content
stringlengths 39
14.9k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
---|---|---|
def sort_kv_pairs_by_value(d):
"""Turn a dict into a list of key-value pairs, sorted by value."""
return [
(k, v) for v, k in sorted([(v, k) for k, v in d.items()], reverse=True)
] | 58f3e40c4993a64f71212157fdd73ad82712fa44 | 7,844 |
def check_length(min_length: int,
max_length: int,
mode: str = 'and',
*args) -> bool:
"""
check items length is between min_length and max_length
:param min_length: minimum length
:param max_length: maximum length
:param mode: check mode, 'and': all items need clear length check, 'or': more than one item need clear length check
:param args: items
:return: status, [correct] or [incorrect]
"""
if mode == 'and':
for item in args:
if not (min_length <= len(item) <= max_length):
return False # if found incorrect item, stop check-loop and return False
return True # if can't found incorrect item, return True
else:
for item in args:
if min_length <= len(item) <= max_length:
return True # if found correct item, stop check-loop and return True
return False | f959619a466f62bf6ecfaf10e0fbb316652891e7 | 7,850 |
def check_processed_data(df,col_list,na_action):
""" Checks if provided dataframe consists of required columns and no missing values
"""
check_passed = True
# Check columns
df_cols = df.columns
if set(df_cols) != set(col_list):
check_passed = False
print('Column names mismatched')
# Check missing values
n_missing = df.isnull().sum().sum()
if n_missing > 0:
print('Data contains missing {} values'.format(n_missing))
if na_action == 'drop':
print('Dropping rows with missing values')
elif na_action == 'ignore':
print('Keeping missing values as it is')
else:
print('Not adding this data into master dataframe')
check_passed = False
return check_passed | fd26d00eabd9eb1dfd1f8bce01a3fb86582a740f | 7,851 |
def _determine_levels(index):
"""Determine the correct levels argument to groupby."""
if isinstance(index, (tuple, list)) and len(index) > 1:
return list(range(len(index)))
else:
return 0 | 2eaed820eb45ff17eb4911fe48670d2e3412fb41 | 7,855 |
def format_val(v):
"""Takes in float and formats as str with 1 decimal place
:v: float
:returns: str
"""
return '{:.1f}%'.format(v) | 932ca312a573a7e69aa12e032d7b062ac22f3709 | 7,858 |
import re
def you_to_yall(text: str) -> str:
"""Convert all you's to y'all."""
pattern = r'\b(y)(ou)\b'
return re.sub(pattern, r"\1'all", text, flags=re.IGNORECASE) | 1a3ee7ebf2394f84ad296e18da789dff8ca50a12 | 7,860 |
def to_aws_tags(tags):
"""
When you assign tags to an AWS resource, you have to use the form
[{"key": "KEY1", "value": "VALUE1"},
{"key": "KEY2", "value": "VALUE2"},
...]
This function converts a Python-style dict() into these tags.
"""
return [
{"key": key, "value": value}
for key, value in tags.items()
] | d1e18ea1e4de08fcae59febbe97ab3eb5bc2a2f1 | 7,863 |
def get_game_player(game_state):
"""Get the game player whose turn it is to play."""
num_players = len(game_state.game_players)
for game_player in game_state.game_players:
if game_state.turn_number % num_players == game_player.turn_order:
return game_player
return None | a75a0b1b7f1ce4da8c944ad40208fba6f9a50f5a | 7,865 |
import re
def get_headers_pairs_list(filename, verbose=False):
"""
Read data for clustering from a given file.
Data format: <email_number> <header>.
Clusters are separated with a blank line.
:param filename: file with input data for clustering.
:param verbose: Whether to be verbose. Default - False.
:return: List of pairs (email_number, header).
"""
if verbose:
print("Reading headers...", end="")
with open(filename, encoding='utf-8') as inf:
lines = list(map(lambda x: x.strip(), inf.readlines()))
lines = list(filter(lambda x: x != "", lines))
def make_pair(line):
words = re.split(re.compile("\s+"), line)
return (
int(words[0]),
" ".join(words[1:])
)
if verbose:
print("Done")
return list(map(make_pair, lines)) | d6b457652e1025475075fb601ba81b6a7fe346fc | 7,867 |
from pathlib import Path
def _run_jlab_string(talktorials_dst_dir):
"""
Print command for starting JupyterLab from workspace folder.
Parameters
----------
talktorials_dst_dir : str or pathlib.Path
Path to directory containing the talktorial folders.
"""
talktorials_dst_dir = Path(talktorials_dst_dir)
message = f"""
To start working with the talktorials in JupyterLab run:
jupyter lab {talktorials_dst_dir}
Enjoy!
"""
return message | 76c45f77f419b6a302d63d92e51cd0ea1bb92ebb | 7,869 |
def get_table_type(filename):
""" Accepted filenames:
device-<device_id>.csv,
user.csv,
session-<time_iso>.csv,
trials-<time_iso>-Block_<n>.csv
:param filename: name of uploaded file.
:type filename: str
:return: Name of table type.
:rtype: str|None
"""
basename, ext = filename.split('.')
parts = basename.split('-')
first = parts[0]
if ext == 'csv' and first in ['device', 'user', 'session', 'trials']:
return first
else:
return None | bc4f39e4c9138168cec44c492b5d1965de711a7e | 7,876 |
def make_download_filename(genome, args, response_format):
"""
Make filename that will explain to the user what the predictions are for
:param genome: str: which version of the genome we are pulling data from
:param args: SearchArgs: argument used for search
:param response_format: str file extension/format
:return: str filename that will be returned to the user
"""
prefix = 'predictions_{}_{}_{}'.format(genome, args.get_model_name(), args.get_gene_list())
middle = ''
if not args.is_custom_ranges_list():
middle = '_{}_{}'.format(args.get_upstream(), args.get_downstream())
filename = '{}{}.{}'.format(prefix, middle, response_format)
return filename.replace(' ', '_') | 4645e3175de0db81e940d0e64740e937bce7afc3 | 7,878 |
def change(csq):
"""
>>> change("missense|TMEM240|ENST00000378733|protein_coding|-|170P>170L|1470752G>A")
('170P', '170L', True)
>>> change('synonymous|AGRN|ENST00000379370|protein_coding|+|268A|976629C>T')
('268A', '268A', False)
"""
parts = csq.split("|")
if len(parts) < 7:
return 0, 0, False
if not ">" in parts[-2]:
return (parts[-2], parts[-2], False)
aa_from, aa_to = parts[-2].split(">")
# 533PLGQGYPYQYPGPPPCFPPAYQDPGFSYGSGSTGSQQSEGSKSSGSTRSSRRAPGREKERRAAGAGGSGSESDHTAPSGVGSSWRERPAGQLSRGSSPRSQASATAPGLPPPHPTTKAYTVVGGPPGGPPVRELAAVPPELTGSRQSFQKAMGNPCEFFVDIM*>533LWVRATPTSTRDPHPASRLPTRTRALAMAAAAPGVSRVKGAKAVGPPGAAAGPRAVRRSVGRRELGAVAVNRITRHRVGWGAAGESVRPASSAVAAAHAVRPRLPPRGSPRPTPRPRPIQWWGGHPGDPLSGSWLPSPRN*
return aa_from, aa_to, True | da43c6bd45e641b885469d07c2e6befff334d8a3 | 7,884 |
def with_coordinates(pw_in_path, positions_type, atom_symbols, atom_positions):
"""Return a string giving a new input file, which is the same as the one at
`pw_in_path` except that the ATOMIC_POSITIONS block is replaced by the one
specified by the other parameters of this function.
`positions_type`, `atom_symbols`, and `atom_positions` have the same
meaning as the return values from `final_coordinates_from_scf()`.
Assumes that there are no whitespace lines in the ATOMIC_POSITIONS block
(not sure whether this is allowed by QE).
"""
with open(pw_in_path, 'r') as fp:
in_lines = fp.readlines()
out_lines = []
in_atomic_block = False
atom_count = 0
for i, line in enumerate(in_lines):
if 'ATOMIC_POSITIONS' in line:
out_lines.append("ATOMIC_POSITIONS {}\n".format(positions_type))
in_atomic_block = True
elif in_atomic_block:
sym, pos = atom_symbols[atom_count], atom_positions[atom_count]
pos_line = " {} {} {} {}\n".format(sym, str(pos[0]), str(pos[1]),
str(pos[2]))
out_lines.append(pos_line)
atom_count += 1
if atom_count == len(atom_symbols):
in_atomic_block = False
else:
out_lines.append(line)
return ''.join(out_lines) | 11dc207a4f17a6521a1aa6299d455f0548c50566 | 7,885 |
def calculate_factor_initial_size(n, key):
"""
Calculate different initial embedding sizes by a chosen factor.
:param n: Number of nodes in the graph
:param key: The factor- for example if key==10, the sizes will be n/10, n/100, n/100, .... the minimum is 100 nodes
in the initial embedding
:return: List of initial embedding sizes
"""
initial = []
i = n
while i > 100:
i = int(i/key)
i_2 = int(i/2)
key = pow(key, 2)
if i > 100:
initial.append(i)
if i_2 > 100:
initial.append(i_2)
initial.append(100)
ten_per = int(n/10)
initial.append(ten_per)
initial.sort()
return initial | 35fdef82e55647b20f9d86ec926e77c1d5244e2e | 7,887 |
def is_iterable(value):
""" Verifies the value is an is_iterable
:param value: value to identify if iterable or not.
"""
try:
iterable_obj = iter(value)
return True
except TypeError as te:
return False | 13728b7c28506086a3eb9b8faefcdc6276eba00e | 7,888 |
def rw_normalize(A):
"""
Random walk normalization: computes D^⁼1 * A.
Parameters
----------
A: torch.Tensor
The matrix to normalize.
Returns
-------
A_norm: torch.FloatTensor
The normalized adjacency matrix.
"""
degs = A.sum(dim=1)
degs[degs == 0] = 1
return A / degs[:, None] | 2a9f90d1f2bf02545e9719b0f373e6eb215fa0cd | 7,889 |
import logging
def _get_areas(params, feature_names):
"""Returns mapping between areas and constituent feature types."""
areas = {}
for feature_id in range(len(params)):
feature_info = params[feature_id]
feature = feature_info["ID"]
area = feature_info["Area"]
if area not in areas:
areas[area] = [feature]
else:
areas[area].append(feature)
# Update the mapping from ID to name.
feature_names[feature]["Name"] = feature_info["Name"]
logging.info("Collected %d areas (%s).", len(areas), ",".join(areas.keys()))
return areas | 937797d7634ac6cd73af941c783f26d5a8028b4d | 7,891 |
def transform_seed_objects(objects):
"""Map seed objects to state format."""
return {obj['instance_id']: {
'initial_player_number': obj['player_number'],
'initial_object_id': obj['object_id'],
'initial_class_id': obj['class_id'],
'created': 0,
'created_x': obj['x'],
'created_y':obj['y'],
'destroyed': None,
'destroyed_by_instance_id': None,
'destroyed_building_percent': None,
'deleted': False,
'destroyed_x': None,
'destroyed_y': None,
'building_started': None,
'building_completed': None,
'total_idle_time': None
} for obj in objects} | 685c0c5b22fdff108311338354bb42fb53fd07f6 | 7,894 |
from pathlib import Path
def getFileAbsolutePath(rel_path):
"""
Retorna o caminho absoluto de um arquivo a partir de seu caminho relativo no projeto
:param rel_path:
:return: absolute_path
"""
data_folder = Path("PythoWebScraper/src")
file_to_open = data_folder / rel_path
return file_to_open | b39baaa26e3c8a7c7a8c41dbb4fafceb7ca78c70 | 7,904 |
def directive_exists(name, line):
"""
Checks if directive exists in the line, but it is not
commented out.
:param str name: name of directive
:param str line: line of file
"""
return line.lstrip().startswith(name) | eb69044de8860b1779ce58ef107859028b8c98cf | 7,906 |
def entrypoint(label):
"""
If a class if going to be registered with setuptools as an entrypoint it
must have the label it will be registered under associated with it via this
decorator.
This decorator sets the ENTRY_POINT_ORIG_LABEL and ENTRY_POINT_LABEL class
proprieties to the same value, label.
Examples
--------
>>> from dffml import entrypoint, Entrypoint
>>>
>>> @entrypoint('mylabel')
... class EntrypointSubclassClass(Entrypoint): pass
In setup.py, EntrypointSubclassClass needs to have this decorator applied to
it with label set to mylabel.
.. code-block:: python
entry_points={
'dffml.entrypoint': [
'mylabel = module.path.to:EntrypointSubclassClass',
]
}
"""
def add_entry_point_label(cls):
cls.ENTRY_POINT_ORIG_LABEL = label
cls.ENTRY_POINT_LABEL = label
return cls
return add_entry_point_label | 68cb3f2d2a982fefd34f412888ae50fcea6a743f | 7,913 |
def hide_empty(value, prefix=', '):
"""Return a string with optional prefix if value is non-empty"""
value = str(value)
return prefix + value if value else '' | d2943dbce763bd054dc26839b2d24232867b3312 | 7,915 |
def as_dict_with_keys(obj, keys):
"""
Convert SQLAlchemy model to list of dictionary with provided keys.
"""
return [dict((a, b) for (a, b) in zip(keys, item)) for item in obj] | 1fcab95f9f94696c1af652b0b181e6e3e69f7f53 | 7,922 |
def sdate_from_datetime(datetime_object, format='%y-%m-%d'):
"""
Converts a datetime object to SDATE string.
"""
return datetime_object.strftime(format) | 3f7ee70c47e1971e1c690f564fc8d4df519db5b6 | 7,929 |
def arrays_shape(*arrays):
"""Returns the shape of the first array that is not None.
Parameters
----------
arrays : ndarray
Arrays.
Returns
-------
tuple of int
Shape.
"""
for array in arrays:
if array is not None:
shape = array.shape
return shape | e9e6a4876b938934c843386dffc58f0eccfb20a3 | 7,932 |
def cone(toplexes, subcomplex, coneVertex="*"):
"""Construct the cone over a subcomplex. The cone vertex can be renamed if desired. The resulting complex is homotopy equivalent to the quotient by the subcomplex."""
return toplexes + [spx + [coneVertex] for spx in subcomplex] | 6b1328a2f7c32988666b0c7039efd0ce6ecdffef | 7,937 |
def bipartite_sets(bg):
"""Return two nodes sets of a bipartite graph.
Parameters:
-----------
bg: nx.Graph
Bipartite graph to operate on.
"""
top = set(n for n, d in bg.nodes(data=True) if d['bipartite']==0)
bottom = set(bg) - top
return (top, bottom) | 618756dbfa87dc0b5d878545fa5395c4a122c84c | 7,940 |
def _merge_block(internal_transactions, transactions, whitelist):
"""
Merge responses with trace and chain transactions. Remove non-whitelisted fields
Parameters
----------
internal_transactions : list
List of trace transactions
transactions : list
List of chain transactions
whitelist : list
List of allowed fields
Returns
-------
list
List of trace transactions extended with whitelisted fields from related chain transactions
"""
transactions_by_id = {
(transaction["hash"], transaction["blockHash"]): transaction
for transaction in transactions
}
for transaction in internal_transactions:
hash = transaction["transactionHash"]
block = transaction["blockHash"]
if (hash, block) in transactions_by_id:
whitelisted_fields = {
key: value
for key, value in transactions_by_id[(hash, block)].items()
if key in whitelist
}
transaction.update(whitelisted_fields)
del transactions_by_id[(hash, block)]
return internal_transactions | b60c9cde133d97ac84b2899956a15a72c720bbaa | 7,945 |
def remove_virtual_slot_cmd(lpar_id, slot_num):
"""
Generate HMC command to remove virtual slot.
:param lpar_id: LPAR id
:param slot_num: virtual adapter slot number
:returns: A HMC command to remove the virtual slot.
"""
return ("chhwres -r virtualio --rsubtype eth -o r -s %(slot)s "
"--id %(lparid)s" %
{'slot': slot_num, 'lparid': lpar_id}) | 2c6f14949910865f3a60c0016b4587088441572e | 7,948 |
import json
def dict_to_bytestring(dictionary):
"""Converts a python dict to json formatted bytestring"""
return json.dumps(dictionary).encode("utf8") | 31e201d87e92075d6078450ad019cc51f474f9d4 | 7,949 |
def _merge_candidate_name(src, dest):
"""Returns the formatted name of a merge candidate branch."""
return f"xxx-merge-candidate--{src}--{dest}" | a08b6d4b57385bc390e649448ce264cffd5a1ffa | 7,950 |
def decorator_with_args(decorator_to_enhance):
"""
This is decorator for decorator. It allows any decorator to get additional arguments
"""
def decorator_maker(*args, **kwargs):
def decorator_wrapper(func):
return decorator_to_enhance(func, *args, **kwargs)
return decorator_wrapper
return decorator_maker | 1af073daf9e9ac9a8834f3a1484bdfa293b1b2bb | 7,951 |
import re
def find_subtype(meta_dict):
"""Find subtype from dictionary of sequence metadata.
Args:
`meta_dict` (dict)
dictionary of metadata downloaded from genbank
Returns:
`subtype` (str)
RSV subtype as one letter string, 'A' or 'B'.
"""
subtype = ''
if ' A' in meta_dict['organism']:
subtype = 'A'
elif ' B' in meta_dict['organism']:
subtype = 'B'
elif subtype == '':
for val in meta_dict.values():
if re.search(r'RSV\s?A\b', val) or \
re.search(r'type: A\b', val) or \
re.search(r'group: A\b', val) or re.search(r'\bA\b', val):
subtype = 'A'
elif re.search(r'RSV\s?B\b', val) or \
re.search(r'type: B\b', val) or \
re.search(r'group: B\b', val) or re.search(r'\bB\b', val):
subtype = 'B'
return subtype | 130b8ed61f117a786cf5f5ae49fc75e8b074ef2e | 7,953 |
from typing import Sequence
from typing import Type
from typing import Union
def unique_fast(
seq: Sequence, *, ret_type: Type[Union[list, tuple]] = list
) -> Sequence:
"""Fastest order-preserving method for (hashable) uniques in Python >= 3.6.
Notes
-----
Values of seq must be hashable!
See Also
--------
`Uniquify List in Python 3.6 <https://www.peterbe.com/plog/fastest-way-to-uniquify-a-list-in-python-3.6>`_
"""
return ret_type(dict.fromkeys(seq)) | c41c6b298e52bd3069414206cf9ada4766ea8f4d | 7,955 |
def getHeaders(lst, filterOne, filterTwo):
"""
Find indexes of desired values.
Gets a list and finds index for values which exist either in filter one or filter two.
Parameters:
lst (list): Main list which includes the values.
filterOne (list): A list containing values to find indexes of in the main list.
filterTwo (list): A list to check by for the same index of a value from filterOne if it does not exist in the main list.
Returns:
(list): A list containing indexes of values either from filterOne or filterTwo.
"""
headers = []
for i in range(len(filterOne)):
if filterOne[i] in lst:
headers.append(lst.index(filterOne[i]))
else:
headers.append(lst.index(filterTwo[i]))
return headers | 0aa3612b15114b0e0dcdf55eb3643df58157239b | 7,966 |
def top(Q):
"""Inspects the top of the queue"""
if Q:
return Q[0]
raise ValueError('PLF ERROR: empty queue') | 16327db2698fbef4cad1da2c9cb34b71158a2a6c | 7,972 |
def move_items_back(garbages):
"""
Moves the items/garbage backwards according to the speed the background is moving.
Args:
garbages(list): A list containing the garbage rects
Returns:
garbages(list): A list containing the garbage rects
"""
for garbage_rect in garbages: # Loops through the garbages
garbage_rect.centerx -= 2 # Decrease the centerx coordinate by 2
return garbages | 9ffd28c7503d0216b67419009dac6ff432f3b100 | 7,984 |
import re
def _mask_pattern(dirty: str):
"""
Masks out known sensitive data from string.
Parameters
----------
dirty : str
Input that may contain sensitive information.
Returns
-------
str
Output with any known sensitive information masked out.
"""
# DB credentials as found in called processes.
call_proc_db_creds = re.compile(r"--(user|password)=[^', ]+([', ])")
clean = call_proc_db_creds.sub(r"--\1=*****\2", dirty)
return clean | b75ae1e6ea128628dd9b11fadb38e4cbcfe59775 | 7,985 |
def __remove_duplicate_chars(string_input, string_replace):
"""
Remove duplicate chars from a string.
"""
while (string_replace * 2) in string_input:
string_input = \
string_input.replace((string_replace * 2), string_replace)
return string_input | 6302bf225fcd5cde822e0640eb7b2c44dcc93fc8 | 7,989 |
def format_birthday_for_database(p_birthday_of_contact_month, p_birthday_of_contact_day, p_birthday_of_contact_year):
"""Takes an input of contact's birthday month, day, and year and creates a string to insert into the contacts database."""
formated_birthday_string = p_birthday_of_contact_month + "/" + p_birthday_of_contact_day + "/" + p_birthday_of_contact_year
return formated_birthday_string | 1b4eff67a4073505f9f693f63db6f7c32646bd53 | 7,992 |
import math
def normal_distribution(x: float) -> float:
"""
標準正規分布
f(x) = (1/sqrt(2pi))exp(-x^2/2)
"""
# 係数
coefficient = 1 / math.sqrt(2 * math.pi)
# 指数
exponent = math.exp(-(x ** 2) / 2)
# 標準正規分布
return coefficient * exponent | 2ee740674ddf2a7b95d507aedf1f5453a75f31f1 | 7,993 |
def str_format(s, *args, **kwargs):
"""Return a formatted version of S, using substitutions from args and kwargs.
(Roughly matches the functionality of str.format but ensures compatibility with Python 2.5)
"""
args = list(args)
x = 0
while x < len(s):
# Skip non-start token characters
if s[x] != '{':
x += 1
continue
end_pos = s.find('}', x)
# If end character can't be found, move to next character
if end_pos == -1:
x += 1
continue
name = s[x + 1:end_pos]
# Ensure token name is alpha numeric
if not name.isalnum():
x += 1
continue
# Try find value for token
value = args.pop(0) if args else kwargs.get(name)
if value:
value = str(value)
# Replace token with value
s = s[:x] + value + s[end_pos + 1:]
# Update current position
x = x + len(value) - 1
x += 1
return s | addf11c8390c52da7b0f2886d2298bab66a50e49 | 7,996 |
def read_float(field: str) -> float:
"""Read a float."""
return float(field) if field != "" else float('nan') | ce6f862c9696e3f84ba20b58a0acdce5c1e212b0 | 8,010 |
def make_word(parts, sub, i):
"""Replace a syllable in a list of words, and return the joined word."""
j = 0
for part in parts:
for k in range(len(part)):
if i == j:
part[k] = sub
return ' '.join(''.join(p for p in part) for part in parts)
j += 1 | 869aa94f60b819b38ad7ddc315b65d862cf525e0 | 8,017 |
def reverse_complement(string):
"""Returns the reverse complement strand for a given DNA sequence"""
return(string[::-1].translate(str.maketrans('ATGC','TACG'))) | bd033b9be51a92fdf111b6c63ef6441c91b638a3 | 8,022 |
def _parse_seq(seq):
"""Get a primary sequence and its length (without gaps)"""
return seq, len(seq.replace('-', '')) | f02c6f316e3bc56d3d77b6ca6363aa1e0a6b4780 | 8,023 |
def reverse_digit(x):
"""
Reverses the digits of an integer.
Parameters
----------
x : int
Digit to be reversed.
Returns
-------
rev_x : int
`x` with it's digits reversed.
"""
# Initialisations
if x < 0:
neg = True
else:
neg = False
x = abs(x)
x_len = len(str(x)) # Number of digits in `x`
rev_x = 0
for i in range(x_len):
digit = x % 10
x = x // 10
rev_x += digit*(10**(x_len-i-1))
if neg == True:
rev_x = -1*rev_x
return rev_x
else:
return rev_x | d7358f5778897262b8d57c6dd3e2eb4acb05a2d1 | 8,025 |
def hammingDistance(str1, str2):
""" Returns the number of `i`th characters in `str1` that don't match the `i`th character in `str2`.
Args
---
`str1 : string` The first string
`str2 : string` The second string
Returns
---
`differences : int` The differences between `str1` and `str2`
"""
# Convert strings to arrays
a = list(str1)
b = list(str2)
# Determine what n equals
if len(a) < len(b):
n = len(a)
else:
n = len(b)
# Increment the number of distances for each difference
differences = 0
for i in range(n):
if a[i] != b[i]:
differences += 1
return differences | ad35cc79f89171c75a16a13ec6862a2a4abdbd61 | 8,032 |
from typing import OrderedDict
def _order_dict(d):
"""Convert dict to sorted OrderedDict"""
if isinstance(d, dict):
d = [(k, v) for k, v in d.items()]
d = sorted(d, key=lambda x: x[0])
return OrderedDict(d)
elif isinstance(d, OrderedDict):
return d
else:
raise Exception('Must be dict or OrderedDict') | 94b3e9e0c5b34e466c913c46683c752ca9560a12 | 8,035 |
def clean_toc(toc: str) -> str:
"""Each line in `toc` has 6 unnecessary spaces, so get rid of them"""
lines = toc.splitlines()
return "\n".join(line[6:] for line in lines) | 40a22200d04c12865e4bffae9cdd3bdc4ea827be | 8,042 |
import pickle
def pickle_load(file_path):
""" data = pickle_load(file_path)
Load data from a pickle dump file
inputs:
file_path: str, path of the pickle file
output:
data: python object
"""
with open(file_path, 'rb') as file_ptr:
data = pickle.load(file_ptr)
return data | c9112881facc7a6a135893168fa9abf63309b392 | 8,043 |
def versiontuple(v):
"""Return the version as a tuple for easy comparison."""
return tuple(int(x) for x in v.split(".")) | 422d49818e2d6d34d0591c1c450d0c92b7fabc82 | 8,044 |
import re
def find_checksum(s):
"""Accepts a manifest-style filename and returns the embedded
checksum string, or None if no such string could be found."""
m = re.search(r"\b([a-z0-9]{32})\b", s, flags=re.IGNORECASE)
md5 = m.group(1).lower() if m else None
return md5 | f0d9735833e257a3f133d2d51b01775e35408755 | 8,045 |
def get_expts(context, expts):
"""Takes an expts list and returns a space separated list of expts."""
return '"' + ' '.join([expt['name'] for expt in expts]) + '"' | 76cd216662a6f7a248b70351f79b52e3c47871aa | 8,048 |
def create_filename(last_element):
"""
For a given file, returns its name without the extension.
:param last_element: str, file name
:return: str, file name without extension
"""
return last_element[:-4] | 3faaf647ed6e3c765321efb396b2806e7ef9ddf9 | 8,050 |
def simplify_numpy_dtype(dtype):
"""Given a numpy dtype, write out the type as string
Args:
dtype (numpy.dtype): Type
Returns:
(string) name as a simple string
"""
kind = dtype.kind
if kind == "b":
return "boolean"
elif kind == "i" or kind == "u":
return "integer"
elif kind == "f":
return "float"
elif kind == "c":
return "complex"
elif kind == "m":
return "timedelta"
elif kind == "M":
return "datetime"
elif kind == "S" or kind == "U":
return "string"
else:
return "python object" | c2370b2a08e58c9614ca43e3f14864782eef4100 | 8,056 |
def OpenFace(openface_features, PID, EXP):
"""
Tidy up OpenFace features in pandas data.frame to be stored in sqlite
database:
- Participant and experiment identifiers are added as columns
- Underscores in column names are removed, because sqlite does not like
underscores in column names.
- Only column names with 'AU' in the column name are considered relevant
features and kept, the rest is removed.
Parameters
----------
video_features : pandas.core.frame.DataFrame
Data frame with columns participant_id (str), experiment_id (str),
timestamp (datetime64), and columns for the OpenFace derived
video features:
AU01r (float64), AU02r (float64), AU01c (float64), AU02c (float64)
PID : str
Participant identifier
EXP : str
Experiment identifier.
Returns
-------
video_features : pandas.core.frame.DataFrame
New data frame
"""
# tidy up data frame:
filter_col = [col for col in openface_features if col.startswith('AU')]
filter_col.insert(0,'time')
filter_col.insert(0,'participant_id')
filter_col.insert(0,'experiment_id')
openface_features['participant_id'] = PID
openface_features['experiment_id'] = EXP
openface_features = openface_features[filter_col]
openface_features.columns = openface_features.columns.str.replace('_', '')
openface_features = openface_features.rename(columns = {'experimentid':'experiment_id'})
openface_features = openface_features.rename(columns = {'participantid':'participant_id'})
return openface_features | 684e74c159a3551e3fd6d9a80b134c2474759056 | 8,059 |
import copy
def deep_merge_dict(base, priority):
"""Recursively merges the two given dicts into a single dict.
Treating base as the the initial point of the resulting merged dict,
and considering the nested dictionaries as trees, they are merged os:
1. Every path to every leaf in priority would be represented in the result.
2. Subtrees of base are overwritten if a leaf is found in the
corresponding path in priority.
3. The invariant that all priority leaf nodes remain leafs is maintained.
Parameters
----------
base : dict
The first, lower-priority, dict to merge.
priority : dict
The second, higher-priority, dict to merge.
Returns
-------
dict
A recursive merge of the two given dicts.
Example:
--------
>>> base = {'a': 1, 'b': 2, 'c': {'d': 4}, 'e': 5}
>>> priority = {'a': {'g': 7}, 'c': 3, 'e': 5, 'f': 6}
>>> result = deep_merge_dict(base, priority)
>>> print(sorted(result.items()))
[('a', {'g': 7}), ('b', 2), ('c', 3), ('e', 5), ('f', 6)]
"""
if not isinstance(base, dict) or not isinstance(priority, dict):
return priority
result = copy.deepcopy(base)
for key in priority.keys():
if key in base:
result[key] = deep_merge_dict(base[key], priority[key])
else:
result[key] = priority[key]
return result | 5c527f45d4ddee00f1e905b09165bcd3551412f6 | 8,063 |
def _get_span(s, pattern):
"""Return the span of the first group that matches the pattern."""
i, j = -1, -1
match = pattern.match(s)
if not match:
return i, j
for group_name in pattern.groupindex:
i, j = match.span(group_name)
if (i, j) != (-1, -1):
return i, j
return i, j | 8feec723d5a09e70f000c6fcdf58269dd6ea9330 | 8,065 |
from pathlib import Path
def guess_format(path):
"""Guess file format identifier from it's suffix. Default to DICOM."""
path = Path(path)
if path.is_file():
suffixes = [x.lower() for x in path.suffixes]
if suffixes[-1] in ['.h5', '.txt', '.zip']:
return suffixes[-1][1:]
if suffixes[-1] == '.nii' or path.suffixes[-2:] == ['.nii', '.gz']:
return 'nifti'
return 'dicom' | 70f463ef28adc2c65346ec8b5b87294494a9ee0f | 8,066 |
def get_samples(profileDict):
"""
Returns the samples only for the metrics (i.e. does not return any
information from the activity timeline)
"""
return profileDict["samples"]["metrics"] | 06b273e7499e9cb64e38b91374117de6bd3f6c3e | 8,069 |
def dobro(n):
"""
Dobrar número
:param n: número a ser dobrado
:return: resultado
"""
n = float(n)
n += n
return n | fe17270b7a3373545986568657cf6755dc88638f | 8,070 |
def aoi_from_experiment_to_cairo(aoi):
"""Transform aoi from exp coordinates to cairo coordinates."""
width = round(aoi[1]-aoi[0], 2)
height = round(aoi[3]-aoi[2], 2)
return([aoi[0], aoi[2], width, height]) | 40986aeaf5bb1e5d8295289ce310b4c7cf7f4241 | 8,071 |
def palindromic(d):
"""Gets a palindromic number made from a product of two d-digit numbers"""
# Get the upper limit of d digits, e.g 3 digits is 999
a = 10 ** d - 1
b = a
# Get the lower limit of d digits, e.g. 3 digits is 100
limit = 10 ** (d - 1)
for x in range(a, limit - 1, -1):
for y in range(b, limit - 1, -1):
tmp = x * y
if str(tmp) == str(tmp)[::-1]:
print(x, y)
return x * y
return 0 | d4324d6c2de3dff46e14b754627bb551e03e957f | 8,073 |
def markup(pre, string):
"""
By Adam O'Hern for Mechanical Color
Returns a formatting string for modo treeview objects.
Requires a prefix (usually "c" or "f" for colors and fonts respectively),
followed by a string.
Colors are done with "\03(c:color)", where "color" is a string representing a
decimal integer computed with 0x01000000 | ((r << 16) | (g << 8) | b).
Italics and bold are done with "\03(c:font)", where "font" is the string
FONT_DEFAULT, FONT_NORMAL, FONT_BOLD or FONT_ITALIC.
\03(c:4113) is a special case gray color specifically for treeview text.
"""
return '\03({}:{})'.format(pre, string) | 7ef910aa3b057e82c777b06f73faf554d9c4e269 | 8,079 |
from bs4 import BeautifulSoup
def get_person_speech_pair(file_name):
"""
XML parser to get the person_ids from given XML file
Args:
file_name(str): file name
Returns:
person_id_speech_pair(dict): Dict[person_id(int) -> speech(str)]
"""
person_id_speech_dict = dict()
with open(file_name, encoding='utf-8') as file:
soup = BeautifulSoup(file, 'xml')
all_speech = soup.find_all('speaker')
for single_speech in all_speech:
try: # newer format
person_id = single_speech['personId']
except KeyError:
try: # older format
person_id = single_speech['person']
except KeyError:
continue
single_speech_list = []
for s in single_speech.stripped_strings:
single_speech_list.append(s)
processed_speech = ' '.join(single_speech_list)
# print(parsed_speech, '\n')
if person_id not in person_id_speech_dict:
person_id_speech_dict[person_id] = []
person_id_speech_dict[person_id].append(processed_speech)
for person_id in person_id_speech_dict:
person_id_speech_dict[person_id] = ' '.join(person_id_speech_dict[person_id])
return person_id_speech_dict | 0751ed8d46c39027c0503dcd94d8c324c700c1a5 | 8,084 |
def _pad_keys_tabular(data, sort):
"""Pad only the key fields in data (i.e. the strs) in a tabular way, such that they
all take the same amount of characters
Args:
data: list of tuples. The first member of the tuple must be str, the rest can be anything.
Returns:
list with the strs padded with space chars in order to align in tabular way
"""
if sort:
data = sorted(data, key=lambda tup: tup[0])
sizes = [len(t[0]) for t in data]
pad = max(sizes) + 2
data = [(t[0].ljust(pad), *t[1:]) for t in data]
return data | eba58694354a89e0a6d808c08f964755f3b11822 | 8,090 |
import bz2
import base64
def passx_decode(passx):
"""decode the obfuscated plain text password, returns plain text password"""
return bz2.decompress(base64.b64decode(passx.encode("ascii"))).decode("ascii") | b8b2138c55dd28734661484a231128e6f3ccbbb7 | 8,094 |
def checksum_file(summer, path):
"""
Calculates the checksum of the file 'path' using the provided hashlib
digest implementation. Returns the hex form of the digest.
"""
with open(path, "rb") as f:
# Read the file in 4KB chunks until EOF.
while True:
chunk = f.read(4096)
if not chunk:
break
summer.update(chunk)
return summer.hexdigest() | 729b8f895fe74856e83046d0fd5177e584f835f2 | 8,097 |
def camel_case(value):
"""Convert an identifier to CamelCase"""
return "".join(ele.title() for ele in value.split("_")) | e7c74ebe7611eb567f3eae8f16fb01aadd201252 | 8,098 |
def format_directory_path(path: str) -> str:
"""Replaces windows style path seperators to forward-slashes and adds
another slash to the end of the string.
"""
if path == ".":
return path
formatted_path = path.replace('\\', '/')
if formatted_path[-1] is not '/':
formatted_path += '/'
return formatted_path | 0daa0cc65e50bd29c76da64d302c0e01c1bb333b | 8,101 |
def get_metagen_search_body(self):
""" Get the MetaGenSearchView view body.
Attributes
----------
measure: str
the genomic measure label.
gene: str
the gene name.
Returns
-------
html: str
the MetaGenSearchView view body.
"""
# Get parameters
measure = self._cw.form["measure"]
gene = self._cw.form["gene"]
# Get the HTML body code
view = self._cw.vreg["views"].select("metagen-search", req=self._cw,
rset=None)
html = view.render(measure=measure, gene=gene, export_type="data",
subjects="all")
return html | 9b1e8c6072991765cf566f1bccccb38b178141a4 | 8,102 |
def _toCamelCase(string):
"""Convert a snake case string (PyTorch) to camel case (PopART)"""
words = string.split("_")
return words[0] + "".join(w.capitalize() for w in words[1:]) | f1f21b0313c03b3d63944ee3fcbd5e16b435da6d | 8,103 |
def pulse(x):
"""Return the pulse fn of the input."""
return 2*(x % 1 < .5) -1 | f54f73ab6656c0242508170c16ab6ee6a0cc5b92 | 8,104 |
def index_singleton_clusters(clusters):
"""Replace cluster labels of -1 with ascending integers larger than the maximum cluster index.
"""
clusters = clusters.copy()
filt = clusters == -1
n = clusters.max()
clusters[filt] = range(n, n + len(filt))
return clusters | 9cad0df27d2d99ef3a7478f3c3753cd7795beb54 | 8,105 |
def scaled_up_roi(roi, scale: int, shape=None):
"""
Compute ROI for a scaled up image.
Given a crop region in the original image compute equivalent crop in the upsampled image.
:param roi: ROI in the original image
:param scale: integer scale to get scaled up image
:return: ROI in the scaled upimage
"""
roi = tuple(slice(s.start * scale, s.stop * scale) for s in roi)
if shape is not None:
roi = tuple(
slice(min(dim, s.start), min(dim, s.stop)) for s, dim in zip(roi, shape)
)
return roi | 24f160bde7f995861aee3f0c20001ce4093aa58a | 8,109 |
def test_depends(func):
"""Decorator to prevent a test being executed in individual mode"""
def invalid(self, test):
if self.test_individual:
test.description = "Invalid"
return test.DISABLED("This test cannot be performed individually")
else:
return func(self, test)
invalid.__name__ = func.__name__
invalid.__doc__ = func.__doc__
return invalid | 4b2db29fc8c0a30ec3a4ec6c3fb93ed958f0094e | 8,113 |
def fix_month(bib_str: str) -> str:
"""Fixes the string formatting in a bibtex entry"""
return (
bib_str.replace("{Jan}", "jan")
.replace("{jan}", "jan")
.replace("{Feb}", "feb")
.replace("{feb}", "feb")
.replace("{Mar}", "mar")
.replace("{mar}", "mar")
.replace("{Apr}", "apr")
.replace("{apr}", "apr")
.replace("{May}", "may")
.replace("{may}", "may")
.replace("{Jun}", "jun")
.replace("{jun}", "jun")
.replace("{Jul}", "jul")
.replace("{jul}", "jul")
.replace("{Aug}", "aug")
.replace("{aug}", "aug")
.replace("{Sep}", "sep")
.replace("{sep}", "sep")
.replace("{Oct}", "oct")
.replace("{oct}", "oct")
.replace("{Nov}", "nov")
.replace("{nov}", "nov")
.replace("{Dec}", "dec")
.replace("{dec}", "dec")
) | 9bdcb06dc43a6d6748af20d5279ca38ec6aa1d0a | 8,118 |
def pad(text: str, width: int, align: str = '<', fill: str = ' '):
"""
pad the string with `fill` to length of `width`
:param text: text to pad
:param width: expected length
:param align: left: <, center: ^, right: >
:param fill: char to fill the padding
:return:
"""
assert align in ('<', '^', '>')
return f"{text:{fill}{align}{width}}" | 74befd22927438961b85e370ed16239d7df52707 | 8,120 |
import torch
def create_input(shape):
"""Create a random input tensor."""
return torch.rand(shape).float() | 88a907bae19882a4a7c1a0b819eb0deccb065752 | 8,123 |
def add_data_to_list(twitter_return):
"""
Extract the data from the twitter_return dictionary and place in a list
"""
twitter_dict = twitter_return ['response_dict']
# Grab the twitter data
twitter_data_list=twitter_dict['data']
return twitter_data_list | 9e2a2a5e22926b604856c1ec1ae20ebf765b8610 | 8,128 |
from typing import Dict
def get_noise_range_pcts(db_range_exps: dict, length: float) -> Dict[int, float]:
"""Calculates percentages of aggregated exposures to different noise levels of total length.
Note:
Noise levels exceeding 70 dB are aggregated and as well as noise levels lower than 50 dB.
Returns:
A dictionary containing noise level values with respective percentages.
(e.g. { 50: 35.00, 60: 65.00 })
"""
return {
db_range: round(db_range_length * 100 / length, 3)
for db_range, db_range_length
in db_range_exps.items()
} | 723c7e45a24c149df6f5f19b3f8aabb1f8d5b184 | 8,130 |
def calc_n_max_vehicle(n2v_g_vmax, v_max):
"""Calc `n_max3` of Annex 2-2.g from `v_max` (Annex 2-2.i). """
return n2v_g_vmax * v_max | 457562edce05aebf7d7b870a232b4e0a01df5055 | 8,133 |
def get_filepath_wo_ext(file_spec):
"""
Get file path without extension
Parameters
----------
file_spec : DataStruct
The function use attributes output_dir and fname_wo_ext for construct file path
Returns
-------
out : str
Constructed file path
"""
return file_spec.output_dir + '/' + file_spec.fname_wo_ext | 6ef9d329292769a3f163678915ff696ef3b8fe1a | 8,141 |
def amplitude(data):
"""
Calculates the amplitude of a data list.
"""
n = len(data)
if (n == 0) :
amplitude = None
else :
min_value = min(data)
max_value = max(data)
amplitude = (max_value + min_value) / 2.0
return amplitude | 4dc053287f2de3748961943a8d9d064c9a3d1f87 | 8,143 |
def ranks_from_scores(scores):
"""Return the ordering of the scores"""
return sorted(range(len(scores)), key=lambda i: scores[i], reverse=True) | f49fe306f456d990be5ad8308eae07f186a89da6 | 8,145 |
import struct
def unpack_word(str, big_endian=False):
""" Unpacks a 32-bit word from binary data.
"""
endian = ">" if big_endian else "<"
return struct.unpack("%sL" % endian, str)[0] | 8da8d168b1828062bd44ca3142c8b389bfd634c7 | 8,146 |
import ast
def parse_source(source, path=None):
"""Parse python source into an AST."""
path = "<unknown>" if path is None else path
return ast.parse(source, filename=path) | 7d1188e96b3a72220eca084cf18fc5f7b0b35ef3 | 8,147 |
def is_hit(x, y):
"""Return wheter given coords hit a circular target of r=1."""
return x*x + y*y <= 1 | 4f71afa458ad0a891010e1f5a2be3049b0818c71 | 8,149 |
def set_fpn_weights(training_model, inference_model, verbose=False):
"""
Set feature pyramid network (FPN) weights from training to inference graph
Args:
training_model: MaskRCNN training graph, tf.keras.Model
inference_model: MaskRCNN inference graph, tf.keras.Model
verbose: Print layers that get weights, bool
Returns: inference_model
"""
fpn_layers = ['fpn_c5p5', 'fpn_c4p4', 'fpn_c3p3', 'fpn_c2p2',
'fpn_p5', 'fpn_p4', 'fpn_p3', 'fpn_p2',
]
for layer_name in fpn_layers:
# Get weights from training graph
layer_weights = training_model.get_layer(layer_name).get_weights()
# Set weights in inference graph
inference_model.get_layer(layer_name).set_weights(layer_weights)
if verbose:
print(f'Set weights: {layer_name}')
return inference_model | 29aadfcd0dcb50edb41938433ff644b1b62f209e | 8,150 |
def navamsa_from_long(longitude):
"""Calculates the navamsa-sign in which given longitude falls
0 = Aries, 1 = Taurus, ..., 11 = Pisces
"""
one_pada = (360 / (12 * 9)) # There are also 108 navamsas
one_sign = 12 * one_pada # = 40 degrees exactly
signs_elapsed = longitude / one_sign
fraction_left = signs_elapsed % 1
return int(fraction_left * 12) | d151f66c0e69541ccdcc3cabc4d0de82e7aa84bd | 8,153 |
def compare_connexion(conn1, conn2):
"""See if two connexions are the same.
Because the :class:`connexion` could store the two components in different
orders, or have different instances of the same component object, direct
comparison may fail. This function explicitly compares both possible
combinations of serial numbers.
Parameters
----------
conn1 : :obj:`connexion`
The first connexion object.
conn2 : :obj:`connexion`
The second connexion object.
Returns
-------
:obj:`True` if the connexions are the same, :obj:`False` otherwise.
"""
sn11 = conn1.comp1.sn
sn12 = conn1.comp2.sn
sn21 = conn2.comp1.sn
sn22 = conn2.comp2.sn
if (sn11 == sn21 and sn12 == sn22) or (sn11 == sn22 and sn12 == sn21):
return True
else:
return False | 25c3737cfcdb0ab6516237ea5423e2237cc94529 | 8,154 |
def without_end_slash(url):
"""Makes sure there is no end slash at the end of a url."""
return url.rstrip("/") | 19d6b49f7d2a788ea4bb81179e596eb6f019843e | 8,155 |
from stat import S_ISDIR
def list_remote_files(con, directory):
"""
List the files and folders in a remote directory using an active SFTPClient from Paramiko
:param con: SFTPClient, an active connection to an SFTP server
:param directory: string, the directory to search
:return: (generator, generator), the files and directories as separate generators
"""
print(directory)
all_files = [file for file in con.listdir_attr(directory)]
files = []
dirs = []
for file in all_files:
if S_ISDIR(file.st_mode):
file.path = directory + f'/{file.filename}' # ad-hoc add the remote filepath since Paramiko ignores this?!
dirs.append(file)
else:
file.path = directory + f'/{file.filename}' # ad-hoc add the remote filepath since Paramiko ignores this?!
files.append(file)
files = (file for file in files)
dirs = (dir for dir in dirs)
return (files, dirs) | f65e4a5d48f793ff3703ea5e4fc88a0e9b7ea39d | 8,159 |
def distinct_count(daskDf, columnName):
"""Counts distint number of values in Dask dataframe
Keyword arguments:
daskDf -- Dask dataframe
columnName -- Column name
Return:
return -- Distinct number of values
"""
return daskDf[columnName].drop_duplicates().size | 27a03a6eef1f9c949d22f02e5d880ef626b6acf6 | 8,165 |
from typing import OrderedDict
def save_chain(config, chain):
"""
Encode a chain of operation classes as json.
:param config: dictionary with settings.
:param chain: OrderedDict of operation class lists.
:return: string-encoded version of the above.
"""
di = OrderedDict()
di['__config__'] = config
for key, ops in chain.items():
di[key] = [op.to_json() for op in ops]
return di
#return dumps(di, indent = 2) | d6838dfe1f079233ba8e3d93c62ddc1ebbcec5e4 | 8,170 |
def db_connection_string(dbconf): # type: (dict) -> str
"""
Constructs a database connection string from the passed configuration object.
"""
user = dbconf["user"]
password = dbconf["password"]
db_name = "traffic_ops" if dbconf["type"] == "Pg" else dbconf["type"]
hostname = dbconf["hostname"]
port = dbconf["port"]
return "postgresql://{user}:{password}@{hostname}:{port}/{db_name}".format(user=user, password=password, hostname=hostname, port=port, db_name=db_name) | 3fbb52c398f5150f6101b9d0d286f1db1b8aa99f | 8,171 |
def normalize_units(
df,
unitsmap,
targetunit,
paramcol="parameter",
rescol="res",
unitcol="units",
napolicy="ignore",
):
"""
Normalize units of measure in a dataframe.
Parameters
----------
df : pandas.DataFrame
Dataframe contained results and units of measure data.
unitsmap : dictionary
Dictionary where keys are the units present in the df and
values are the conversion factors required to standardize
results to a common unit.
targetunit : string or dict
The desired final units of measure. Must be present in
``unitsmap``. If a string, all rows in df will be
assigned ``targetunit``. If a dictionary, the units will be
mapped from the dictionary using the values of ``paramcol`` as
keys.
paramcol, rescol, unitcol : string, optional
Labels for the parameter, results, and units columns in the
df.
napolicy : string, optional
Determines how mull/missing values are stored. By default,
this is set to "ignore". Use "raise" to throw a ``ValueError``
if when unit conversion or target units data cannot be found.
Returns
-------
normalized : pandas.DataFrame
Dataframe with normalized units of measure.
"""
# determine the preferred units in the wqdata
target = df[paramcol].map(targetunit)
# factors to normialize to standard units
normalization = df[unitcol].map(unitsmap)
# factor to convert to preferred units
conversion = target.map(unitsmap)
if napolicy == "raise":
msg = ""
if target.isnull().any():
nulls = df[target.isnull()][paramcol].unique()
msg += "Some target units could not be mapped to the {} column ({})\n".format(
paramcol, nulls
)
if normalization.isnull().any():
nulls = df[normalization.isnull()][unitcol].unique()
msg += "Some normalization factors could not be mapped to the {} column ({})\n".format(
unitcol, nulls
)
if conversion.isnull().any():
nulls = target[conversion.isnull()]
msg += "Some conversion factors could not be mapped to the target units ({})".format(
nulls
)
if len(msg) > 0:
raise ValueError(msg)
# convert results
normalized = df.assign(
**{rescol: df[rescol] * normalization / conversion, unitcol: target}
)
return normalized | 89aa2692ae778eede36d02b8bea756793a55c172 | 8,172 |
from typing import List
from typing import Dict
from typing import Any
def format_sents_for_output(sents: List[str], doc_id: str) -> Dict[str, Dict[str, Any]]:
"""
Transform a list of sentences into a dict of format:
{
"sent_id": {"text": "sentence text", "label": []}
}
"""
formatted_sents = {}
for i, sent in enumerate(sents):
formatted_sents.update({f"{doc_id}_sent_{i}": {"text": sent, "label": []}})
return formatted_sents | d6178ac48da4d95e8d3727ca9220168e06ba223e | 8,177 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.