content
stringlengths 39
14.9k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
---|---|---|
import math
def Vabrms_calc(va,vb):
"""Inverter terminal voltage - line to line RMS"""
return abs(va-vb)/math.sqrt(2) | aeb9b30990513f88d4a671c7de035d0a5cd64296 | 10,048 |
import re
def get_value(text, regex, value_type=float):
"""Dump a value from a file based on a regex passed in."""
pattern = re.compile(regex, re.MULTILINE)
results = pattern.search(text)
if results:
return value_type(results.group(1))
else:
print("Could not find the value {}, in the text provided".format(regex))
return value_type(0.0) | 6c4b9990dab2d8fe9f55c7a8f8c97011d3857b01 | 10,050 |
def numberofdupes(string, idx):
"""return the number of times in a row the letter at index idx is duplicated"""
# "abccdefgh", 2 returns 1
initial_idx = idx
last = string[idx]
while idx+1 < len(string) and string[idx+1] == last:
idx += 1
return idx-initial_idx | e5b9aa310c821683632dbec1ce3ab9a8bf8a08b7 | 10,051 |
def _decline(di, t, qoi, b):
"""Arp's equation for general decline in a well
- qoi: initial rate of production
- di: initial decline rate
- b: curvature (b=0 exponential)
"""
return qoi / ((1 + b * di * t) ** (1 / b)) | 86368cef4d7d24bff738d5fe4acde2a1a9fb8922 | 10,057 |
import hashlib
def gen_robohash(s, size=200):
"""Return URL for robohash pic for sha1 hash of string ``s``"""
h = hashlib.sha1(s).hexdigest()
return ('http://robohash.org/{0}.png?size={1}x{1}&bgset=bg2&set=set1'
.format(h, size)) | f4ac71b54801a3b86e3ec4e0cf60f25a9cae5990 | 10,058 |
from typing import Any
import attr
def validated() -> Any:
"""Decorate an entity to handle validation.
This will let ``attrs`` manage the class, using slots for fields, and forcing attributes to
be passed as named arguments (this allows to not have to defined all required fields first, then
optional ones, and resolves problems with inheritance where we can't handle the order)
Returns
-------
type
The decorated class.
Examples
--------
>>> from isshub.domain.utils.entity import required_field, validated, BaseEntity
>>>
>>> @validated()
... class MyEntity(BaseEntity):
... my_field: str = required_field(str)
>>>
>>> MyEntity.__slots__
('my_field',)
>>>
>>> instance = MyEntity()
Traceback (most recent call last):
...
TypeError: __init__() missing 1 required keyword-only argument: 'my_field'
>>> instance = MyEntity(my_field='foo')
>>> instance.my_field
'foo'
>>> instance.validate()
>>> instance.my_field = None
>>> instance.validate()
Traceback (most recent call last):
...
TypeError: ("'my_field' must be <class 'str'> (got None that is a <class 'NoneType'>)...
"""
return attr.s(slots=True, kw_only=True, eq=False) | 6903d654e74b6bd6fc2d062755823043125c922a | 10,065 |
def keep_type(value):
"""
Keep hook returned value type
:param value: Value to be returned
:return: Any
"""
return value | f5048e2863aca6eced8c3be76a3623fd5f3a808e | 10,071 |
def find_nodes(graph, query, data=False):
""" Iterator over all nodes matching the data query.
"""
return ((v, graph.nodes[v]) if data else v
for v in graph if query(graph.nodes[v])) | e8f2e25f843133446c32ca7f012ac2aa1b80d2b9 | 10,076 |
def _SigninUIState(oobe):
"""Returns the signin ui state of the oobe. HIDDEN: 0, GAIA_SIGNIN: 1,
ACCOUNT_PICKER: 2, WRONG_HWID_WARNING: 3, MANAGED_USER_CREATION_FLOW: 4.
These values are in chrome/browser/resources/chromeos/login/display_manager.js
"""
return oobe.EvaluateJavaScript('''
loginHeader = document.getElementById('login-header-bar')
if (loginHeader) {
loginHeader.signinUIState_;
}
''') | 355b7ebbaf0010165109c27162ca70f5168abe05 | 10,077 |
import hmac
import hashlib
def generate_dendrite_mac(shared_secret: str, username: str, password: str, admin: bool) -> str:
"""
Generate a MAC for using in registering users with Dendrite.
"""
# From: https://github.com/matrix-org/dendrite/blob/master/clientapi/routing/register.go
mac = hmac.new(
key=shared_secret.encode('utf8'),
digestmod=hashlib.sha1,
)
mac.update(username.encode('utf8'))
mac.update(b"\x00")
mac.update(password.encode('utf8'))
mac.update(b"\x00")
mac.update(b"admin" if admin else b"notadmin")
return mac.hexdigest() | bed29168d88db0d9b2bd0bf95f493a9d4b5e7a3f | 10,080 |
def _cmpPair2(a, b):
"""Auxiliary comparision for sorting lists of pairs. Sorting on the second member of the pair."""
(x, y), (z, w) = a, b
if y < w:
return -1
elif y > w:
return 1
elif x < z:
return -1
elif x > z:
return 1
else:
return 0 | 5567ddc006756e224dde545503c427a3524c3c90 | 10,084 |
def toExport8F8(op):
"""Converts number to exportable 8.8 signed fixed point number."""
return int(round(op * 256.0)) | 3364703913e1c87223ffb11bdaf3b622db7eef1c | 10,085 |
import math
def LogRegressNomalize(value):
"""Uses log regress to normalize (-inf, inf) to [0, 1]."""
value_exp = math.exp(value)
return value_exp / (value_exp + 1) | a5d30077df70b3795754d62c6534781e61482f13 | 10,086 |
def to_dict(conf):
"""Converts a Config object to a dictionary.
Args:
conf (Config): A Config object
Returns:
dict: A multi-level dictionary containing a representation ogf the configuration.
"""
return conf._xpipe_to_dict() | 6c709e04f1ffb88b5b5563defc2a03fabfafbb1e | 10,096 |
def valid_hex(value):
"""Check if the string is a valid hex number representation."""
try:
int(value, 16)
except Exception:
return False
return True | 4037b9103cd3308253f929d0a4cbbe3f37c1c219 | 10,099 |
def get_mapvars(mapfile):
"""Read the sugar .map file and return a dictionary
where the key is the variable name and the value is the (start,r0,r1)
where r0 is the first ordinal and r1 is the last. Sugar uses uniary encoding."""
mapvars = {}
with open(mapfile,"r") as f:
for line in f:
(var,name,start,_) = line.strip().split(" ")
if var=="int":
if ".." in _:
(r0,r1) = _.split("..")
else:
(r0,r1) = int(_),int(_)
else:
raise RuntimeError("Only variables of type {} are supported".format(var))
start = int(start)
r0 = int(r0)
r1 = int(r1)
mapvars[name] = (start,r0,r1)
return mapvars | c149270a4f1a86707b7ee5e2ed437b5736a2a986 | 10,100 |
def is_in_period(month, period):
"""Return which months fall within a specified group of calendar months.
Parameters
----------
month : int or iterable of ints
One or a series of calendar month numbers [1..12].
period : tuple of ints
Group of calendar month numbers to match against. These are usually
consecutive, e.g., [3, 4, 5] for MAM, but they don't have to be.
Returns
-------
return : bool or iterable of bools
True for month numbers that are in the group.
"""
try:
return [m in period for m in month]
except TypeError:
return month in period | e973f1ec11ea4dc6b87834c75d6374bbbb152635 | 10,105 |
def once(f):
"""Decorator. Defer to f once and only once, caching the result forever.
Users with a functional background may recognize the concept of a `thunk`.
"""
unset = val = object()
def _helper(*args, **kwargs):
nonlocal val
if val is unset:
val = f(*args, **kwargs)
return val
return _helper | 39e900779a6665155fe83770964e509ff88a12c4 | 10,106 |
import hashlib
def _hash_file(fpath, chunk_size=65535):
"""
Calculates the md5 hash of a file
:param fpath: path to the file being validated
:param chunk_size: Bytes to read at a time (leave unless large files)
:return: The file hash
"""
hasher = hashlib.md5()
with open(fpath, 'rb') as fpath_file:
for chunk in iter(lambda: fpath_file.read(chunk_size), b''):
hasher.update(chunk)
return hasher.hexdigest() | 9f17f13f487f95620ad705a6f2b23d57407e640e | 10,109 |
def midpoint(start, end):
"""Find the mid-point between two points."""
x0, y0 = start
x1, y1 = end
return (x0+x1)/2, (y0+y1)/2 | dab5a66b8af759998a295d64ba3711b6e99e4c27 | 10,110 |
import re
def replace_pair(pair, content):
"""
Uses regex to locate a pair.
First element of the tuple is the original error token.
Second element of the tuple is the replacement token.
"""
return re.sub(pair[0], ' {} '.format(pair[1]), content) | 022633d417393959a94629117a1e664709770571 | 10,113 |
from datetime import datetime
def extract_sitename_date(directory_path,
sitename_location,
datetime_location):
"""Extract sitename and datetime from directory path name.
Parameters
-----------
directory_path : string
A path to the directory name
sitename_location : index list
Index of sitename location in directory path name
datetime_location : index list
Index of datetime location in directory path name
Returns
-----------
list : list of site names and datetime information
"""
# Create an empty list to append sitename and date information
site_name_date_list = []
# Assign datetime location to an object
date_location = directory_path[datetime_location[0]: datetime_location[1]]
# Specify datetime format
format = "%Y%m%d"
# Use datetime and format to create date varibale
date = datetime.strptime(date_location, format)
# Assign sitename information to a variable
site = directory_path[sitename_location[0]: sitename_location[1]]
# Append site variable to list
site_name_date_list.append(site)
# Append date variable to list
site_name_date_list.append(date)
return site_name_date_list | 86a2085ba68b234585ef9855da64fa1fdd5459ce | 10,115 |
def multi_dict_unpacking(lst):
"""
Receive a list of dictionaries, join them into one big dictionary
"""
result = {}
for d in lst:
for key, val in d.items():
result[key] = val
return result | 530947224d682cffb809e83f308a97a108002080 | 10,118 |
import math
def dist(a: list, b: list) -> float:
"""Calculate the distancie between 2 points
Args:
a (list): point a
b (list): point b
Returns:
float: Distance between a and b
"""
return math.sqrt((a[0]-b[0])**2+(a[1]-b[1])**2) | 7ad6d2f36c0bccee106c7b54a4abebd246c4a3fa | 10,119 |
def get_middle_opt(string: str) -> str:
"""Get middle value of a string (efficient).
Examples:
>>> assert get_middle_opt('middle') == 'dd'
"""
return (
string[int(len(string) // 2) - 1 : int(len(string) // 2) + 1]
if not len(string) % 2
else string[int(len(string) // 2)]
) | 1636f39e22bacc4f571de876dd71add690e940e6 | 10,121 |
def duration(duration):
"""Filter that converts a duration in seconds to something like 01:54:01
"""
if duration is None:
return ''
duration = int(duration)
seconds = duration % 60
minutes = (duration // 60) % 60
hours = (duration // 60) // 60
s = '%02d' % (seconds)
m = '%02d' % (minutes)
h = '%02d' % (hours)
output = []
if hours > 0:
output.append(h)
output.append(m)
output.append(s)
return ':'.join(output) | 7cd89654a84c2e3e41d96cb1b13688833ee54387 | 10,122 |
import types
def name(function):
"""
Retrieve a pretty name for the function
:param function: function to get name from
:return: pretty name
"""
if isinstance(function, types.FunctionType):
return function.__name__
else:
return str(function) | 4002d7a945c3b3e3e4d957c0b10ff202f2cf0246 | 10,123 |
import requests
def get_response_json(url: str):
"""
Function get response json dictionary from url.
:param url: url address to get response json
:type url: str
:return: dictionary data
:rtype: json
:usage:
function calling
.. code:: python
get_response_json(url)
"""
response = requests.get(url)
response.raise_for_status()
return response.json() | dd209b1dba7f4320cd91addb1e49fa98bab0ae2b | 10,124 |
import pickle
def dumps_content(content):
"""
pickle 序列化响应对象
:param content: 响应对象
:return: 序列化内容
"""
return pickle.dumps(content) | f88159b9d016a6e39744e7af09a76705c9f4e76f | 10,125 |
def split_data(data, ratio, shuffle=1):
"""Split dataset according to ratio, larger split is first return"""
n_exs = len(data[0])
split_pt = int(n_exs * ratio)
splits = [[], []]
for col in data:
splits[0].append(col[:split_pt])
splits[1].append(col[split_pt:])
return tuple(splits[0]), tuple(splits[1]) | fc837dd9f721950dde18cee9ec33eab5e3e96f77 | 10,133 |
def delBlank(strs):
"""
Delete all blanks in the str.
"""
ans = ""
for e in strs:
if e != " ":
ans += e
return ans | a6155af200918819055533057f63b4b44c8dd508 | 10,139 |
import re
def splitn(s, n):
"""split string s into chunks no more than n characters long"""
parts = re.split("(.{%d,%d})" % (n, n), s)
map(parts.remove, [""] * parts.count(""))
return parts | 3f0f697f54515e26f98bc08b53cb4d39952ed128 | 10,140 |
import csv
def LoadMOS(mos_csv):
"""Load a csv file withMOS scores.
Args:
mos_csv: Path to a csv file that has degraded and MOS.
Returns:
Dictionary with filename keys and MOS values
"""
mos_dict = {}
with open(mos_csv, 'r') as csvfile:
mos_reader = csv.reader(csvfile)
for row in mos_reader:
# Skip header
if row[1] == 'MOS':
continue
mos_dict[row[0]] = row[1]
return mos_dict | e98cbf93e3bc889a31a98ff32a9f9189a850a55f | 10,142 |
import unicodedata
def url_is_invalid_unicode(url_string):
""" Check for unicode control characters in URL """
for x in str(url_string):
if unicodedata.category(x)[0] == "C":
return True
return False | d1a3974b24023c46a337c7e17718e00aa5916c7d | 10,143 |
import string
def escape_bytes(bytes_):
"""
Convert a bytes object to an escaped string.
Convert bytes to an ASCII string. Non-printable characters and a single
quote (') are escaped. This allows to format bytes in messages as
f"b'{utils.escape_bytes(bytes)}'".
"""
res = ""
for byte in bytes_:
char = chr(byte)
if char == '\\':
res += "\\\\"
elif char == '\'':
res += "\\'"
elif char in (string.digits + string.ascii_letters +
string.punctuation + ' '):
res += char
else:
res += "\\x%0.2x" % byte
return res | c1a6c2875824d8576e7d9c349f19548e2c3313e8 | 10,147 |
def shrink_dimensions(width, height, max_dimension):
"""
Resize dimensions so max dimension is max_dimension. If dimensions are too small no resizing is done
Args:
width (int): The width
height (int): The height
max_dimension (int): The maximum size of a dimension
Returns:
tuple of (small_width, small_height): A resized set of dimensions, as integers
"""
max_width_height = max(width, height)
if max_width_height < max_dimension:
return width, height
ratio = max_width_height / max_dimension
return int(width / ratio), int(height / ratio) | 60d4a6ec9b310f7c22f341f1309b4677c3617fd2 | 10,148 |
import json
def get_id_set(id_set_path: str) -> dict:
"""
Parses the content of id_set_path and returns its content.
Args:
id_set_path: The path of the id_set file
Returns:
The parsed content of id_set
"""
with open(id_set_path, 'r') as id_set_file:
id_set = json.load(id_set_file)
return id_set | 244495603bf423324ef4b3ffe4b1fdc3ca7fdf74 | 10,152 |
def format_label_value(*values):
"""
Construct a label value.
If multiple value components are provided, they are joined by underscores.
"""
return '_'.join(values) | 46bb4e968577c95d5dd0df8b9687efbfdcc0568e | 10,154 |
def _get_timeout(value):
"""
Turn an input str or int into a float timeout value.
:param value: the input str or int
:type value: str or int
:raises ValueError:
:returns: float
"""
maximum_dbus_timeout_ms = 1073741823
# Ensure the input str is not a float
if isinstance(value, float):
raise ValueError(
"The timeout value provided is a float; it should be an integer."
)
try:
timeout_int = int(value)
except ValueError:
raise ValueError("The timeout value provided is not an integer.")
# Ensure the integer is not too large
if timeout_int > maximum_dbus_timeout_ms:
raise ValueError(
"The timeout value provided exceeds the largest acceptable value, %s."
% maximum_dbus_timeout_ms
)
# Convert from milliseconds to seconds
return timeout_int / 1000 | b8205cb34b90b856b4dda2a028f801b4cd70d7b4 | 10,158 |
def getAnswer(x,input_string):
"""Iegūst mainīgajam x vērtību 1 vai 2, parādot tekstu input_string.
Ja ievadīta nepareiza vērtība, tad tiek paradīta kļūdas ziņa."""
while True:
try:
x = int(input(input_string))
if x < 1:
raise ValueError
elif x > 2:
raise ValueError
break
except:
print("Lūdzu ievadiet 1 vai 2.\n")
return x | 66f8b1cccef5fb710713f1c6498248dd0f3517ea | 10,160 |
from typing import Optional
from typing import Union
import struct
def encode_key(
key: str, value: Optional[Union[int, float, str]] = None, value_type: str = "str"
) -> bytes:
"""Encode given header key to a bytes string.
Parameters
----------
key : str
header key
value : Optional[Union[int, float, str]], optional
value of the header key, by default None
value_type : str, optional
type of the header key, by default "str"
Returns
-------
bytes
bytes encoded string
"""
if value is None:
return struct.pack("I", len(key)) + key.encode()
if value_type == "str" and isinstance(value, str):
return (
struct.pack("I", len(key))
+ key.encode()
+ struct.pack("I", len(value))
+ value.encode()
)
return struct.pack("I", len(key)) + key.encode() + struct.pack(value_type, value) | b38e04fdbd761bd121f0e08a9eee9dfb692f616c | 10,161 |
import json
def get_numeric_project_id(gcloud, project_id):
"""Get the numeric project ID."""
project_info = json.loads(
gcloud.run('projects', 'describe', project_id, '--format=json'))
return project_info['projectNumber'] | f9e3086ed1436d4ce075960c191ff4f64a76582b | 10,165 |
from functools import reduce
from operator import add
def fitness(individual,target):
"""
individual : the individual to evaluate (a list)
target : the target sum the individuals are aiming for
"""
sum = reduce(add,individual,0)
return abs(target-sum) | bcfb4d857be926df249149e224babbc98d358780 | 10,167 |
def create_schema(name: str) -> str:
"""Function for generating create schema statements
:param str name: The name of the schema
:return: Create statement
:rtype: str
"""
statement = f"CREATE SCHEMA {name}"
return statement | a82d392ec411e2c412ef3f1959ff7ab229130532 | 10,168 |
def courant(dx, dt, v_max, **kwargs):
"""
Calculate the Courant's number describing
stability of the numerical scheme.
Parameters
----------
dx : float
Size of the spatial grid cell [m].
dt : float
Time step [s].
v_max : float
Max. velocity of the model.
Returns
-------
C : float
Courant's number used later in
CFL criterion C < C_max where
C_max is scheme-specific.
Notes
-----
The smaller the more stable.
If C > 1 the fastest wave in the model will
be covering more than 1 grid cell per time step.
"""
# GRID VELOCITY (1 GRID-CELL PER TIME-STEP) IN PHYSICAL UNITS
v_grid = dx / float(dt)
# RATIO OF MAX AND GRID VELOCITY
C = v_max / float(v_grid)
return C | 58b09b545c4679b845c3e2702af8bffe4262c599 | 10,169 |
import math
def standard_deviation(series):
"""
implements the sample standard deviation of a series from scratch
you may need a for loop and your average function
also the function math.sqrt
you should get the same result as calling .std() on your data
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.std.html
See numpy documenation for implementation details:
https://docs.scipy.org/doc/numpy/reference/generated/numpy.std.html
"""
pass
avgnum = sum(series) / len(series)
sumsq = 0
for each in series:
t = each - avgnum
sumsq = sumsq + pow(t,2)
stdnum = math.sqrt(sumsq/(len(series)-1))
return stdnum | 01a488f4bc8168a92d4a0590daa88bad08032fed | 10,172 |
def unify_projection(dic):
"""Unifies names of projections.
Some projections are referred using different names like
'Universal Transverse Mercator' and 'Universe Transverse Mercator'.
This function replaces synonyms by a unified name.
Example of common typo in UTM replaced by correct spelling::
>>> unify_projection({'name': ['Universe Transverse Mercator']})
{'name': ['Universal Transverse Mercator']}
:param dic: The dictionary containing information about projection
:return: The dictionary with the new values if needed or a copy of old one
"""
# the lookup variable is a list of list, each list contains all the
# possible name for a projection system
lookup = [['Universal Transverse Mercator',
'Universe Transverse Mercator']]
dic = dict(dic)
for l in lookup:
for n in range(len(dic['name'])):
if dic['name'][n] in l:
dic['name'][n] = l[0]
return dic | a3cdf4bb2a26ee0391281e8f8b0d3e7ea5c8a962 | 10,173 |
import requests
def api_request(url, api_key=None):
"""
This function takes a url and returns the parsed json object. If necessary, it submits the auth header
"""
if api_key:
return requests.get(url, headers={'Authorization': 'Token ' + api_key}).json()
else:
return requests.get(url).json() | ea8572d761dffb952b970ab14e73307a02f67ee8 | 10,184 |
def getbitlen(bint):
"""
Returns the number of bits encoding an integer
"""
return bint.bit_length() | f6ae3253e767382959d372eb5e4612fb85c89ffc | 10,195 |
def calc_max_cpu(records):
""" Returns the CPU usage at the max temperature, ever
:param records: a list of records of min, max temp and associated CPU avg load
:return: a record with the highest recorded temperature, and the associated list of CPU loads
"""
max_temp = 0
cpu_loads = []
for record in records:
if record['max'] > max_temp:
max_temp = record['max']
cpu_loads = [100 * record['cpu']]
elif record['max'] == max_temp:
cpu_loads.append(100 * record['cpu'])
return max_temp, cpu_loads | bee21fadb3fcf9cdbbce79f6281f48350b3ffceb | 10,198 |
from typing import List
def longest_substring_using_nested_for_loop(s: str) -> int:
"""
Given a string s, find the length of the longest substring without repeating characters.
https://leetcode.com/problems/longest-substring-without-repeating-characters/
3946 ms 14.2 MB
>>> longest_substring_using_nested_for_loop("abcabcbb")
3
>>> longest_substring_using_nested_for_loop("bbbbb")
1
>>> longest_substring_using_nested_for_loop("pwwkew")
3
"""
total = 0
for idx, _ in enumerate(s):
vals: List[str] = []
for c2 in s[idx:]:
if c2 not in vals:
vals += [c2]
total = max((total, len(vals)))
else:
total = max((total, len(vals)))
break
return total | 996ce5fcb956012cb75fef35c6bec8be6ecad461 | 10,202 |
import re
def isSane(filename):
"""Check whether a file name is sane, in the sense that it does not contain any "funny" characters"""
if filename == '':
return False
funnyCharRe = re.compile('[\t/ ;,$#]')
m = funnyCharRe.search(filename)
if m is not None:
return False
if filename[0] == '-':
return False
return True | d9e8bac7ebad1fd2af024f8880e255fcb40db68c | 10,203 |
import csv
import itertools
def csv_read_row(filename, n):
""" Read and return nth row of a csv file, counting from 1. """
with open(filename, 'r') as f:
reader = csv.reader(f)
return next(itertools.islice(reader, n-1, n)) | a95cf8ed35b61acff418a02bfa5f8285f589e6d6 | 10,205 |
def load_proto(fpath, proto_type):
"""Load the protobuf
Args:
fpath: The filepath for the protobuf
Returns:
protobuf: A protobuf of the model
"""
with open(fpath, "rb") as f:
return proto_type().FromString(f.read()) | 7b6bcf6d2e56f2ca4087a9ec769b16a986511c55 | 10,206 |
from typing import Union
from pathlib import Path
def _filename(path: Union[str, Path]) -> str:
"""Get filename and extension from the full path."""
if isinstance(path, str):
return Path(path).name
return path.name | 552655ff66ec6cd42b57ada6080df9dc34db1bd0 | 10,211 |
import time
def log_str(proc_str, start):
"""Create a preamble string for stdout."""
former = "[{:>4}".format(proc_str)
latter = "] {:.2f}".format(round(time.time() - start, 3))
return former + latter | 5f4f82e758cf87ff643a20928e5c0f7368ef537f | 10,218 |
def linear_kernel(X, Y=None):
"""Compute linear Gram matrix between X and Y (or X)
Parameters
----------
X: torch.Tensor of shape (n_samples_1, n_features)
First input on which Gram matrix is computed
Y: torch.Tensor of shape (n_samples_2, n_features), default None
Second input on which Gram matrix is computed. X is reused if None
Returns
-------
K: torch.Tensor of shape (n_samples_1, n_samples_2)
Gram matrix on X/Y
"""
if Y is None:
Y = X
K = X @ Y.T
return K | b1389059e755fa19bb26c88cf8c9f6ab39d51aec | 10,219 |
def split_date(dates):
"""
Split datetime64 dates into year, month, day components.
"""
y = dates.astype("<M8[Y]").astype(int) + 1970
m = dates.astype("<M8[M]").astype(int) % 12 + 1
d = (dates - dates.astype("<M8[M]")).astype("<m8[D]").astype(int) + 1
return y, m, d | 7152dbdd1f839ef3c401de06631fb0a249c36642 | 10,220 |
def process_failed(returncode, stdout):
"""Return True if the process failed."""
if returncode != 0:
return True
if 'badly_formatted' in stdout:
return True
return False | 2d3c84872acf3bf6592316aa95c39e41a6da849e | 10,224 |
def evaluate_quadratic(J, g, s, diag=None):
"""Compute values of a quadratic function arising in least squares.
The function is 0.5 * s.T * (J.T * J + diag) * s + g.T * s.
"""
if s.dim() == 1:
Js = J.mv(s)
q = Js.dot(Js)
if diag is not None:
q += s.dot(s * diag)
else:
Js = J.matmul(s.T)
q = Js.square().sum(0)
if diag is not None:
q += (diag * s.square()).sum(1)
l = s.matmul(g)
return 0.5 * q + l | cde6067f22ef3a146b80fb5324c0c1a8ce2e65a4 | 10,225 |
def vdowham(eta, vel_entrain, e_eff, r_eff):
"""
Calculate the velocity parameter of the contact problem according to
Dowson-Hamrock.
Parameters
----------
eta: ndarray, scalar
The dynamic viscosity of the lubricant.
vel_entrain: ndarray, scalar
The entrainment velocity of the contact problem.
e_eff: ndarray, scalar
The effective modulus of the contact problem.
r_eff: ndarray, scalar
The effective radius of the contact problem.
Returns
-------
param_velocity: ndarray, scalar
The velocity parameter of the contact problem.
"""
param_velocity = eta * vel_entrain / (e_eff * r_eff)
return param_velocity | e8abfcc3d312ffce0c192a3b890fe8f3a6785e76 | 10,234 |
def compute_convergence(output, output_prev):
"""
Compute the convergence by comparing with the output from the previous
iteration.
The convergence is measured as the mean of a XOR operation on two vectors.
Parameters
----------
output, output_prev : np.ndarray
Current and previous iteration binary outputs.
Returns
-------
float
The model convergence between 0 (fully converged) and 1 (fully chaotic)
"""
if output is None or output_prev is None:
return None
return (output ^ output_prev).mean() | 7ea1e931598ed8dcf8466fb4df327391943187c1 | 10,235 |
import json
def get_profile_name(host, network):
"""
Get the profile name from Docker
A profile is created in Docker for each Network object.
The profile name is a randomly generated string.
:param host: DockerHost object
:param network: Network object
:return: String: profile name
"""
info_raw = host.execute("docker network inspect %s" % network.name)
info = json.loads(info_raw)
# Network inspect returns a list of dicts for each network being inspected.
# We are only inspecting 1, so use the first entry.
return info[0]["Id"] | 37128df21074c75e53e9567c51301c76578947f2 | 10,237 |
def _absolute_path(repo_root, path):
"""Converts path relative to the repo root into an absolute file path."""
return repo_root + "/" + path | bae7013db933e58343f0d6b3f90dfa100de74b7e | 10,240 |
def aic(L, k):
"""
Akaike information criterion.
:param L: maximized value of the negative log likelihood function
:param k: number of free parameters
:return: AIC
"""
return 2*(k + L) | 159a02cc19d2b4eab30dd13c1cd2b802777277ad | 10,242 |
def prepare_update_sql(list_columns, list_values, data_code=100):
"""
Creates a string for the update query
:param list_columns: columns that are in need of an update
:param list_values: values where the columns should be updated with
:param data_code: data code to add to the columns
:return: string with the columns and update values
"""
string = ''
for i in enumerate(list_columns):
if list_values[i[0]] is not None:
if len(i[1]) >= 50:
new_label = i[1][:50] + '_' + str(data_code)
string = string + '`' + new_label + '`' + '= ' + '\'' + str(list_values[i[0]]) + '\'' + ', '
else:
string = string + '`' + i[1] \
+ '_' + str(data_code) + '`' + '= ' + '\'' + str(list_values[i[0]]) + '\'' + ', '
string = string.replace("None", "Null")
return string[:-2] | cc3f3c548623bdeb4d2e4e12cc3205baf0a9e9ba | 10,245 |
def onBoard(top, left=0):
"""Simplifies a lot of logic to tell if the coords are within the board"""
return 0 <= top <= 9 and 0 <= left <= 9 | 2b2007ae2e3acdbb9c04c3df1397cffce97c6717 | 10,247 |
def name( path ):
"""Extracts the resource name."""
return path[1+path.rfind('/'):] | 7e8448e5b1c62c30e7ae28c80580731aa9f6f9fb | 10,250 |
def report_dfa(q_0, dfa, g):
"""
Give a complete description of the DFA as a string
"""
output = ""
output += "----------- DFA ----------- " + "Goal: " + g + " ----------- \n"
transitions = [(i,dfa[(i,sigma)],sigma) for i,sigma in dfa]
transitions.sort()
for i,j,sigma in transitions:
output += (f"delta({i},{sigma}) = {j}\n")
output += f"q_0 = {q_0}\n"
return output | 99d86557b9e1aede93f46e1ef78ecb1fe6cdbf30 | 10,251 |
def shutting_down(globals=globals):
"""
Whether the interpreter is currently shutting down.
For use in finalizers, __del__ methods, and similar; it is advised
to early bind this function rather than look it up when calling it,
since at shutdown module globals may be cleared.
"""
# At shutdown, the attribute may have been cleared or set to None.
v = globals().get('_shutting_down')
return v is True or v is None | 01f601b989611b06a438a3be3e15937eff389038 | 10,255 |
def add_xls_tag(file_name):
"""
Check the file_name to ensure it has ".xlsx" extension, if not add it
"""
if file_name[:-5] != ".xlsx":
return file_name + ".xlsx"
else:
return file_name | e053d9f7dad8e638122e93d05e49c5a06de3e664 | 10,258 |
def pedestal_ids_file(base_test_dir):
"""Mock pedestal ids file for testing."""
pedestal_ids_dir = base_test_dir / "auxiliary/PedestalFinder/20200117"
pedestal_ids_dir.mkdir(parents=True, exist_ok=True)
file = pedestal_ids_dir / "pedestal_ids_Run01808.0000.h5"
file.touch()
return file | edda4c192e577774e0cc4a38aaa7d838127e7dcd | 10,263 |
def get_fa_icon_class(app_config):
"""Return Font Awesome icon class to use for app."""
if hasattr(app_config, "fa_icon_class"):
return app_config.fa_icon_class
else:
return 'fa-circle' | 3766abb1f80b7ccea9e09a5edf011f1586e9b49e | 10,264 |
from typing import Any
def get_valid_ref(ref: Any) -> str:
"""Checks flow reference input for validity
:param ref: Flow reference to be checked
:return: Valid flow reference, either 't' or 's'
"""
if ref is None:
ref = 't'
else:
if not isinstance(ref, str):
raise TypeError("Error setting flow reference: Input is not a string")
if ref not in ['s', 't']:
raise ValueError("Error setting flow reference: Input is not 's' or 't', but {}".format(ref))
return ref | 16c66dc9e0568bcd33e1cc9956ed31b5ae47595e | 10,267 |
def cut_rod2(p, n, r={}):
"""Cut rod.
Same functionality as the original but implemented
as a top-down with memoization.
"""
q = r.get(n, None)
if q:
return q
else:
if n == 0:
return 0
else:
q = 0
for i in range(n):
q = max(q, p[i] + cut_rod2(p, n - (i + 1), r))
r[n] = q
return q | 2fa1433dffb9099709e466025645c4981f289692 | 10,270 |
def monthly_file_name(var, model, rcp):
"""Function for creating file connections for different variables
scenarios and models. Preasently, ensemble member r1i1p1 is assumed, as
well as 200601-210012 dime span for the monthly data."""
# e.g. hfls_Amon_CNRM-CM5_rcp85_r1i1p1_200601-210012.nc
f = var + "_" + "Amon_" + model + "_rcp" + rcp + "_r1i1p1_200601-210012.nc"
return f | 7aeea6d3724c470e076645ddb96877e9fa15843f | 10,276 |
def subset(part, whole):
"""Test whether `part` is a subset of `whole`.
Both must be iterable. Note consumable iterables will be consumed
by the test!
This is a convenience function.
Examples::
assert subset([1, 2, 3], [1, 2, 3, 4, 5])
assert subset({"cat"}, {"cat", "lynx"})
"""
return all(elt in whole for elt in part) | 4200ea95e0c9ff03d0b7589812d0313c5d13cfac | 10,279 |
from pathlib import Path
def stem(fname, include_suffix=False):
"""/blah/my_file.json.gz --> my_file"""
path = Path(fname)
stem = path.stem
# If a filename has multiple suffixes, take them all off.
stem = stem[: stem.index(".")] if "." in stem else stem
if include_suffix:
stem = stem + "".join(path.suffixes)
return stem | 9e4c557dff8583f9129215f91f8e123f062ccf52 | 10,280 |
def atol(s, base=None): # real signature unknown; restored from __doc__
"""
atol(s [,base]) -> long
Return the long integer represented by the string s in the
given base, which defaults to 10. The string s must consist
of one or more digits, possibly preceded by a sign. If base
is 0, it is chosen from the leading characters of s, 0 for
octal, 0x or 0X for hexadecimal. If base is 16, a preceding
0x or 0X is accepted. A trailing L or l is not accepted,
unless base is 0.
"""
return 0 | f39aa403cbad98c448a35305c97c595bc3a77c02 | 10,283 |
def tokens_to_sovatoms(tokens: float) -> int:
"""Convert tokens to sovatoms."""
return int(tokens * 100000000) | 23f4bc3a1afc4520b5e2416332702d0a594c5039 | 10,284 |
def flow_cell_mode(info_reads):
"""Return flow cell sequencing mode."""
res = ''
if info_reads:
read_lens = [
a['num_cycles'] for a in info_reads if not a['is_indexed_read']]
if len(read_lens) == 1:
res = '1x{}'.format(read_lens[0])
elif len(set(read_lens)) == 1:
res = '2x{}'.format(read_lens[0])
else:
res = ' + '.join(map(str, read_lens))
index_lens = [
a['num_cycles'] for a in info_reads if a['is_indexed_read']]
if index_lens:
res += '/'
if len(set(index_lens)) == 1:
res += '{}x{}'.format(len(index_lens), index_lens[0])
else:
res += '+'.join(map(str, index_lens))
return res or '?x?' | 0563d0c163c2bd42b05d07fb30940669a8ef3513 | 10,289 |
def sortKey(e):
"""
This sorts the chores based on their start time.
e[0] is the start time for all the chores in my array of chores.
"""
return int(e[0]) | 00d37751d23fe6210b406485cbd76906075b2578 | 10,290 |
def merge_into_dict(original, secondary):
"""Merge two dictionaries into the first and return it.
This is simply a conveinence wrapper around the dictionary update method. In
addition to the update it returns the original dict to allow for chaining.
Args:
original: The dict which will be updated.
secondary: The dict which will be copied.
Returns:
The updated original dictionary.
"""
original.update(secondary)
return original | 899d40396885f0775f2cbaa865702ed0e5706dba | 10,291 |
def normalize_obs(obs_dict, obs_normalization_stats):
"""
Normalize observations using the provided "mean" and "std" entries
for each observation key. The observation dictionary will be
modified in-place.
Args:
obs_dict (dict): dictionary mapping observation key to np.array or
torch.Tensor. Leading batch dimensions are optional.
obs_normalization_stats (dict): this should map observation keys to dicts
with a "mean" and "std" of shape (1, ...) where ... is the default
shape for the observation.
Returns:
obs_dict (dict): obs dict with normalized observation arrays
"""
# ensure we have statistics for each modality key in the observation
assert set(obs_dict.keys()).issubset(obs_normalization_stats)
for m in obs_dict:
mean = obs_normalization_stats[m]["mean"]
std = obs_normalization_stats[m]["std"]
# check shape consistency
shape_len_diff = len(mean.shape) - len(obs_dict[m].shape)
assert shape_len_diff in [0, 1], "shape length mismatch in @normalize_obs"
assert mean.shape[shape_len_diff:] == obs_dict[m].shape, "shape mismatch in @normalize obs"
# handle case where obs dict is not batched by removing stats batch dimension
if shape_len_diff == 1:
mean = mean[0]
std = std[0]
obs_dict[m] = (obs_dict[m] - mean) / std
return obs_dict | c866b6d18df13b9e6903b7d96024d48cde99d2ff | 10,292 |
def get_bprop_l2_loss(self):
"""Grad definition for `L2Loss` operation."""
def bprop(x, out, dout):
dx = x * dout
return (dx,)
return bprop | 6f52c07d9133939f5a7dc6d12a2416169f32147e | 10,297 |
def extract_tracklist_begin_num(content):
"""Return list of track names extracted from messy web content.
The name of a track is defined as a line which begins with a number
(excluding whitespace).
"""
tracklist = []
for line in content.splitlines():
# Empty line
if not line:
continue
# Strip leading and trailing whitespace
line.lstrip()
line.rstrip()
if line[0].isdigit():
tracklist.append(line)
return tracklist | 7d860fb0ea444ae0d9bd536a4644fa6b1c11a826 | 10,299 |
def net_solar_radiation(rs, albedo=0.23):
"""
Calculate the fraction of the solar radiation that is not reflected from
the surface (Allen et al. 1998).
Parameters
----------
rs : float
Solar radiation (MJ m-2 day-1).
albedo : float, optional
Albedo (-), default is 0.23 (value for a hypothetical
grass reference crop.
Returns
-------
float
Net solar radiation (MJ m-2 day-1).
"""
return (1 - albedo) * rs | 41a8930966db4a658d1c3ec31e754987bc9ed387 | 10,300 |
def text_color(message='{}', color_code='\033[0;37m'):
"""Set text to a color, default color is White"""
no_color = '\033[0m'
return f'{color_code}{message}{no_color}' | bede08b771b33ce26bbb0ee4fd42f3712d224cc1 | 10,301 |
def register_new_user(access, username, password):
""" Register a new user & handle duplicate detection """
if access.user_data(username) is not None:
raise ValueError("User '%s' already exists!" % username)
if username in access.pending_users():
raise ValueError("User '%s' has already registered!" % username)
access.register(username, password)
if access.need_admin():
access.approve_user(username)
access.set_user_admin(username, True)
return True
return False | 25b98c4def9da81d71176aed196f61b2e71d64c5 | 10,306 |
def get_not_constant_species(model):
"""
get species of the model that are not constant
@param model: libsbml.model
@type model: libsbml.model
@return: list of species
@rtype: list[libsbml.species]
"""
def not_const(s): return not( s.getConstant() or s.getBoundaryCondition() )
return filter(not_const, model.getListOfSpecies()) | abb376899405fa1623ec5ca646d0399e067fd5cc | 10,307 |
from math import floor
from typing import Tuple
from typing import Union
def conv_output_shape(
h_w: Tuple[int, int],
kernel_size: Union[int, Tuple[int, int]] = 1,
stride: int = 1,
padding: int = 0,
dilation: int = 1,
) -> Tuple[int, int]:
"""
Calculates the output shape (height and width) of the output of a convolution layer.
kernel_size, stride, padding and dilation correspond to the inputs of the
torch.nn.Conv2d layer (https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html)
:param h_w: The height and width of the input.
:param kernel_size: The size of the kernel of the convolution (can be an int or a
tuple [width, height])
:param stride: The stride of the convolution
:param padding: The padding of the convolution
:param dilation: The dilation of the convolution
"""
if not isinstance(kernel_size, tuple):
kernel_size = (int(kernel_size), int(kernel_size))
h = floor(
((h_w[0] + (2 * padding) - (dilation * (kernel_size[0] - 1)) - 1) / stride) + 1
)
w = floor(
((h_w[1] + (2 * padding) - (dilation * (kernel_size[1] - 1)) - 1) / stride) + 1
)
return h, w | ea757a413a3b38ea024b85dd6987beda8a3b9aeb | 10,310 |
def _path(from_object, to_object):
"""
Calculates the 'path' of objects starting from 'from_object'
to 'to_object', along with the index of the first common
ancestor in the tree.
Returns (index, list) tuple.
"""
if from_object._root != to_object._root:
raise ValueError('No connecting path found between ' +
str(from_object) + ' and ' + str(to_object))
other_path = []
obj = to_object
while obj._parent is not None:
other_path.append(obj)
obj = obj._parent
other_path.append(obj)
object_set = set(other_path)
from_path = []
obj = from_object
while obj not in object_set:
from_path.append(obj)
obj = obj._parent
index = len(from_path)
i = other_path.index(obj)
while i >= 0:
from_path.append(other_path[i])
i -= 1
return index, from_path | 0ccfe54d36832b8dce3c55168f02abb3c79261ef | 10,312 |
def PtknsToStr(path_tokens):
"""
There are three ways to store paths:
As a single string: '/Protein/Phe/Ca' <- the format entered by the user
As a list of tokens ['Protein', 'Phe', 'Ca'] <- split into tokens
As a list of nodes in a tree (pointers to nodes in a tree hierarchy)
This function converts between the first two formats.
"""
text = ''
if len(path_tokens) > 0:
text = path_tokens[0]
for i in range(1, len(path_tokens)):
text += '/' + path_tokens[i]
else:
text = ''
return text | 8dd64e6213f8a49f5b20619261a4b3d8daa8d95d | 10,321 |
def traverse_grid(start_cell, direction, num_steps):
"""
Helper function that iterates over the cells
in a grid in a linear direction and returns
a list of their indices.
"""
indices = list()
for step in range(num_steps):
row = start_cell[0] + step * direction[0]
col = start_cell[1] + step * direction[1]
indices.append((row, col))
return indices | 0ce6f91759c36a63b103ebff2cddd8dd50ca837b | 10,322 |
import requests
def open_recipe_file(file, recipes_path=None, github_repo='bioconda/bioconda-recipes'):
"""
Open a file at a particular location and return contents as string
"""
if recipes_path:
return open(f'{recipes_path}/{file}').read()
else: # if no clone of the repo is available locally, download from GitHub
r = requests.get(f'https://raw.githubusercontent.com/{github_repo}/master/{file}')
if r.status_code == 404:
raise OSError
else:
return r.content | ce5fc3c054bc937203966459e9981a5befdae40b | 10,329 |
def confidence_interval(data, column_name, confidence_level):
"""
get a 95% confidence interval from a bootstrap dataframe column
Parameters
----------
data : pandas dataframe
the bootstrap dataframe generated by :py:func:`.bootstrapLE`
column_name : string
the statistic that you want the interval for, specified by the name of the column
containing it
confidence_level : float
a real number between 0 and 1 that represents the desired confidence level.
eg. 0.95 for 95%.
Returns
----------
list
a two-element list with the lower bound and upper bound.
"""
results = data[column_name].tolist()
results.sort()
lower_bound = int((1 - confidence_level) / 2 * len(results)) - 1
upper_bound = int((confidence_level + 1) / 2 * len(results)) - 1
if lower_bound < 0:
lower_bound = 0
return [round(float(results[lower_bound]), 1), round(float(results[upper_bound]), 1)] | 69668a88030c0a2d6d90dbc1b834cbab76d0ec17 | 10,330 |
def pig_latin(wrd):
"""Returns the Pig Latin version of a word.
For words that begin with a consonant, take the consonant/consonant cluster
and move it to the end of the word, adding the suffix 'ay' to the end of the word.
For words that begin with a vowel, leave the word as is and add the
suffix 'way' to the end of the word.
>>> pig_latin('dog')
'ogday'
>>> pig_latin('brush')
'ushbray'
>>> pig_latin('elephant')
'elephantway'
>>> pig_latin('awesome')
'awesomeway'
>>> pig_latin('rhythm')
'rhythmay'
"""
idx = next((i for i, v in enumerate(wrd) if v in 'aeiou'), len(wrd))
return wrd[idx:] + (wrd[:idx] or 'w') + 'ay' | 2eba5f4aaff1391e60f4097e526539d5b486c9bd | 10,334 |
def parse_units(units_str):
"""
Extract and parse the units
Extract the bounds over which the expression is assumed to apply.
Parameters
----------
units_str
Returns
-------
Examples
--------
>>> parse_units('Widgets/Month [-10,10,1]')
('Widgets/Month', (-10,10,1))
>>> parse_units('Month [0,?]')
('Month', [-10, None])
>>> parse_units('Widgets [0,100]')
('Widgets', (0, 100))
>>> parse_units('Widgets')
('Widgets', (None, None))
>>> parse_units('[0, 100]')
('', (0, 100))
"""
if not len(units_str):
return units_str, (None, None)
if units_str[-1] == "]":
units, lims = units_str.rsplit("[") # types: str, str
else:
units = units_str
lims = "?, ?]"
lims = tuple(
[float(x) if x.strip() != "?" else None for x in lims.strip("]").split(
",")]
)
return units.strip(), lims | 18f35a06aedfc9d026cfa70a1217b0b5b0420ca5 | 10,335 |
def seg_pixel_accuracy_nd(label_imask,
pred_imask,
vague_idx=-1,
use_vague=False,
macro_average=True,
empty_result=0.0):
"""
The segmentation pixel accuracy (for MXNet nd-arrays).
Parameters
----------
label_imask : mx.nd.array
Ground truth index mask (maybe batch of).
pred_imask : mx.nd.array
Predicted index mask (maybe batch of).
vague_idx : int, default -1
Index of masked pixels.
use_vague : bool, default False
Whether to use pixel masking.
macro_average : bool, default True
Whether to use micro or macro averaging.
empty_result : float, default 0.0
Result value for an image without any classes.
Returns
-------
float or tuple of two floats
PA metric value.
"""
assert (label_imask.shape == pred_imask.shape)
if use_vague:
mask = (label_imask != vague_idx)
sum_u_ij = mask.sum().asscalar()
if sum_u_ij == 0:
if macro_average:
return empty_result
else:
return 0, 0
sum_u_ii = ((label_imask == pred_imask) * mask).sum().asscalar()
else:
sum_u_ii = (label_imask == pred_imask).sum().asscalar()
sum_u_ij = pred_imask.size
if macro_average:
return float(sum_u_ii) / sum_u_ij
else:
return sum_u_ii, sum_u_ij | 7da093ef624dee07fd335021ae2317d53583e612 | 10,336 |
def extract_seed(path, key):
""" Scrape the 5-character seed from the path and return it as an integer.
:param path: path to the tsv file containing results
:param key: substring preceding the seed, "batch-train" for splits, seed-" for shuffles
"""
try:
i = path.find(key) + len(key)
return int(path[i:i + 5])
except ValueError:
return 0 | c5073ad43e8a966aba5382894490aa6cbc871271 | 10,338 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.