content
stringlengths
39
14.9k
sha1
stringlengths
40
40
id
int64
0
710k
def calc_overlap(row): """ Calculates the overlap between prediction and ground truth and overlap percentages used for determining true positives. """ set_pred = set(row.predictionstring_pred.split(' ')) set_gt = set(row.predictionstring_gt.split(' ')) # Length of each and intersection len_gt = len(set_gt) len_pred = len(set_pred) inter = len(set_gt.intersection(set_pred)) overlap_1 = inter / len_gt overlap_2 = inter/ len_pred return [overlap_1, overlap_2]
98e65250f82ab13b23de049fd80a59dea30ccce2
705,225
def _bucket_from_workspace_name(wname): """Try to assert the bucket name from the workspace name. E.g. it will answer www.bazel.build if the workspace name is build_bazel_www. Args: wname: workspace name Returns: the guessed name of the bucket for this workspace. """ revlist = [] for part in wname.split("_"): revlist.insert(0, part) return ".".join(revlist)
4cf3f4505a894f63258846abbe41b3b787485d40
705,227
def get_attrib_uri(json_dict, attrib): """ Get the URI for an attribute. """ url = None if type(json_dict[attrib]) == str: url = json_dict[attrib] elif type(json_dict[attrib]) == dict: if json_dict[attrib].get('id', False): url = json_dict[attrib]['id'] elif json_dict[attrib].get('@id', False): url = json_dict[attrib]['@id'] return url
838b698e3475ebdc877b29de6f3fd446d2be1cdf
705,230
import inspect def super_class_property(*args, **kwargs): """ A class decorator that adds the class' name in lowercase as a property of it's superclass with a value constructed using the subclass' constructor with the given arguments. So for example: class A: pass @super_class_property(foo=5) class B(A): def __init__(self, foo=3): self.foo=foo Effectively results in the following, after the definition of B: A.b = B(foo=5) Can be used multiple times with different arguments if desired. """ def add_superclass_property(cls): nonlocal args, kwargs mro = inspect.getmro(cls) if len(mro) <= 2: raise TypeError( ( "Class {} can't be a super_class_property because it has no super " "class." ).format(cls) ) parent = mro[1] instance = cls(*args, **kwargs) setattr(parent, cls.__name__.lower(), instance) return cls return add_superclass_property
ecfd38ba3d7ea96266278ed6be6cf0ba87263d7d
705,232
def merge(sorted1, sorted2): """Merge two sorted lists into a single sorted list.""" if sorted1 == (): return sorted2 elif sorted2 == (): return sorted1 else: h1, t1 = sorted1 h2, t2 = sorted2 if h1 <= h2: return (h1, merge(t1, sorted2)) else: return (h2, merge(sorted1, t2))
7c02b345b3d1e7c67e363e1535c608575a313f75
705,235
def slice_repr(slice_obj): """ Get the best guess of a minimal representation of a slice, as it would be created by indexing. """ slice_items = [slice_obj.start, slice_obj.stop, slice_obj.step] if slice_items[-1] is None: slice_items.pop() if slice_items[-1] is None: if slice_items[0] is None: return "all" else: return repr(slice_items[0]) + ":" else: return ":".join("" if x is None else repr(x) for x in slice_items)
c894f66478ec830a4968d0cfc5d9e146457012b6
705,237
import math def squeezenet1_0_fpn_feature_shape_fn(img_shape): """ Takes an image_shape as an input to calculate the FPN output sizes Ensure that img_shape is of the format (..., H, W) Args img_shape : image shape as torch.Tensor not torch.Size should have H, W as last 2 axis Returns P3_shape, P4_shape, P5_shape, P6_shape, P7_shape : as 5 (2,) Tensors """ C0_shape = img_shape[-2:] C1_shape = (math.floor((C0_shape[0] - 5) / 2), math.floor((C0_shape[1] - 5) / 2)) C2_shape = (math.ceil((C1_shape[0] - 1) / 2), math.ceil((C1_shape[1] - 1) / 2)) P3_shape = (math.ceil((C2_shape[0] - 1) / 2), math.ceil((C2_shape[1] - 1) / 2)) P4_shape = (math.ceil((P3_shape[0] - 1) / 2), math.ceil((P3_shape[1] - 1) / 2)) P5_shape = (math.ceil((P4_shape[0] - 1) / 2), math.ceil((P4_shape[1] - 1) / 2)) P6_shape = (math.ceil(P5_shape[0] / 2), math.ceil(P5_shape[1] / 2)) P7_shape = (math.ceil(P6_shape[0] / 2), math.ceil(P6_shape[1] / 2)) return C2_shape, P3_shape, P4_shape, P5_shape, P6_shape, P7_shape
d56fe3d834bcd9633727defe3ad9a27ea756ed40
705,239
import types def _copy_fn(fn): """Create a deep copy of fn. Args: fn: a callable Returns: A `FunctionType`: a deep copy of fn. Raises: TypeError: if `fn` is not a callable. """ if not callable(fn): raise TypeError("fn is not callable: %s" % fn) # The blessed way to copy a function. copy.deepcopy fails to create a # non-reference copy. Since: # types.FunctionType == type(lambda: None), # and the docstring for the function type states: # # function(code, globals[, name[, argdefs[, closure]]]) # # Create a function object from a code object and a dictionary. # ... # # Here we can use this to create a new function with the old function's # code, globals, closure, etc. return types.FunctionType( code=fn.__code__, globals=fn.__globals__, name=fn.__name__, argdefs=fn.__defaults__, closure=fn.__closure__)
37fca64ddaadfc8a6a24dce012af2143038cacd2
705,241
def getTJstr(text, glyphs, simple, ordering): """ Return a PDF string enclosed in [] brackets, suitable for the PDF TJ operator. Notes: The input string is converted to either 2 or 4 hex digits per character. Args: simple: no glyphs: 2-chars, use char codes as the glyph glyphs: 2-chars, use glyphs instead of char codes (Symbol, ZapfDingbats) not simple: ordering < 0: 4-chars, use glyphs not char codes ordering >=0: a CJK font! 4 chars, use char codes as glyphs """ if text.startswith("[<") and text.endswith(">]"): # already done return text if not bool(text): return "[<>]" if simple: # each char or its glyph is coded as a 2-byte hex if glyphs is None: # not Symbol, not ZapfDingbats: use char code otxt = "".join(["%02x" % ord(c) if ord(c) < 256 else "b7" for c in text]) else: # Symbol or ZapfDingbats: use glyphs otxt = "".join(["%02x" % glyphs[ord(c)][0] if ord(c) < 256 else "b7" for c in text]) return "[<" + otxt + ">]" # non-simple fonts: each char or its glyph is coded as 4-byte hex if ordering < 0: # not a CJK font: use the glyphs otxt = "".join(["%04x" % glyphs[ord(c)][0] for c in text]) else: # CJK: use the char codes otxt = "".join(["%04x" % ord(c) for c in text]) return "[<" + otxt + ">]"
bd5b7abd1b5ceb0b273e99e30ecc248482ed7476
705,245
def check_skip(timestamp, filename): """ Checks if a timestamp has been given and whether the timestamp corresponds to the given filename. Returns True if this condition is met and False Otherwise" """ if ((len(timestamp) > 0) and not(timestamp in filename)): return True elif ((len(timestamp) > 0) and (timestamp in filename)): return False
738043fb554f20b79fa3ac8861f9e60d0d697e5e
705,246
def is_tabledap(url): """ Identify a dataset as an ERDDAP TableDAP dataset. Parameters ---------- url (str) : URL to dataset Returns ------- bool """ return "tabledap" in url
9f4650bc3a3bc0794637b042c1779a84d7c02779
705,247
import torch def cal_area(group_xyz): """ Calculate Area of Triangle :param group_xyz: [B, N, K, 3] / [B, N, G, K, 3]; K = 3 :return: [B, N, 1] / [B, N, G, 1] """ pad_shape = group_xyz[..., 0, None].shape det_xy = torch.det(torch.cat([group_xyz[..., 0, None], group_xyz[..., 1, None], torch.ones(pad_shape)], dim=-1)) det_yz = torch.det(torch.cat([group_xyz[..., 1, None], group_xyz[..., 2, None], torch.ones(pad_shape)], dim=-1)) det_zx = torch.det(torch.cat([group_xyz[..., 2, None], group_xyz[..., 0, None], torch.ones(pad_shape)], dim=-1)) area = torch.sqrt(det_xy ** 2 + det_yz ** 2 + det_zx ** 2).unsqueeze(-1) return area
bbafa626c1833b5bde81303b4038081dae7bc965
705,251
def quicksort(inputArray): """input: array output: new sorted array features: stable efficiency O(n^2) (worst case), O(n log(n)) (avg case), O(n) (best case): space complexity: O(n) method: Pick the last element in the array as the pivot. Separate values into arrays based on whether they are greater than, less than, or equal to the pivot. Recursively sort the greater than and less than arrays. Return an new array merging the sorted arrays and the pivot. """ if len(inputArray) <= 1: return inputArray pivot = inputArray[-1] lesser = [] greater = [] equal = [] for value in inputArray[:-1]: if value > pivot: greater.append(value) elif value < pivot: lesser.append(value) elif value == pivot: equal.append(value) lesser = quicksort(lesser) greater = quicksort(greater) return lesser + equal + [pivot] + greater
2a8036ba038f4f7a8e817175d9a810184911ce4b
705,253
def cubic_spline_breaksToknots(bvec): """ Given breakpoints generated from _cubic_spline_breaks, [x0, x0, x0, x0, x1, x2, ..., xN-2, xf, xf, xf, xf], return the spline knots [x0, x1, ..., xN-1=xf]. This function ``undoes" _cubic_spline_breaks: knot_vec = _cubic_spline_breaks2knots(_cubic_spline_breaks(knot_vec)) """ return bvec[3:-3]
15a73dea4b001e05bd67075ec21e15247db1f031
705,259
def _SanitizeDoc(doc, leader): """Cleanup the doc string in several ways: * Convert None to empty string * Replace new line chars with doxygen comments * Strip leading white space per line """ if doc is None: return '' return leader.join([line.lstrip() for line in doc.split('\n')])
7ca6f17296c9b23c05239092e28c8d6b4df7c725
705,267
def pop_execute_query_kwargs(keyword_arguments): """ pop the optional execute query arguments from arbitrary kwargs; return non-None query kwargs in a dict """ query_kwargs = {} for key in ('transaction', 'isolate', 'pool'): val = keyword_arguments.pop(key, None) if val is not None: query_kwargs[key] = val return query_kwargs
d4ae2df3158660f62e21153d943922692f633b76
705,268
def lico2_ocp_Ramadass2004(sto): """ Lithium Cobalt Oxide (LiCO2) Open Circuit Potential (OCP) as a a function of the stochiometry. The fit is taken from Ramadass 2004. Stretch is considered the overhang area negative electrode / area positive electrode, in Ramadass 2002. References ---------- .. [1] P. Ramadass, Bala Haran, Parthasarathy M. Gomadam, Ralph White, and Branko N. Popov. "Development of First Principles Capacity Fade Model for Li-Ion Cells." (2004) Parameters ---------- sto : :class:`pybamm.Symbol` Stochiometry of material (li-fraction) """ stretch = 1.13 sto = stretch * sto u_eq = ((- 4.656 + 88.669 * (sto ** 2) - 401.119 * (sto ** 4) + 342.909 * (sto ** 6) - 462.471 * (sto ** 8) + 433.434 * (sto ** 10)) / ( - 1 + 18.933 * (sto ** 2) - 79.532 * (sto ** 4) + 37.311 * (sto ** 6) - 73.083 * (sto ** 8) + 95.96 * (sto ** 10)) ) return u_eq
2c0902e1d1cdec9ac7626038e34092933665bf84
705,272
import time def find_workflow_component_figures(page): """ Returns workflow component figure elements in `page`. """ time.sleep(0.5) # Pause for stable display. root = page.root or page.browser return root.find_elements_by_class_name('WorkflowComponentFigure')
1a56a0a348803394c69478e3443cbe8c6cb0ce9c
705,276
def query_left(tree, index): """Returns sum of values between 1-index inclusive. Args: tree: BIT index: Last index to include to the sum Returns: Sum of values up to given index """ res = 0 while index: res += tree[index] index -= (index & -index) return res
e293194c86ad1c53a005be290ba61ef2fff097c8
705,282
def find_language(article_content): """Given an article's xml content as string, returns the article's language""" if article_content.Language is None: return None return article_content.Language.string
4a228779992b156d01bc25501677556a5c9b7d39
705,286
import collections def extract_stats(output): """Extract stats from `git status` output """ lines = output.splitlines() return collections.Counter([x.split()[0] for x in lines])
41d8aef4df3401ee8127ad0b72402ff9c54c41e3
705,294
def add_custom_encoder_arguments(group): """Define arguments for Custom encoder.""" group.add_argument( "--enc-block-arch", type=eval, action="append", default=None, help="Encoder architecture definition by blocks", ) group.add_argument( "--enc-block-repeat", default=0, type=int, help="Repeat N times the provided encoder blocks if N > 1", ) group.add_argument( "--custom-enc-input-layer", type=str, default="conv2d", choices=["conv2d", "vgg2l", "linear", "embed"], help="Custom encoder input layer type", ) group.add_argument( "--custom-enc-positional-encoding-type", type=str, default="abs_pos", choices=["abs_pos", "scaled_abs_pos", "rel_pos"], help="Custom encoder positional encoding layer type", ) group.add_argument( "--custom-enc-self-attn-type", type=str, default="self_attn", choices=["self_attn", "rel_self_attn"], help="Custom encoder self-attention type", ) group.add_argument( "--custom-enc-pw-activation-type", type=str, default="relu", choices=["relu", "hardtanh", "selu", "swish"], help="Custom encoder pointwise activation type", ) group.add_argument( "--custom-enc-conv-mod-activation-type", type=str, default="swish", choices=["relu", "hardtanh", "selu", "swish"], help="Custom encoder convolutional module activation type", ) return group
f49a778b78351a08bdb411e8004d00da0ccd96a4
705,298
def sign(x): """Returns sign of x""" if x==0: return 0 return x/abs(x)
677dfd796b0ee354fbcaf78b58cf7a5a660446b5
705,300
def echo_handler(completed_proc): """Immediately return ``completed_proc``.""" return completed_proc
53f3ef51bf349ac5146014ef25b88326d5bc010e
705,302
import random def random_choice(choices): """returns a random choice from a list of (choice, probability)""" # sort by probability choices = sorted(choices, key=lambda x:x[1]) roll = random.random() acc_prob = 0 for choice, prob in choices: acc_prob += prob if roll <= acc_prob: return choice
f477abe220fa9d87ee3692bed8c41973af4c637c
705,303
import torch def convert_label_to_color(label, color_map): """Convert integer label to RGB image. """ n, h, w = label.shape rgb = torch.index_select(color_map, 0, label.view(-1)).view(n, h, w, 3) rgb = rgb.permute(0, 3, 1, 2) return rgb
a37ec3ad382f88bdc9de8fbc2b4e2524213607c3
705,304
def in_nested_list(my_list, item): """ Determines if an item is in my_list, even if nested in a lower-level list. """ if item in my_list: return True else: return any(in_nested_list(sublist, item) for sublist in my_list if isinstance(sublist, list))
3daeaf89099bf19ba82eabfedd943adfb32fc146
705,306
def is_prebuffer() -> bool: """ Return whether audio is in pre-buffer (threadsafe). Returns ------- is_prebuffer : bool Whether audio is in pre-buffer. """ is_prebuffer = bool(RPR.Audio_IsPreBuffer()) # type:ignore return is_prebuffer
8afa4979578be310fd71b22907c99bb747780454
705,308
def _get_interface_name_index(dbapi, host): """ Builds a dictionary of interfaces indexed by interface name. """ interfaces = {} for iface in dbapi.iinterface_get_by_ihost(host.id): interfaces[iface.ifname] = iface return interfaces
0217f6ef8d4e5e32d76a4fc0d66bf74aa45f8c36
705,309
def delchars(str, chars): """Returns a string for which all occurrences of characters in chars have been removed.""" # Translate demands a mapping string of 256 characters; # whip up a string that will leave all characters unmolested. identity = "".join([chr(x) for x in range(256)]) return str.translate(identity, chars)
a220202a05e0ead7afa6226ef309c56940a1d153
705,313
def bytes2hex(bytes_array): """ Converts byte array (output of ``pickle.dumps()``) to spaced hexadecimal string representation. Parameters ---------- bytes_array: bytes Array of bytes to be converted. Returns ------- str Hexadecimal representation of the byte array. """ s_hex = bytes_array.hex() # Insert spaces between each hex number. It makes YAML file formatting better. return " ".join([s_hex[n : n + 2] for n in range(0, len(s_hex), 2)])
19019ee1e3cd45d671f53e0ae4fd92b283c3b38d
705,314
from pathlib import Path def to_posix(d): """Convert the Path objects to string.""" if isinstance(d, dict): for k, v in d.items(): d[k] = to_posix(v) elif isinstance(d, list): return [to_posix(x) for x in d] elif isinstance(d, Path): return d.as_posix() return d
91dbda7738308dd931b58d59dad8e04a277034ea
705,316
def firstLetterCipher(ciphertext): """ Returns the first letters of each word in the ciphertext Example: Cipher Text: Horses evertime look positive Decoded text: Help """ return "".join([i[0] for i in ciphertext.split(" ")])
87f37d1a428bde43c07231ab2e5156c680c96f91
705,318
from pathlib import Path from typing import Tuple import re def parse_samtools_flagstat(p: Path) -> Tuple[int, int]: """Parse total and mapped number of reads from Samtools flagstat file""" total = 0 mapped = 0 with open(p) as fh: for line in fh: m = re.match(r'(\d+)', line) if m: if 'in total' in line: total = int(m.group(1)) if ' mapped (' in line: mapped = int(m.group(1)) return total, mapped
60c6f9b227cefdea9877b05bb2fe66e4c82b4dd1
705,319
def app_files(proj_name): """Create a list with the project files Args: proj_name (str): the name of the project, where the code will be hosted Returns: files_list (list): list containing the file structure of the app """ files_list = [ "README.md", "setup.py", "setup.cfg", f"{proj_name}/__init__.py", f"{proj_name}/{proj_name}.py", "tests/tests.py", ] return files_list
2c6cbf112c7939bea12672668c8a5db1656b6edd
705,320
import torch def log_safe(x): """The same as torch.log(x), but clamps the input to prevent NaNs.""" x = torch.as_tensor(x) return torch.log(torch.min(x, torch.tensor(33e37).to(x)))
98c73b316d22ebe9ef4b322b1ba984a734422e7a
705,321
import requests def resolve_s1_slc(identifier, download_url, project): """Resolve S1 SLC using ASF datapool (ASF or NGAP). Fallback to ESA.""" # determine best url and corresponding queue vertex_url = "https://datapool.asf.alaska.edu/SLC/SA/{}.zip".format( identifier) r = requests.head(vertex_url, allow_redirects=True) if r.status_code == 403: url = r.url queue = "{}-job_worker-small".format(project) elif r.status_code == 404: url = download_url queue = "factotum-job_worker-scihub_throttled" else: raise RuntimeError("Got status code {} from {}: {}".format( r.status_code, vertex_url, r.url)) return url, queue
cf489b0d65a83dee3f87887a080d67acd180b0b3
705,322
def make_anagram_dict(filename): """Takes a text file containing one word per line. Returns a dictionary: Key is an alphabetised duple of letters in each word, Value is a list of all words that can be formed by those letters""" result = {} fin = open(filename) for line in fin: word = line.strip().lower() letters_in_word = tuple(sorted(word)) if letters_in_word not in result: result[letters_in_word] = [word] else: result[letters_in_word].append(word) return result
c6c0ad29fdf63c91c2103cefc506ae36b64a40ec
705,323
def group_property_types(row : str) -> str: """ This functions changes each row in the dataframe to have the one of five options for building type: - Residential - Storage - Retail - Office - Other this was done to reduce the dimensionality down to the top building types. :param: row (str) : The row of the pandas series :rvalue: str :return: One of 5 building types. """ if row == 'Multifamily Housing' or\ row == 'Residence Hall/Dormitory' or\ row == 'Hotel' or\ row == 'Other - Lodging/Residential' or\ row == 'Residential Care Facility': return 'Residential' elif row == 'Non-Refrigerated Warehouse' or\ row == 'Self-Storage Facility' or\ row == 'Refrigerated Warehouse': return 'Storage' elif row == 'Financial Office' or\ row == 'Office': return 'Office' elif row == 'Restaurant' or\ row == 'Retail Store' or\ row == 'Enclosed Mall' or\ row == 'Other - Mall' or\ row == 'Strip Mall' or\ row == 'Personal Services (Health/Beauty, Dry Cleaning, etc.)' or\ row == 'Lifestyle Center' or\ row == 'Wholesale Club/Supercenter': return 'Retail' else: return 'Other'
44aa5d70baaa24b0c64b7464b093b59ff39d6d1c
705,324
def write_simple_templates(n_rules, body_predicates=1, order=1): """Generate rule template of form C < A ^ B of varying size and order""" text_list = [] const_term = "(" for i in range(order): const_term += chr(ord('X') + i) + "," const_term = const_term[:-1] + ")" write_string = "{0} #1{1} :- #2{1}".format(n_rules, const_term) if body_predicates > 1: for i in range(body_predicates - 1): write_string += ", #" + str(i + 3) + const_term text_list.append(write_string) return text_list
3a911702be9751b0e674171ec961029f5b10a9e7
705,325
def gen_string(**kwargs) -> str: """ Generates the string to put in the secrets file. """ return f"""\ apiVersion: v1 kind: Secret metadata: name: keys namespace: {kwargs['namespace']} type: Opaque data: github_client_secret: {kwargs.get('github_client_secret')} """
ed2702c171f20b9f036f07ec61e0a4d74424ba03
705,327
def get_props_from_row(row): """Return a dict of key/value pairs that are props, not links.""" return {k: v for k, v in row.iteritems() if "." not in k and v != ""}
a93dfbd1ef4dc87414492b7253b1ede4e4cc1888
705,328
import math def F7(x): """Easom function""" s = -math.cos(x[0])*math.cos(x[1])*math.exp(-(x[0] - math.pi)**2 - (x[1]-math.pi)**2) return s
a17060f046df9c02690e859e789b7ef2591d1a3c
705,330
from datetime import datetime def _get_stop_as_datetime(event_json)->datetime: """Reads the stop timestamp of the event and returns it as a datetime object. Args: event_json (json): The event encapsulated as json. Returns datetime: Timestamp of the stop of the event. """ name = event_json['info']['name'] payload_stop = 'meta.raw_payload.' + name + '-stop' stop_timestamp_string = event_json['info'][payload_stop]['timestamp'] stop_date_string, stop_time_string = stop_timestamp_string.split('T') stop_time_string, _ = stop_time_string.split('.') date_and_time_string = stop_date_string + ' ' + stop_time_string return datetime.strptime(date_and_time_string, '%Y-%m-%d %H:%M:%S')
958915a568c66a04da3f44abecf0acca90181f43
705,334
import string import random def gen_pass(length=8, no_numerical=False, punctuation=False): """Generate a random password Parameters ---------- length : int The length of the password no_numerical : bool, optional If true the password will be generated without 0-9 punctuation : bool, optional If true the password will be generated with punctuation Returns ------- string The generated password """ characters = [string.ascii_letters] # Add user options to the character set if not no_numerical: characters.append(string.digits) if punctuation: characters.append(string.punctuation) # Shuffle the character set random.SystemRandom().shuffle(characters) chars_left = length - (len(characters) - 1) char_amounts = [] # Decide on number of characters per character set for char_set in characters: i = random.SystemRandom().randint(1, chars_left) char_amounts.append(i) chars_left -= i - 1 char_amounts[-1] += chars_left - 1 # Generate the password's characters password = '' for i, length in enumerate(char_amounts): password +=''.join(random.SystemRandom().choice(characters[i]) for _ in range(length)) # Shuffle the password password = list(password) random.SystemRandom().shuffle(password) password = ''.join(password) return password
dc0ca0c228be11a5264870112e28f27817d4bbc8
705,336
def document_version_title(context): """Document version title""" return context.title
1589a76e8bb4b4a42018783b7dbead9efc91e21a
705,337
def decide_play(lst): """ This function will return the boolean to control whether user should continue the game. ---------------------------------------------------------------------------- :param lst: (list) a list stores the input alphabet. :return: (bool) if the input character is alphabet and if only one character is in the string. """ if len(lst) == 4: for char in lst: if char.isalpha() and len(char) == 1: pass else: return False return True else: return False
3062e1335eda572049b93a60a0981e905ff6ca0d
705,339
def _md_fix(text): """ sanitize text data that is to be displayed in a markdown code block """ return text.replace("```", "``[`][markdown parse fix]")
2afcad61f4b29ae14c66e04c39413a9a94ae30f8
705,343
def hexStringToRGB(hex): """ Converts hex color string to RGB values :param hex: color string in format: #rrggbb or rrggbb with 8-bit values in hexadecimal system :return: tuple containing RGB color values (from 0.0 to 1.0 each) """ temp = hex length = len(hex) if temp[0] == "#": temp = hex[1:length] if not len(temp) == 6: return None colorArr = bytearray.fromhex(temp) return colorArr[0], colorArr[1], colorArr[2]
7adcb7b247e6fe1aefa1713d754c828d1ac4a5b0
705,349
from typing import Union from typing import Mapping from typing import Iterable from typing import Tuple from typing import Any def update_and_return_dict( dict_to_update: dict, update_values: Union[Mapping, Iterable[Tuple[Any, Any]]] ) -> dict: """Update a dictionary and return the ref to the dictionary that was updated. Args: dict_to_update (dict): the dict to update update_values (Union[Mapping, Iterable[Tuple[Any, Any]]]): the values to update the dict with Returns: dict: the dict that was just updated. """ dict_to_update.update(update_values) return dict_to_update
8622f96a9d183c8ce5c7f260e97a4cb4420aecc7
705,351
def cutoff_depth(d: int): """A cutoff function that searches to depth d.""" return lambda game, state, depth: depth > d
af7396a92f1cd234263e8448a6d1d22b56f4a12c
705,354
def rgb_to_hex(red, green, blue): """Return color as #rrggbb for the given RGB color values.""" return '#%02x%02x%02x' % (int(red), int(green), int(blue))
7523bcb4b7a033655c9f5059fcf8d0ed656502c8
705,356
def _is_swiftmodule(path): """Predicate to identify Swift modules/interfaces.""" return path.endswith((".swiftmodule", ".swiftinterface"))
085fa4f8735ce371927f606239d51c44bcca5acb
705,357
def get_rest_parameter_state(parameter_parsing_states): """ Gets the rest parameter from the given content if there is any. Parameters ---------- parameter_parsing_states `list` of ``ParameterParsingStateBase`` The created parameter parser state instances. Returns ------- parameter_parsing_state : ``ParameterParsingState``, `None` """ for parameter_parsing_state in parameter_parsing_states: if parameter_parsing_state.content_parser_parameter.is_rest: return parameter_parsing_state
e90d1ee848af7666a72d9d0d4fb74e3fedf496fa
705,365
import io def read_all_files(filenames): """Read all files into a StringIO buffer.""" return io.StringIO('\n'.join(open(f).read() for f in filenames))
efb2e3e8f35b2def5f1861ecf06d6e4135797ccf
705,366
def path_inside_dir(path, directory): """ Returns True if the specified @path is inside @directory, performing component-wide comparison. Otherwise returns False. """ return ((directory == "" and path != "") or path.rstrip("/").startswith(directory.rstrip("/") + "/"))
30ad431f9115addd2041e4b6c9c1c8c563b93fe9
705,367
def butterworth_type_filter(frequency, highcut_frequency, order=2): """ Butterworth low pass filter Parameters ---------- highcut_frequency: float high-cut frequency for the low pass filter fs: float sampling rate, 1./ dt, (default = 1MHz) period: period of the signal (e.g. 25Hz base frequency, 0.04s) order: int The order of the butterworth filter Returns ------- frequency, h: ndarray, ndarray Filter values (`h`) at frequencies (`frequency`) are provided. """ # Nyquist frequency h = 1.0 / (1 + 1j * (frequency / highcut_frequency)) ** order highcut_frequency = 300 * 1e3 h *= 1.0 / (1 + 1j * (frequency / highcut_frequency)) ** 1 return h
f8ff570d209560d65b4ccc9fdfd2d26ec8a12d35
705,368
def add_to_master_list(single_list, master_list): """This function appends items in a list to the master list. :param single_list: List of dictionaries from the paginated query :type single_list: list :param master_list: Master list of dictionaries containing group information :type master_list: list :returns: The master list with the appended data """ for list_item in single_list: master_list.append(list_item) return master_list
4b4e122e334624626c7db4f09278b44b8b141504
705,370
def unmatched(match): """Return unmatched part of re.Match object.""" start, end = match.span(0) return match.string[:start] + match.string[end:]
6d34396c2d3c957d55dbef16c2673bb7f571205c
705,373
def cubicgw(ipparams, width, etc = []): """ This function fits the variation in Gaussian-measured PRF half-widths using a 2D cubic. Parameters ---------- x1: linear coefficient in x x2: quadratic coefficient in x x3: cubic coefficient in x y1: linear coefficient in y y2: quadratic coefficient in y y3: cubic coefficient in y c : constant Returns ------- returns the flux values for the intra-pixel model Revisions --------- 2018-11-16 Kevin Stevenson, STScI [email protected] Original version """ x1 = ipparams[0] x2 = ipparams[1] x3 = ipparams[2] y1 = ipparams[3] y2 = ipparams[4] y3 = ipparams[5] c = ipparams[6] s0 = ipparams[7] sy, sx = width return x1*(sx-s0) + x2*(sx-s0)**2 + x3*(sx-s0)**3 + y1*(sy-s0) + y2*(sy-s0)**2 + y3*(sy-s0)**3 + c
334be9d8dc8baaddf122243e4f19d681efc707cf
705,374
def get_columns_by_type(df, req_type): """ get columns by type of data frame Parameters: df : data frame req_type : type of column like categorical, integer, Returns: df: Pandas data frame """ g = df.columns.to_series().groupby(df.dtypes).groups type_dict = {k.name: v for k, v in g.items()} return type_dict.get(req_type)
aeedea92fbfb720ca6e7a9cd9920827a6ad8c6b0
705,376
def get_total(lines): """ This function takes in a list of lines and returns a single float value that is the total of a particular variable for a given year and tech. Parameters: ----------- lines : list This is a list of datalines that we want to total. Returns: -------- total : float This is the sum total from the data lines. """ total = 0.0 for line in lines: data_sep = line.split() total += float(data_sep[0]) return total
284f8061f3659999ae7e4df104c86d0077b384da
705,377
def box(t, t_start, t_stop): """Box-shape (Theta-function) The shape is 0 before `t_start` and after `t_stop` and 1 elsewhere. Args: t (float): Time point or time grid t_start (float): First value of `t` for which the box has value 1 t_stop (float): Last value of `t` for which the box has value 1 Note: You may use :class:`numpy.vectorize`, :func:`functools.partial`, or :func:`qutip_callback`, cf. :func:`flattop`. """ if t < t_start: return 0.0 if t > t_stop: return 0.0 return 1.0
8f4f0e57323f38c9cfa57b1661c597b756e8c4e7
705,378
import json import time def sfn_result(session, arn, wait=10): """Get the results of a StepFunction execution Args: session (Session): Boto3 session arn (string): ARN of the execution to get the results of wait (int): Seconds to wait between polling Returns: dict|None: Dict of Json data or None if there was an error getting the failure output """ client = session.client('stepfunctions') while True: resp = client.describe_execution(executionArn = arn) if resp['status'] != 'RUNNING': if 'output' in resp: return json.loads(resp['output']) else: resp = client.get_execution_history(executionArn = arn, reverseOrder = True) event = resp['events'][0] for key in ['Failed', 'Aborted', 'TimedOut']: key = 'execution{}EventDetails'.format(key) if key in event: return event[key] return None else: time.sleep(wait)
ba8a80e81aa5929360d5c9f63fb7dff5ebaf91f3
705,379
def to_numpy(tensor): """Convert 3-D torch tensor to a 3-D numpy array. Args: tensor: Tensor to be converted. """ return tensor.transpose(0, 1).transpose(1, 2).clone().numpy()
034e016caccdf18e8e33e476673884e2354e21c7
705,383
import time def wait_for_result(polling_function, polling_config): """ wait_for_result will periodically run `polling_function` using the parameters described in `polling_config` and return the output of the polling function. Args: polling_config (PollingConfig): The parameters to use to poll the db. polling_function (Callable[[], (bool, Any)]): The function being polled. The function takes no arguments and must return a status which indicates if the function was succesful or not, as well as some return value. Returns: Any: The output of the polling function, if it is succesful, None otherwise. """ if polling_config.polling_interval == 0: iterations = 1 else: iterations = int(polling_config.timeout // polling_config.polling_interval) + 1 for _ in range(iterations): (status, result) = polling_function() if status: return result time.sleep(polling_config.polling_interval) if polling_config.strict: assert False return None
663f23b3134dabcf3cc3c2f72db33d09ca480555
705,386
def file_version_summary(list_of_files): """ Given the result of list_file_versions, returns a list of all file versions, with "+" for upload and "-" for hide, looking like this: ['+ photos/a.jpg', '- photos/b.jpg', '+ photos/c.jpg'] """ return [('+ ' if (f['action'] == 'upload') else '- ') + f['fileName'] for f in list_of_files]
8ca8e75c3395ea13c6db54149b12e62f07aefc13
705,387
def pwm_to_duty_cycle(pulsewidth_micros, pwm_params): """Converts a pwm signal (measured in microseconds) to a corresponding duty cycle on the gpio pwm pin Parameters ---------- pulsewidth_micros : float Width of the pwm signal in microseconds pwm_params : PWMParams PWMParams object Returns ------- float PWM duty cycle corresponding to the pulse width """ return int(pulsewidth_micros / 1e6 * pwm_params.freq * pwm_params.range)
e627b84bf7e01f3d4dcb98ec94271cd34249fb23
705,389
def parse_data_name(line): """ Parses the name of a data item line, which will be used as an attribute name """ first = line.index("<") + 1 last = line.rindex(">") return line[first:last]
53a9c7e89f5fa5f47dad6bfc211d3de713c15c67
705,402
def api_error(api, error): """format error message for api error, if error is present""" if error is not None: return "calling: %s: got %s" % (api, error) return None
a9269a93d51e3203646886a893998ffec6488c95
705,403
def build_template(ranges, template, build_date, use_proxy=False, redir_target=""): """ Input: output of process_<provider>_ranges(), output of get_template() Output: Rendered template string ready to write to disk """ return template.render( ranges=ranges["ranges"], header_comments=ranges["header_comments"], build_date=build_date, use_proxy=use_proxy, redir_target=redir_target, )
ec10897cb6f92e2b927f4ef84511a7deab8cd37d
705,405
import re def finder(input, collection, fuzzy=False, accessor=lambda x: x): """ Args: input (str): A partial string which is typically entered by a user. collection (iterable): A collection of strings which will be filtered based on the `input`. fuzzy (bool): perform a fuzzy search (default=False) Returns: suggestions (generator): A generator object that produces a list of suggestions narrowed down from `collection` using the `input`. """ suggestions = [] input = str(input) if not isinstance(input, str) else input pat = input if fuzzy: pat = ".*?".join(map(re.escape, input)) regex = re.compile(pat, re.IGNORECASE) for item in collection: r = regex.search(accessor(item)) if r: suggestions.append((len(r.group()), r.start(), accessor(item), item)) return (z[-1] for z in sorted(suggestions))
1bbe22f6b38f447f20071bd810cfee6e4e491f5f
705,408
def str2int(video_path): """ argparse returns and string althout webcam uses int (0, 1 ...) Cast to int if needed """ try: return int(video_path) except ValueError: return video_path
2d4714ec53304fb6cafabd5255a838b478780f8a
705,409
def log_sum_exp(input, dim=None, keepdim=False): """Numerically stable LogSumExp. Args: input (Tensor) dim (int): Dimension along with the sum is performed keepdim (bool): Whether to retain the last dimension on summing Returns: Equivalent of log(sum(exp(inputs), dim=dim, keepdim=keepdim)). """ # For a 1-D array x (any array along a single dimension), # log sum exp(x) = s + log sum exp(x - s) # with s = max(x) being a common choice. if dim is None: input = input.view(-1) dim = 0 max_val = input.max(dim=dim, keepdim=True)[0] output = max_val + (input - max_val).exp().sum(dim=dim, keepdim=True).log() if not keepdim: output = output.squeeze(dim) return output
c9c867d9d81191922a56716dab128ea71821a638
705,412
def adriatic_name(p, i, j, a): """ Return the name for given parameters of Adriatic indices""" #(j) name1 = {1:'Randic type ',\ 2:'sum ',\ 3:'inverse sum ', \ 4:'misbalance ', \ 5:'inverse misbalance ', \ 6:'min-max ', \ 7:'max-min ', \ 8:'symmetric division '} # (i,a) name2 = {(1, 0.5):'lor',\ (1,1):'lo', \ (1,2):'los', \ (2,-1):'in', \ (2, -0.5):'ir', \ (2, 0.5):'ro', \ (2,1):'', \ (2,2):'s', \ (3, 0.5):'ha', \ (3,2):'two'} #(p) name3 = {0: 'deg', 1: 'di'} return (name1[j] + name2[(i, a)] + name3[p])
d08ed926d80aa19326ab4548288a0b9cb02737e4
705,415
def gcd(number1: int, number2: int) -> int: """Counts a greatest common divisor of two numbers. :param number1: a first number :param number2: a second number :return: greatest common divisor""" number_pair = (min(abs(number1), abs(number2)), max(abs(number1), abs(number2))) while number_pair[0] > 0: number_pair = (number_pair[1] % number_pair[0], number_pair[0]) return number_pair[1]
9f22c315cc23e2bbf954f06d416a2c44f95ddbb7
705,416
def get_overlapping_timestamps(timestamps: list, starttime: int, endtime: int): """ Find the timestamps in the provided list of timestamps that fall between starttime/endtime. Return these timestamps as a list. First timestamp in the list is always the nearest to the starttime without going over. Parameters ---------- timestamps list of timestamps we want to pull from, to get the timestamps between starttime and endtime starttime integer utc timestamp in seconds endtime integer utc timestamp in seconds Returns ------- list list of timestamps that are within the starttime/endtime range """ final_timestamps = [] # we require a starting time stamp that is either less than the given starttime or no greater than # the given starttime by 60 seconds buffer = 60 starting_timestamp = None for tstmp in timestamps: # first pass, find the nearest timestamp (to starttime) without going over the starttime if tstmp < starttime + buffer: if not starting_timestamp: starting_timestamp = tstmp elif (tstmp > starting_timestamp) and (tstmp <= starttime): starting_timestamp = tstmp if starting_timestamp is None: # raise ValueError('VesselFile: Found no overlapping timestamps for range {} -> {}, within the available timestamps: {}'.format(starttime, endtime, timestamps)) return final_timestamps starttime = starting_timestamp final_timestamps.append(str(starttime)) for tstmp in timestamps: # second pass, append all timestamps that are between the starting timestamp and endtime if (tstmp > starttime) and (tstmp <= endtime): final_timestamps.append(str(tstmp)) return final_timestamps
0ad6836d43d670f811b436e34887e159462c9ec1
705,417
def is_sequence(arg): """Check if an object is iterable (you can loop over it) and not a string.""" return not hasattr(arg, "strip") and hasattr(arg, "__iter__")
466154b8ef9d19b53744187d44dc6cd172a70f62
705,419
def fix_stddev_function_name(self, compiler, connection): """ Fix function names to 'STDEV' or 'STDEVP' as used by mssql """ function = 'STDEV' if self.function == 'STDDEV_POP': function = 'STDEVP' return self.as_sql(compiler, connection, function=function)
b1fa48801fb397590ad5fb249d928906e7c21c8a
705,420
def d_d_theta_inv(y, alpha): """ xi'(y) = 1/theta''(xi(y)) > 0 = alpha / (1 - |y|)^2 Nikolova et al 2014, table 1, theta_2 and eq 5. """ assert -1 < y < 1 and alpha > 0 denom = 1 - abs(y) return alpha / (denom*denom)
8ed796a46021f64ca3e24972abcf70bd6f64976d
705,424
def center_crop(img, crop_height, crop_width): """ Crop the central part of an image. Args: img (ndarray): image to be cropped. crop_height (int): height of the crop. crop_width (int): width of the crop. Return: (ndarray): the cropped image. """ def get_center_crop_coords(height, width, crop_height, crop_width): y1 = (height - crop_height) // 2 y2 = y1 + crop_height x1 = (width - crop_width) // 2 x2 = x1 + crop_width return x1, y1, x2, y2 height, width = img.shape[:2] x1, y1, x2, y2 = get_center_crop_coords( height, width, crop_height, crop_width) return img[y1:y2, x1:x2, ...]
6e5fafee8c34632b61d047e9eb66e9b08b5d0203
705,425
def obj_size_avg_residual(coeffs, avg_size, class_id): """ :param coeffs: object sizes :param size_template: dictionary that saves the mean size of each category :param class_id: nyu class id. :return: size residual ground truth normalized by the average size """ size_residual = (coeffs - avg_size[class_id]) / avg_size[class_id] return size_residual
8d44d4ebf273baf460195ec7c6ade58c8d057025
705,428
def _get_chromosome_dirs(input_directory): """Collect chromosome directories""" dirs = [] for d in input_directory.iterdir(): if not d.is_dir(): continue # Just in case user re-runs and # does not delete output files elif d.name == 'logs': continue elif d.name == 'p_distance_output': continue else: dirs.append(d) return dirs
5047c0c158f11794e312643dbf7d307b381ba59f
705,429
def format_imports(import_statements): """ ----- examples: @need from fastest.constants import TestBodies @end @let import_input = TestBodies.TEST_STACK_IMPORTS_INPUT output = TestBodies.TEST_STACK_IMPORTS_OUTPUT @end 1) format_imports(import_input) -> output ----- :param import_statements: list :return: list """ return [ '{}\n'.format(import_statement.strip()) for import_statement in import_statements if len(import_statement) > 0 ]
91514d19da4a4dab8c832e6fc2d3c6cbe7cca04a
705,430
def extract_signals(data, fs, segmentation_times): """ Signal that given the set of segmentation times, extract the signal from the raw trace. Args: data : Numpy The input seismic data containing both, start and end times of the seismic data. fs : float The sampling frequency. segmentation_times : list A list containing the segmentation of the file Returns: List A list containing the extracted signals. """ signals = [] durations = [] for m in segmentation_times: segmented = data[int(m[0] * fs): int(m[1] * fs)] signals.append(segmented) durations.append(segmented.shape[0]/float(fs)) return signals, durations
81ff3d0b343dbba218eb5d2d988b8ca20d1a7209
705,433
def follow_card(card, deck_size, shuffles, shuffler): """Follow position of the card in deck of deck_size during shuffles.""" position = card for shuffle, parameter in shuffles: shuffling = shuffler(shuffle) position = shuffling(deck_size, position, parameter) return position
10774bd899afde0d64cbf800bc3dad1d86543022
705,437
import torch def besseli(X, order=0, Nk=64): """ Approximates the modified Bessel function of the first kind, of either order zero or one. OBS: Inputing float32 can lead to numerical issues. Args: X (torch.tensor): Input (N, 1). order (int, optional): 0 or 1, defaults to 0. Nk (int, optional): Terms in summation, higher number, better approximation. Defaults to 50. Returns: I (torch.tensor): Modified Bessel function of the first kind (N, 1). See also: https://mathworld.wolfram.com/ModifiedBesselFunctionoftheFirstKind.html """ device = X.device dtype = X.dtype if len(X.shape) == 1: X = X[:, None] N = X.shape[0] else: N = 1 # Compute factorial term X = X.repeat(1, Nk) K = torch.arange(0, Nk, dtype=dtype, device=device) K = K.repeat(N, 1) K_factorial = (K + 1).lgamma().exp() if order == 0: # ..0th order i = torch.sum((0.25 * X ** 2) ** K / (K_factorial ** 2), dim=1, dtype=torch.float64) else: # ..1st order i = torch.sum( 0.5 * X * ((0.25 * X ** 2) ** K / (K_factorial * torch.exp(torch.lgamma(K + 2)))), dim=1, dtype=torch.float64) return i
5233398b240244f13af595088077b8e43d2a4b2f
705,440
def min_rank(series, ascending=True): """ Equivalent to `series.rank(method='min', ascending=ascending)`. Args: series: column to rank. Kwargs: ascending (bool): whether to rank in ascending order (default is `True`). """ ranks = series.rank(method="min", ascending=ascending) return ranks
a772618570517a324a202d4803983240cb54396b
705,443
import yaml def load_yaml(filepath): """Import YAML config file.""" with open(filepath, "r") as stream: try: return yaml.safe_load(stream) except yaml.YAMLError as exc: print(exc)
e1ec81bf36d293788303e4b3379e45ecdfb38dc0
705,445
import json import logging def parse_json(json_path): """ parser JSON Args: json_path: input json file path Returns: json_dict: parser json dict result """ try: with open(json_path) as json_file: json_dict = json.load(json_file) except Exception: logging.error("json file load error !") else: return json_dict
4bb9b14d3a751451dd2a75da9b60a355934ffa65
705,446
def count_possibilities(dic): """ Counts how many unique names can be created from the combinations of each lists contained in the passed dictionary. """ total = 1 for key, value in dic.items(): total *= len(value) return total
856eee9bac0ddf3dbc7b714bb26fe6d4f003ef95
705,449
def get_dgs(align_dg_dict): """ Function that creates inverse dictionary of align_dg_dict align_dg_dict: dict. Dictionary of alignments and clustering DG assignments Returns dg_align_dict: dict, k=dg_id, v=[alignids] align_dg_dict comes from get_spectral(graph) or get_cliques(graph) """ dgs_list = set(align_dg_dict.values()) #list of all duplex groups dg_align_dict = {} for dg in dgs_list: dg_align_list =[x for (x,y) in align_dg_dict.items() if y == dg] dg_align_dict[dg] = dg_align_list return dg_align_dict #test case:
85bca47657c83d2b308d38f05d1c88d9a78fa448
705,451
from typing import Optional def parse_options(dict_in: Optional[dict], defaults: Optional[dict] = None): """ Utility function to be used for e.g. kwargs 1) creates a copy of dict_in, such that it is safe to change its entries 2) converts None to an empty dictionary (this is useful, since empty dictionaries cant be argument defaults) 3) optionally, sets defaults, if keys are not present Parameters ---------- dict_in defaults Returns ------- """ if dict_in is None: dict_in = {} else: dict_in = dict_in.copy() if defaults: for key in defaults: dict_in.setdefault(key, defaults[key]) return dict_in
d679539ba29f4acab11f5db59c324473a2e24cc6
705,452
def GetMaxHarmonic( efit ): """Determine highest-order of harmonic amplitudes in an ellipse-fit object""" # We assume that columns named "ai3_err", "ai4_err", "ai5_err", etc. # exist, up to "aiM_err", where M is the maximum harmonic number momentNums = [int(cname.rstrip("_err")[2:]) for cname in efit.colNames if cname[:2] == "ai" and cname[-4:] == "_err"] return max(momentNums)
e11645efa40ce3995788a05c8955d0d5a8804955
705,453
def no_op(loss_tensors): """no op on input""" return loss_tensors
317474aa2ed41668781042a22fb43834dc672bf2
705,455
import torch def generic_fftshift(x,axis=[-2,-1],inverse=False): """ Fourier shift to center the low frequency components Parameters ---------- x : torch Tensor Input array inverse : bool whether the shift is for fft or ifft Returns ------- shifted array """ if len(axis) > len(x.shape): raise ValueError('Not enough axis to shift around!') y = x for axe in axis: dim_size = x.shape[axe] shift = int(dim_size/2) if inverse: if not dim_size%2 == 0: shift += 1 y = torch.roll(y,shift,axe) return y
8b5f84f0ed2931a3c1afac7c5632e2b1955b1cd5
705,457
def make_new_images(dataset, imgs_train, imgs_val): """ Split the annotations in dataset into two files train and val according to the img ids in imgs_train, imgs_val. """ table_imgs = {x['id']:x for x in dataset['images']} table_anns = {x['image_id']:x for x in dataset['annotations']} keys = ['info', 'licenses', 'images', 'annotations', 'categories'] # Train dataset_train = dict.fromkeys(keys) dataset_train['info'] = dataset['info'] dataset_train['licenses'] = dataset['licenses'] dataset_train['categories'] = dataset['categories'] dataset_train['images'] = [table_imgs[x] for x in imgs_train] dataset_train['annotations'] = [table_anns[x] for x in imgs_train] # Validation dataset_val = dict.fromkeys(keys) dataset_val['info'] = dataset['info'] dataset_val['licenses'] = dataset['licenses'] dataset_val['categories'] = dataset['categories'] dataset_val['images'] = [table_imgs[x] for x in imgs_val] dataset_val['annotations'] = [table_anns[x] for x in imgs_val] return dataset_train, dataset_val
d5851974ad63caaadd390f91bdf395a4a6f1514d
705,458
import tkinter as tk from tkinter import filedialog def select_file(title: str) -> str: """Opens a file select window and return the path to selected file""" root = tk.Tk() root.withdraw() file_path = filedialog.askopenfilename(title=title) return file_path
59fdb7945389c2ba75d27e1fe20b596c4497bac1
705,459
def _loop_over(var): """ Checks if a variable is in the form of an iterable (list/tuple) and if not, returns it as a list. Useful for allowing argument inputs to be either lists (e.g. [1, 3, 4]) or single-valued (e.g. 3). Parameters ---------- var : int or float or list Variable to check for iterability. Returns ------- var : list Variable converted to list if single-valued input. """ if hasattr(var,"__iter__"): return var else: return [var]
254143646416af441d3858140b951b7854a0241c
705,461
from typing import Any from typing import List from typing import Dict def transform_database_account_resources( account_id: Any, name: Any, resource_group: Any, resources: List[Dict], ) -> List[Dict]: """ Transform the SQL Database/Cassandra Keyspace/MongoDB Database/Table Resource response for neo4j ingestion. """ for resource in resources: resource['database_account_name'] = name resource['database_account_id'] = account_id resource['resource_group_name'] = resource_group return resources
dac566a1e09e1e395ff6fb78d6f8931a2bca58cb
705,462