '__origin__', None) in (List, list) | 0ed718eed16e07c27fd5643c18a6e63dc9e38f69 | 4,636 |
from pathlib import Path
def create_folder(base_path: Path, directory: str, rtn_path=False):
""" Recursive directory creation function. Like mkdir(), but makes all intermediate-level directories needed to
contain the leaf directory
Parameters
-----------
base_path : pathlib.PosixPath
Global Path to be root of the created directory(s)
directory : str
Location in the Songbird-LFP-Paper the new directory is meant to be made
rtn_path : bool, optional
If True it returns a Path() object of the path to the Directory requested to be created
Returns
--------
location_to_save : class, (Path() from pathlib)
Path() object for the Directory requested to be created
Example
--------
# Will typically input a path using the Global Paths from paths.py
>>> create_folder('/data/')
"""
location_to_save = base_path / directory
# Recursive directory creation function
location_to_save.mkdir(parents=True, exist_ok=True)
if rtn_path:
return location_to_save.resolve() | 7c3724b009ef03fc6aa4fbc2bf9da2cbfa4c784d | 4,637 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.