content
stringlengths 39
14.9k
| sha1
stringlengths 40
40
| id
int64 0
710k
|
---|---|---|
import re
def check_exact_match(line, expected_line):
"""
Uses regular expressions to find an exact (not partial) match for 'expected_line' in 'line', i.e.
in the example below it matches 'foo' and succeeds:
line value: '66118.999958 - INFO - [MainThread] - ly_test_tools.o3de.asset_processor - foo'
expected_line: 'foo'
:param line: The log line string to search,
i.e. '9189.9998188 - INFO - [MainThread] - example.tests.test_system_example - Log Monitoring test 1'
:param expected_line: The exact string to match when searching the line param,
i.e. 'Log Monitoring test 1'
:return: An exact match for the string if one is found, None otherwise.
"""
# Look for either start of line or whitespace, then the expected_line, then either end of the line or whitespace.
# This way we don't partial match inside of a string. So for example, 'foo' matches 'foo bar' but not 'foobar'
regex_pattern = re.compile("(^|\\s){}($|\\s)".format(re.escape(expected_line)), re.UNICODE)
if regex_pattern.search(line) is not None:
return expected_line
return None | d01eaa13c40d66999e870d3b287ac869f64ae314 | 4,663 |
def rounding_filters(filters, w_multiplier):
""" Calculate and round number of filters based on width multiplier. """
if not w_multiplier:
return filters
divisor = 8
filters *= w_multiplier
new_filters = max(divisor, int(filters + divisor / 2) // divisor * divisor)
if new_filters < 0.9 * filters: # prevent rounding by more than 10%
new_filters += divisor
return int(new_filters) | eb2938732792564fd324602fd74be41e6f88b265 | 4,664 |
from typing import List
def get_gate_names_2qubit() -> List[str]:
"""Return the list of valid gate names of 2-qubit gates."""
names = []
names.append("cx")
names.append("cz")
names.append("swap")
names.append("zx90")
names.append("zz90")
return names | d3d7f20263805a186d9142ec087039eb53076346 | 4,665 |
def compute_log_zT_var(log_rho_var, log_seebeck_sqr_var, log_kappa_var):
"""Compute the variance of the logarithmic thermoelectric figure
of merit zT.
"""
return log_rho_var + log_seebeck_sqr_var + log_kappa_var | 3528181796aeafb3df5eac09b06852afe028cb13 | 4,666 |
import colorsys
import hashlib
def uniqueColor(string):
"""
Returns a color from the string.
Same strings will return same colors, different strings will return different colors ('randomly' different)
Internal: string =md5(x)=> hex =x/maxhex=> float [0-1] =hsv_to_rgb(x,1,1)=> rgb =rgb_to_int=> int
:param string: input string
:return: int color
"""
return sum(round(c * 255) << d for c, d in zip(colorsys.hsv_to_rgb(int(hashlib.md5(string.encode('utf-8')).hexdigest(), 16) / 2 ** 128, 1, 1), [16, 8, 0])) | 0c895612c3bf2dd5f594a15daf6f2aa5d778eeb0 | 4,668 |
def kappa(a, b, c, d):
""" GO term 2
| yes | no |
-------------------------------
GO | yes | a | b |
term1 | no | c | d |
kapa(GO_1, GO_2) = 1 - (1 - po) / (1 - pe)
po = (a + d) / (a + b + c + d)
marginal_a = ( (a + b) * ( a + c )) / (a + b + c + d)
marginal_b = ( (c + d) * ( b + d )) / (a + b + c + d)
pe = (marginal_a + marginal_b) / (a + b + c + d)
"""
a = float(len(a))
b = float(len(b))
c = float(len(c))
d = float(len(d))
po = (a + d) / (a + b + c + d)
marginal_a = ( (a + b) * ( a + c )) / (a + b + c + d)
marginal_b = ( (c + d) * ( b + d )) / (a + b + c + d)
pe = (marginal_a + marginal_b) / (a + b + c + d)
#print (f" {a} | {b}\n {c} | {d}")
return 1 - (1 - po) / (1 - pe) | 5884a6745f6a93b044eabb1bfe38834cb59366d4 | 4,671 |
def zfsr32(val, n):
"""zero fill shift right for 32 bit integers"""
return (val >> n) if val >= 0 else ((val + 4294967296) >> n) | 4b890caa0b7b086e923e7b229e5551fd66d24016 | 4,672 |
from typing import Union
from pathlib import Path
def is_dir(path: Union[str, Path]) -> bool:
"""Check if the given path is a directory
:param path: path to be checked
"""
if isinstance(path, str):
path = Path(path)
if path.exists():
return path.is_dir()
else:
return str(path).endswith("/") | 540cce7f5c6a25186427ba71b94aa090c2ab90a7 | 4,673 |
import re
def document_to_vector(lemmatized_document, uniques):
"""
Converts a lemmatized document to a bow vector
representation.
1/0 for word exists/doesn't exist
"""
#print(uniques)
# tokenize
words = re.findall(r'\w+', lemmatized_document.lower())
# vector = {}
vector = [0]*len(uniques)
# list of the words is accessible via vector.keys()
# list of 0/1 is accessible via vector.values()
# seen = []
for i in range(len(uniques)):
for j in range(len(words)):
if uniques[i] == words[j]:
vector[i] = 1
continue
return vector | e4b108b8e99a827788d7eff5d4eabf71021d6e21 | 4,674 |
def cuda_reshape(a, shape):
""" Reshape a GPUArray.
Parameters:
a (gpu): GPUArray.
shape (tuple): Dimension of new reshaped GPUArray.
Returns:
gpu: Reshaped GPUArray.
Examples:
>>> a = cuda_reshape(cuda_give([[1, 2], [3, 4]]), (4, 1))
array([[ 1.],
[ 2.],
[ 3.],
[ 4.]])
>>> type(a)
<class 'pycuda.gpuarray.GPUArray'>
"""
return a.reshape(shape) | 966cae8aeb88aeaeada28a11c284920746771f00 | 4,677 |
def update_cv_validation_info(test_validation_info, iteration_validation_info):
"""
Updates a dictionary with given values
"""
test_validation_info = test_validation_info or {}
for metric in iteration_validation_info:
test_validation_info.setdefault(metric, []).append(iteration_validation_info[metric])
return test_validation_info | b2509026e968b1c428836c5313e9c5e824663d4f | 4,680 |
def sent2labels(sent):
"""
Extracts gold labels for each sentence.
Input: sentence list
Output: list with labels list for each token in the sentence
"""
# gold labels at index 18
return [word[18] for word in sent] | 11b4dc93c465d154e8bf8688a5b5c592b94e7265 | 4,682 |
def get_course_id_from_capa_module(capa_module):
"""
Extract a stringified course run key from a CAPA module (aka ProblemBlock).
This is a bit of a hack. Its intended use is to allow us to pass the course id
(if available) to `safe_exec`, enabling course-run-specific resource limits
in the safe execution environment (codejail).
Arguments:
capa_module (ProblemBlock|None)
Returns: str|None
The stringified course run key of the module.
If not available, fall back to None.
"""
if not capa_module:
return None
try:
return str(capa_module.scope_ids.usage_id.course_key)
except (AttributeError, TypeError):
# AttributeError:
# If the capa module lacks scope ids or has unexpected scope ids, we
# would rather fall back to `None` than let an AttributeError be raised
# here.
# TypeError:
# Old Mongo usage keys lack a 'run' specifier, and may
# raise a type error when we try to serialize them into a course
# run key. This is tolerable because such course runs are deprecated.
return None | dd76b1d6df12f6c7db0d095bb9a48940a850e5c7 | 4,683 |
def stream_name_mapping(stream, exclude_params=['name'], reverse=False):
"""
Return a complete dictionary mapping between stream parameter names
to their applicable renames, excluding parameters listed in
exclude_params.
If reverse is True, the mapping is from the renamed strings to the
original stream parameter names.
"""
filtered = [k for k in stream.param if k not in exclude_params]
mapping = {k:stream._rename.get(k,k) for k in filtered}
if reverse:
return {v:k for k,v in mapping.items()}
else:
return mapping | 5a9c9ab80ad470c45d22f2e360cc53c979300825 | 4,690 |
def helping_func(self, driver, value):
"""Helper function for testing method composition.
"""
return value + 1 | 2a204814213707a255b0b0e57e4d5ca23389045d | 4,700 |
def get_with_label(label, tree):
"""
Get a tree's node given it's label
"""
return [n for n in tree.children if n.label == label][0] | fc976bcbbf8f5a03b2a17dd7b5c0061a22bedf60 | 4,702 |
import re
def is_hex(hex_str):
"""Helper function to verify a string is a hex value."""
return re.fullmatch('[0-9a-f]+', hex_str) | c5a53ccbcec36d77bee88d9c81aea46d2a0eec2d | 4,710 |
import tarfile
import io
def _unpack(stream: bytes, path: str) -> str:
"""Unpack archive in bytes string into directory in ``path``."""
with tarfile.open(fileobj=io.BytesIO(stream)) as tar:
tar.extractall(path)
return path | 81a05c0a60fb06d43592a0a4f4d30cf62d406e01 | 4,717 |
import json
def check_geometry_size(footprint):
"""
Excessive large geometries are problematic of AWS SQS (max size 256kb) and cause
performance issues becuase they are stored in plain text in the JSON
blob.
This func reads the geojson and applies a simple heuristic to reduce the
footprint size through simplification. With each iteration, the geometry
is simplified by 0.01 degrees.
Parameters
----------
footprint : obj
A shapely Polygon or MultiPolygon
Returns
-------
geojson : dict
A geojson representation of the geometry
"""
geojson = footprint.__geo_interface__
as_str = json.dumps(geojson)
geomsize = len(as_str.encode('utf-8'))
n_iterations = 0
while geomsize > 125000:
footprint = footprint.simplify(0.01)
geojson = footprint.__geo_interface__
as_str = json.dumps(geojson)
geomsize = len(as_str.encode('utf-8'))
n_iterations += 1
return geojson | b2525958a1440fc1ce0d2560150b7fe28b3ec450 | 4,722 |
def cov(sources):
"""
Given the array of sources for all image patches, calculate the covariance
array between all modes.
Parameters
----------
sources : numpy array (floats)
The {NUM_MODES x NUM_PATCHES} array of sources.
Returns
-------
numpy array (floats)
The {NUM_MODES x NUM_MODES} covariance array between all modes.
"""
return (sources @ sources.T)/sources.shape[1] | 268dfbc98a5b443e92aadd27ba577f7911ca398f | 4,724 |
def sub(x, y):
"""sub two numbers"""
return y-x | 345279da515a877c1f08a8b54ff8f2e7d6a95fec | 4,725 |
def create_error_payload(exception, message, endpoint_id):
"""
Creates an error payload to be send as a response in case of failure
"""
print(f'{exception}: {message}')
error_payload = {
'status': 'MESSAGE_NOT_SENT',
'endpointId': endpoint_id if endpoint_id else 'NO_ENDPOINT_ID',
'message': f'{exception}: {message}'
}
return error_payload | 90f266d22429d385e828dcdd92fca3d7b2e6df48 | 4,728 |
def rate(epoch, rate_init, epochs_per_order):
""" Computes learning rate as a function of epoch index.
Inputs:
epoch - Index of current epoch.
rate_init - Initial rate.
epochs_per_order - Number of epochs to drop an order of magnitude.
"""
return rate_init * 10.0 ** (-epoch / epochs_per_order) | cc1c7850d4bd98d30b97c7915ceb96eaeadef327 | 4,734 |
def match_countries(df_to_match, olympics):
"""Changes the names of the countries in the df_to_match df so that they match
the names of the countries in the olympics df.
Parameters
-----------
df_to_match : either of the two dataframes:
- gdp
- pop
olympics : the olympics dataframe
Returns
-----------
df_to_match : the dataframe given as first parameter that now its countries
match the countries in the olympics df
common_countries : a list with the common countries in the two dataframes
"""
# countries in the to_match df
df_countries = set(df_to_match.columns.tolist())
# countries in the olympics df
ol_regions = set(sorted(olympics.region.unique().tolist()))
# countries in the to_match df that are not in the olympics df
not_in_ol = df_countries.difference(ol_regions)
# countries in the olympics df that are not in the to_match df
not_in_df = ol_regions.difference(df_countries)
# After printing not_in_il and not_int_df, we see that some countries are simply named differently
# Therefore, I renames these countries in the to_match df so that they match the countries from the olympics df
df_to_match.rename(columns={"United States": "USA",
"United Kingdom": "UK",
"Antigua and Barbuda": "Antigua",
"Congo, Dem. Rep.": "Democratic Republic of the Congo",
"Lao": "Laos",
"North Macedonia": "Macedonia",
"Cote d'Ivoire": "Ivory Coast",
"Trinidad and Tobago": "Trinidad",
"Micronesia, Fed. Sts.": "Micronesia",
"St. Vincent and the Grenadines": "Saint Vincent",
"St. Lucia": "Saint Lucia",
"St. Kitts and Nevis": "Saint Kitts",
"Slovak Republic": "Slovakia",
"Kyrgyz Republic": "Kyrgyzstan",
"Bolivia": "Boliva",
"Congo, Rep.": "Republic of Congo"},
inplace=True)
# Check which countries still remain unmatched
df_countries = set(df_to_match.columns.tolist())
ol_regions = set(sorted(olympics.region.unique().tolist()))
# Countries in the to_match df that are still not in the olympics df
not_in_ol = df_countries.difference(ol_regions)
# Countries in the olympics df that are still not in the to_match df
not_in_df = ol_regions.difference(df_countries)
# Printing not_in_ol and not_in_df shows which countries are still not matched. Used as a check.
# save the resulting common countries
common_countries = ol_regions.intersection(df_countries)
return df_to_match, common_countries | 256eaac81daee5c621e7dac4c8c27d0b96868418 | 4,737 |
import requests
import logging
def get_reply(session, url, post=False, data=None, headers=None, quiet=False):
"""
Download an HTML page using the requests session. Low-level function
that allows for flexible request configuration.
@param session: Requests session.
@type session: requests.Session
@param url: URL pattern with optional keywords to format.
@type url: str
@param post: Flag that indicates whether POST request should be sent.
@type post: bool
@param data: Payload data that is sent with request (in request body).
@type data: object
@param headers: Additional headers to send with request.
@type headers: dict
@param quiet: Flag that tells whether to print error message when status
code != 200.
@type quiet: bool
@return: Requests response.
@rtype: requests.Response
"""
request_headers = {} if headers is None else headers
request = requests.Request('POST' if post else 'GET',
url,
data=data,
headers=request_headers)
prepared_request = session.prepare_request(request)
reply = session.send(prepared_request)
try:
reply.raise_for_status()
except requests.exceptions.HTTPError as e:
if not quiet:
logging.error("Error %s getting page %s", e, url)
logging.error("The server replied: %s", reply.text)
raise
return reply | 4baa985db090d0f88762c8f6cfadff084f2b88ad | 4,738 |
def mermin_klyshko_quantum_bound(n):
"""The quantum bound for the Mermin-Klyshko inequality is :math:`2^{3(n-1)/2}`.
:param n: The number of measurement nodes.
:type n: Int
:returns: The quantum bound.
:rtype: Float
"""
return 2 ** (3 * (n - 1) / 2) | 721ca41b19ef72cae77baf1ad6dea5377b6eb67d | 4,740 |
def parse_q(s):
"""Parse the value of query string q (?q=) into a search sub-term."""
if '=' not in s:
names = s.split()
term = '/'.join(map(lambda x: 'n.name=' + x, names))
return term
else:
subterms = s.split()
res = []
for subterm in subterms:
if '=' not in subterm:
res.append('n.name=' + subterm)
else:
res.append(subterm)
term = '&'.join(res)
return term | eae907fcb42be4a2c4be26316721ea63aa0284d6 | 4,742 |
def getattr_by_path(obj, attr, *default):
"""Like getattr(), but can go down a hierarchy like 'attr.subattr'"""
value = obj
for part in attr.split('.'):
if not hasattr(value, part) and len(default):
return default[0]
value = getattr(value, part)
if callable(value):
value = value()
return value | 3eccbb39e1781a75a6f0061c1c226cefdcfb17c8 | 4,744 |
def get_stack_value(stack, key):
"""Get metadata value from a cloudformation stack."""
for output in stack.outputs:
if output['OutputKey'] == key:
return output['OutputValue'] | a6b193c7d884bac78668dfd85bc2a5cbbb6b3f3b | 4,745 |
from typing import MutableMapping
def flatten(d, separator='_', parent_key=None):
"""
Converts a nested hierarchy of key/value object (e.g. a dict of dicts) into a flat (i.e. non-nested) dict.
:param d: the dict (or any other instance of collections.MutableMapping) to be flattened.
:param separator: the separator to use when concatenating nested key names into flattened key names.
:param parent_key: used internally for recursion.
:return: a flattened dict (i.e. containing no nested dicts as values).
"""
if separator is None:
separator = '_'
if parent_key is None:
parent_key = ''
dict_type = dict if d is None else type(d)
items = []
for k, v in d.items():
new_key = parent_key + separator + k if parent_key else k
if isinstance(v, MutableMapping):
items.extend(flatten(v, separator=separator, parent_key=new_key).items())
else:
items.append((new_key, v))
return dict_type(items) | d07daba5007c4c4efee1ccb2033a42e9a52a7efb | 4,751 |
def divide_list(array, number):
"""Create sub-lists of the list defined by number.
"""
if len(array) % number != 0:
raise Exception("len(alist) % number != 0")
else:
return [array[x:x+number] for x in range(0, len(array), number)] | 09882945b971ce13f7983c33562df0dfde77165c | 4,752 |
def get_exception_message(exception: Exception) -> str:
"""Returns the message part of an exception as string"""
return str(exception).strip() | 6e002329425f716115a5fddb32cbf36cf568ee81 | 4,753 |
def _get_frame_time(time_steps):
""" Compute average frame time.
:param time_steps: 1D array with cumulative frame times.
:type time_steps: numpy.ndarray
:return: The average length of each frame in seconds.
:rtype: float
"""
if len(time_steps.shape) != 1:
raise ValueError("ERROR: Time series must be a 1D array.")
frame_time = time_steps[-1]/(len(time_steps) - 1) # Need to ignore the first frame (0).
return frame_time | e849e5d6bcbc14af357365b3e7f98f1c50d93ee4 | 4,754 |
def query_table3(song):
"""
This function returns the SQL neccessary to get all users who listened to the song name passed as an argument to this function.
"""
return "select user_name from WHERE_SONG where song_name = '{}';".format(song) | ed9a3fb7eb369c17027871e28b02600b78d483a9 | 4,755 |
def extract_sha256_hash(hash):
"""Extrach SHA256 hash or return None
"""
prefix = 'sha256:'
if hash and hash.startswith(prefix):
return hash.replace(prefix, '')
return None | 11e9f352f3783657d52772c4b69387151d13f3d2 | 4,761 |
def get_block(blockidx, blocksz, obj):
"""
Given obj, a list, return the intersection of
obj[blockidx*blocksz:(blockidx+1)*blocksz] and obj
Ex: get_block(2, 100, range(250) returns [200, 201, ..., 249]
"""
if blockidx*blocksz > len(obj):
return []
elif (blockidx+1)*blocksz > len(obj):
return obj[blockidx*blocksz:]
else:
return obj[blockidx*blocksz:(blockidx+1)*blocksz] | 8666cc30be23619a49f899beec17d3ba1f0fb357 | 4,768 |
import platform
def get_dataset_mrnet_args(parser, args=[]):
"""
Get all relevant parameters to handle the dataset
-> here: MRNET
"""
# determine path
if platform.system() == "Linux":
path = "/home/biomech/Documents/OsteoData/MRNet-v1.0/"
else:
path = "C:/Users/Niko/Documents/data/MRNet-v1.0/MRNet-v1.0"
# path = "C:/Users/ga46yeg/data/MRNet-v1.0"
# Dataset MRNet:
# ------------------------------------------------------------------------
parser.add_argument(
"--root_dir_mrnet", type=str, default=path, help="Directory of the dataset"
)
parser.add_argument(
"--perspectives",
type=list,
default=["axial", "coronal", "sagittal"],
help="Perspectives of the Mr Scans",
)
parser.add_argument(
"--classes",
type=list,
default=["abn", "acl", "men"],
help="Classify for these classes",
)
# ------------------------------------------------------------------------
return parser | 466cb843fca4a09f52a72603dcd2c4379ea1e54d | 4,769 |
def _trim_name(image):
"""Remove the slash at the end of the filename."""
return image[:-1] if image[-1] == '/' else image | 823dd63920673352a18d73f83190853d5a234483 | 4,773 |
from typing import List
def _get_public_props(obj) -> List[str]:
"""Return the list of public props from an object."""
return [prop for prop in dir(obj) if not prop.startswith('_')] | 7b3be3e186bc009329ed417c6685fb2503a7c993 | 4,781 |
def remap(value, oldMin, oldMax, newMin, newMax):
"""
Remaps the value to a new min and max value
Args:
value: value to remap
oldMin: old min of range
oldMax: old max of range
newMin: new min of range
newMax: new max of range
Returns:
The remapped value in the new range
"""
return newMin + (((value - oldMin) / (oldMax - oldMin)) * (newMax - newMin)) | c0e53ce2b2169b08d271f7077e552762c572cf1f | 4,783 |
def _get_active_tab(visible_tabs, request_path):
"""
return the tab that claims the longest matching url_prefix
if one tab claims
'/a/{domain}/data/'
and another tab claims
'/a/{domain}/data/edit/case_groups/'
then the second tab wins because it's a longer match.
"""
matching_tabs = sorted(
(url_prefix, tab)
for tab in visible_tabs
for url_prefix in tab.url_prefixes
if request_path.startswith(url_prefix)
)
if matching_tabs:
_, tab = matching_tabs[-1]
return tab | ac9cd34d4b4ee1c1c0356499b389c1f6a7195585 | 4,785 |
def _get_pattern_nts(rule):
"""
Return a list of NT names present in given rule.
"""
nt_names = []
for bt in rule.ipattern.bits:
if bt.is_nonterminal():
nt_name = bt.nonterminal_name()
nt_names.append(nt_name)
return nt_names | e690e9187aaff0cf3138444db085e15adfda3847 | 4,792 |
def stopping_player(bot, state):
""" A Player that just stands still. """
return bot.position | 72628e39d26760eedc9a0e85a8279ac530ab851d | 4,793 |
def before_after_text(join_set, index, interval_list):
"""
Extracts any preceeding or following markup to be joined to an interval's text.
"""
before_text, after_text = '', ''
# Checking if we have some preceeding or following markup to join with.
if join_set:
if index > 0:
before_text = ''.join(character
for character in interval_list[index - 1][2]
if character in join_set)
if index < len(interval_list) - 1:
after_text = ''.join(character
for character in interval_list[index + 1][2]
if character in join_set)
return before_text, after_text | b2c63fe1e7ea5bb204e41b27bc79d2c81964369a | 4,795 |
import typing
import requests
def download_file_from_google_drive(
gdrive_file_id: typing.AnyStr,
destination: typing.AnyStr,
chunk_size: int = 32768
) -> typing.AnyStr:
"""
Downloads a file from google drive, bypassing the confirmation prompt.
Args:
gdrive_file_id: ID string of the file to download from google drive.
destination: where to save the file.
chunk_size: chunk size for gradual downloads.
Returns:
The path to the downloaded file.
"""
# taken from this StackOverflow answer: https://stackoverflow.com/a/39225039
URL = "https://docs.google.com/uc?export=download"
session = requests.Session()
response = session.get(URL, params={'id': gdrive_file_id}, stream=True)
token = None
for key, value in response.cookies.items():
if key.startswith('download_warning'):
token = value
if token:
params = {'id': gdrive_file_id, 'confirm': token}
response = session.get(URL, params=params, stream=True)
with open(destination, "wb") as f:
for chunk in response.iter_content(chunk_size):
if chunk: # filter out keep-alive new chunks
f.write(chunk)
return destination | 29cdcc509aa21a6f2ae14ed18f2c0523bbdbd5a4 | 4,796 |
def lines_in_file(filename: str) -> int:
"""
Count the number of lines in a file
:param filename: A string containing the relative or absolute path to a file
:returns: The number of lines in the file
"""
with open(filename, "r") as f:
return len(f.readlines()) | d71b5c8de1b4eb9a45988e06c17a129f4a19f221 | 4,799 |
import re
def md_changes(seq, md_tag):
"""Recreates the reference sequence of a given alignment to the extent that the
MD tag can represent.
Note:
Used in conjunction with `cigar_changes` to recreate the
complete reference sequence
Args:
seq (str): aligned segment sequence
md_tag (str): MD tag for associated sequence
Returns:
ref_seq (str): a version of the aligned segment's reference sequence given \
the changes reflected in the MD tag
Raises:
ValueError: if MD tag is None
Example:
>>> md_changes('CTTATATTGGCCTT', '3C4AT4')
'CTTCTATTATCCTT'
"""
if md_tag is None:
raise ValueError('No MD tag found or given for sequence')
ref_seq = ''
last_md_pos = 0
for mo in re.finditer(r'(?P<matches>\d+)|(?P<del>\^\w+?(?=\d))|(?P<sub>\w)', md_tag):
mo_group_dict = mo.groupdict()
if mo_group_dict['matches'] is not None:
matches = int(mo_group_dict['matches'])
ref_seq += seq[last_md_pos:last_md_pos + matches]
last_md_pos += matches
elif mo_group_dict['del'] is not None:
deletion = mo_group_dict['del']
ref_seq += deletion[1:]
elif mo_group_dict['sub'] is not None:
substitution = mo_group_dict['sub']
ref_seq += substitution
last_md_pos += 1
else:
pass
return ref_seq | f8591d0084f6c10c9bbd1a39b3f9e13cfe952e68 | 4,801 |
def get_auto_scaling_group(asg, asg_name: str):
"""Get boto3 Auto Scaling Group by name or raise exception"""
result = asg.describe_auto_scaling_groups(AutoScalingGroupNames=[asg_name])
groups = result["AutoScalingGroups"]
if not groups:
raise Exception("Auto Scaling Group {} not found".format(asg_name))
return groups[0] | 07176e538cdb265ae86b16a5d36bf1b274f45c19 | 4,802 |
def join_epiweek(year, week):
""" return an epiweek from the (year, week) pair """
return year * 100 + week | fdbc50f8a953ef7307e9558019b3c2b50bc65be4 | 4,803 |
def _map_channels_to_measurement_lists(snirf):
"""Returns a map of measurementList index to measurementList group name."""
prefix = "measurementList"
data_keys = snirf["nirs"]["data1"].keys()
mls = [k for k in data_keys if k.startswith(prefix)]
def _extract_channel_id(ml):
return int(ml[len(prefix) :])
return {_extract_channel_id(ml): ml for ml in mls} | d6d83c01baec5f345d58fff8a0d0107a40b8db37 | 4,806 |
def partition(lst, size):
"""Partition list @lst into eveni-sized lists of size @size."""
return [lst[i::size] for i in range(size)] | af7071a5aac36a51f449f153df145d9218808a4a | 4,808 |
def get_input_var_value(soup, var_id):
"""Get the value from text input variables.
Use when you see this HTML format:
<input id="wired_config_var" ... value="value">
Args:
soup (soup): soup pagetext that will be searched.
var_id (string): The id of a var, used to find its value.
Returns:
(string): The value of the variable
"""
try:
var_value = soup.find('input', {'id': var_id}).get('value')
return var_value
except AttributeError:
print('\nERROR: <' + var_id + '> not found!\nPagesoup:\n\n', soup)
raise LookupError | 5a9dd65a285c62e0e5e79584858634cb7b0ece75 | 4,813 |
def table_from_bool(ind1, ind2):
"""
Given two boolean arrays, return the 2x2 contingency table
ind1, ind2 : array-like
Arrays of the same length
"""
return [
sum(ind1 & ind2),
sum(ind1 & ~ind2),
sum(~ind1 & ind2),
sum(~ind1 & ~ind2),
] | 497ce6ad1810386fedb6ada9ba87f0a5baa6318a | 4,818 |
def sample_duration(sample):
"""Returns the duration of the sample (in seconds)
:param sample:
:return: number
"""
return sample.duration | 9aaddb69b106ad941e3d1172c8e789b4969da99d | 4,824 |
def zero_check(grid):
"""Take a 2d grid and calculates number of 0 entries."""
zeros = 0
for row in grid:
for element in row:
if element == 0:
zeros += 1
return zeros | 0d69a948eef96937f8a5033256c3c4d9f22ce14d | 4,828 |
def create_gw_response(app, wsgi_env):
"""Create an api gw response from a wsgi app and environ.
"""
response = {}
buf = []
result = []
def start_response(status, headers, exc_info=None):
result[:] = [status, headers]
return buf.append
appr = app(wsgi_env, start_response)
close_func = getattr(appr, 'close', None)
try:
buf.extend(list(appr))
finally:
close_func and close_func()
response['body'] = ''.join(buf)
response['statusCode'] = result[0].split(' ', 1)[0]
response['headers'] = {}
for k, v in result[1]:
response['headers'][k] = v
if 'Content-Length' not in response['headers']:
response['headers']['Content-Length'] = str(len(response['body']))
if 'Content-Type' not in response['headers']:
response['headers']['Content-Type'] = 'text/plain'
return response | 73dd8459cbf9b79655137536ff42195ba62c1372 | 4,830 |
import json
def decode_classnames_json(preds, top=5):
"""
Returns class code, class name and probability for each class amongst top=5 for each prediction in preds
e.g.
[[('n01871265', 'tusker', 0.69987053), ('n02504458', 'African_elephant', 0.18252705), ... ]]
"""
if len(preds.shape) != 2 or preds.shape[1] != 1000:
raise ValueError('`decode_classnames_json` expects '
'a batch of predictions '
'(i.e. a 2D array of shape (samples, 1000)). '
'Found array with shape: ' + str(preds.shape))
with open('imagenet_class_index.json') as data_file:
data = json.load(data_file)
results = []
for pred in preds:
top_indices = pred.argsort()[-top:][::-1]
result = [tuple(data[str(i)]) + (pred[i],) for i in top_indices]
results.append(result)
return results | 807bed051300801a5e6a92bbc96324a66050f6c0 | 4,831 |
import math
def closest_power_of_two(n):
"""Returns the closest power of two (linearly) to n.
See: http://mccormick.cx/news/entries/nearest-power-of-two
Args:
n: Value to find the closest power of two of.
Returns:
Closest power of two to "n".
"""
return pow(2, int(math.log(n, 2) + 0.5)) | 50d78d2a6de4f689ce268a95df97aae72dbd81ac | 4,833 |
def divisors(num):
"""
Takes a number and returns all divisors of the number, ordered least to greatest
:param num: int
:return: list (int)
"""
list = []
x = 0
for var in range(0, num):
x = x + 1
if num % x == 0:
list.append(x)
return list | 848ed77fa92ae1c55d90a5236f0d9db6ae2f377c | 4,834 |
from datetime import datetime
def day_start(src_time):
"""Return the beginning of the day of the specified datetime"""
return datetime(src_time.year, src_time.month, src_time.day) | 2bcc7b136e5cb1e7929e6655daf67b07dbbaa542 | 4,842 |
def align_decision_ref(id_human, title):
""" In German, decisions are either referred to as 'Beschluss' or
'Entscheidung'. This function shall align the term used in the
title with the term used in id_human.
"""
if 'Beschluss' in title:
return id_human
return id_human.replace('Beschluss ', 'Entscheidung ') | ac4f584b8e008576816d9a49dba58bc9c9a6dbc4 | 4,845 |
def odd_numbers_list(n):
""" Returns the list of n first odd numbers """
return [2 * k - 1 for k in range(1, n + 1)] | 2066cf07e926e41d358be0012a7f2a248c5987a7 | 4,847 |
def _is_si_object(storage_instance):
"""
Helper method for determining if a storage instance is object.
Args:
storage_instance:
Returns: (Bool) True if object, False if not.
"""
si_type = storage_instance.get("service_configuration", None)
if si_type is None:
# object not supported on storage instance
return False
elif si_type == "object":
return True
else:
return False | 3cc2591bb0391e6d9d62197d0bb593f5006215c8 | 4,856 |
def set_model_weights(model, weights):
"""Set the given weights to keras model
Args:
model : Keras model instance
weights (dict): Dictionary of weights
Return:
Keras model instance with weights set
"""
for key in weights.keys():
model.get_layer(key).set_weights(weights[key])
return model | 0adb7294348af379df0d2a7ce2101a6dc3a43be4 | 4,859 |
def envfile_to_params(data):
"""
Converts environment file content into a dictionary with all the parameters.
If your input looks like:
# comment
NUMBER=123
KEY="value"
Then the generated dictionary will be the following:
{
"NUMBER": "123",
"KEY": "value"
}
"""
params = filter(lambda x: len(x) == 2, map(lambda x: x.strip().split("="), data.splitlines()))
return { k: v[1:-1] if v.startswith('"') and v.endswith('"') else v for (k, v) in params } | 03d3b4eb7ea5552938e6d42dcfd4554a1fe89422 | 4,862 |
def check_records(msg: dict) -> int:
"""
Returns the number of records
sent in the SQS message
"""
records = 0
if msg is not None:
records = len(msg[0])
if records != 1:
raise ValueError("Not expected single record")
return records | 7036f943b733ca34adaaa5ff917b3eb246075422 | 4,863 |
def valid_octet (oct):
""" Validates a single IP address octet.
Args:
oct (int): The octet to validate
Returns:
bool: True if the octet is valid, otherwise false
"""
return oct >= 0 and oct <= 255 | 9dd2346bb5df5bc00bb360013abe40b8039bdc45 | 4,865 |
def str_to_bool(string):
"""
Parses string into boolean
"""
string = string.lower()
return True if string == "true" or string == "yes" else False | e7c1645ab3ba59fc4721872df76f406c571cab8f | 4,866 |
import functools
import warnings
def warns(message, category=None):
"""警告装饰器
:param message: 警告信息
:param category: 警告类型:默认是None
:return: 装饰函数的对象
"""
def _(func):
@functools.wraps(func)
def warp(*args, **kwargs):
warnings.warn(message, category, stacklevel=2)
return func(*args, **kwargs)
return warp
return _ | 4c481dc7eeb42751aef07d87ab9da34b04c573f4 | 4,873 |
def build_sub_lattice(lattice, symbol):
"""Generate a sub-lattice of the lattice based on equivalent atomic species.
Args:
lattice (ASE crystal class): Input lattice
symbol (string): Symbol of species identifying sub-lattice
Returns:
list of lists:
sub_lattice: Cartesian coordinates of the sub-lattice of symbol
"""
sub_lattice = []
i = 0
atomic_labels = lattice.get_chemical_symbols()
positions = lattice.get_scaled_positions()
for atom in atomic_labels:
if atom == symbol:
sub_lattice.append(positions[i])
i = i + 1
return sub_lattice | 7e7748c31f7f082b2e5ec6f21d0a56f60d5ec06c | 4,874 |
def format_percent(percentage, pos):
"""
Formats percentages for the 'x' axis of a plot.
:param percentage: The fraction between 0.0 and 1.0
:type percentage: float
:param pos: The position argument
:type pos: int
:return: A formatted percentage string
:rtype: str
"""
# pylint: disable=unused-argument
return '{:.0f}%'.format(percentage * 100.) | d8566ce36b21adb351141ac72413b927e0f02c11 | 4,875 |
def get_transpose_graph(graph):
"""Get the transpose graph"""
transpose = {node: set() for node in graph.keys()}
for node, target_nodes in graph.items():
for target_node in target_nodes:
transpose[target_node].add(node)
return transpose | f7f8e083659e4214d79472961c7240778f37268d | 4,878 |
def get_all_with_given_response(rdd, response='404'):
"""
Return a rdd only with those requests
that received the response code entered.
Default set to '404'.
return type: pyspark.rdd.PipelinedRDD
"""
def status_iterator(ln):
try:
status = ln.split(' ')[-2]
return True if status == response else False
except:
pass
return rdd.filter(status_iterator) | 8268095938bbc35a6418f557af033a458f041c89 | 4,881 |
def s3_put_bucket_website(s3_obj, bucketname, website_config):
"""
Boto3 client based Put bucket website function
Args:
s3_obj (obj): MCG or OBC object
bucketname (str): Name of the bucket
website_config (dict): Website configuration info
Returns:
dict : PutBucketWebsite response
"""
return s3_obj.s3_client.put_bucket_website(
Bucket=bucketname, WebsiteConfiguration=website_config
) | a60d95ef43e5a3643edeb6dacb2b149fef1892d9 | 4,883 |
def pretvori_v_sekunde(niz):
"""
Pretvori niz, ki predstavlja dolžino skladbe v formatu hh:mm:ss v število sekund.
"""
h, m, s = map(int, niz.split(":"))
return s + m*60 + h*3600 | db0cc5872109b15e635b2b1e8731a5343d63f518 | 4,885 |
import logging
def _get_profiling_data(filename):
"""Read a given file and parse its content for profiling data."""
data, timestamps = [], []
try:
with open(filename, "r") as f:
file_data = f.readlines()
except Exception:
logging.error("Could not read profiling data.", exc_info=True)
raise SystemExit(1)
for line in file_data:
if line == "\n":
continue
line = line.strip()
line_data = line.split(" ")
if len(line_data) != 3:
continue
_, mem_usage, timestamp = line.split(" ")
data.append(float(mem_usage))
timestamps.append(float(timestamp))
if not data:
logging.error("No samples to parse in {}.".format(filename))
raise SystemExit(1)
return {"data": data, "timestamp": timestamps} | 85f434c9aa22d60bae06205162623cde83e5a716 | 4,886 |
from typing import Optional
from typing import List
def human_size(bytes: int | float, units: Optional[List[str]] = None) -> str:
"""
Convert bytes into a more human-friendly format
:param bytes: int
Number of bytes
:param units: Optional[List[str]]
units used
:return: str
Return size in human friendly format: <number> <size_unit>
"""
if units is None:
units = ['bytes', 'KB', 'MB', 'GB', 'TB', 'PB', 'EB']
return f"{round(bytes, 2)} " + units[0] if bytes < 1024 else human_size(bytes / 1024, units[1:]) | 9b652f0a09024c22dcefa5909c17f7b14d0183f4 | 4,895 |
def convert_mg_l_to_mymol_kg(o2, rho_0=1025):
"""Convert oxygen concentrations in ml/l to mymol/kg."""
converted = o2 * 1/32000 * rho_0/1000 * 1e6
converted.attrs["units"] = "$\mu mol/kg$"
return converted | 5925cf1f5629a0875bdc777bc3f142b9a664a144 | 4,900 |
def make_f_beta(beta):
"""Create a f beta function
Parameters
----------
beta : float
The beta to use where a beta of 1 is the f1-score or F-measure
Returns
-------
function
A function to compute the f_beta score
"""
beta_2 = beta**2
coeff = (1 + beta_2)
def f(global_, local_, node):
"""Compute the f-measure
Parameters
----------
global_ : np.array
All of the scores for a given query
local_ : np.array
The scores for the query at the current node
node : skbio.TreeNode
The current node being evaluated
"""
p = len(global_) / len(local_)
r = len(local_) / node.ntips
return coeff * (p * r) / ((beta_2 * p) + r)
return f | f0e6993ac956171c58415e1605706c453d3e6d61 | 4,901 |
def lenzi(df):
"""Check if a pandas series is empty"""
return len(df.index) == 0 | 561705e6ff0da3bfb03407a721f2aff71a4d42a1 | 4,905 |
def num_to_int(num):
"""
Checks that a numerical value (e.g. returned by robot) is an integer and
not a float.
Parameters
----------
num : number to check
Returns
-------
integer : num cast to an integer
Raises
------
ValueError : if n is not an integer
"""
if num % 1 == 0:
return int(num)
else:
raise ValueError('Expecting integer. Got: "{0}" ({1})'
.format(num, type(num))) | af470940eb035fe8dd0160dfe9614c2b6d060194 | 4,906 |
def format_timedelta(tdelta):
"""Return the timedelta as a 'HH:mm:ss' string."""
total_seconds = int(tdelta.total_seconds())
hours, remainder = divmod(total_seconds, 60*60)
minutes, seconds = divmod(remainder, 60)
return "{0:02d}:{1:02d}:{2:02d}".format(hours, minutes, seconds) | 852902e7972bcd13df8b60864ebcb2d75b2b259d | 4,907 |
from typing import Tuple
import torch
def permute_adjacency_twin(t1,t2) -> Tuple[torch.Tensor,torch.Tensor]:
"""
Makes a permutation of two adjacency matrices together. Equivalent to a renaming of the nodes.
Supposes shape (n,n)
"""
n,_ = t1.shape
perm = torch.randperm(n)
return t1[perm,:][:,perm],t2[perm,:][:,perm] | df3dc6507b8eae9d148ec9b2e664a427813d93a7 | 4,908 |
def five_fold(data_set):
"""[summary]
Args:
data_set (List of Sample objects): The Samples to be partitioned
Returns:
fold: where fold is list of len n in n-fold of (train,test) where train and test are lists of Samples
"""
partition_index = int( len(data_set) / 5 )
s = 0
fold = []
for i in range(5): #0-4
tr = data_set.copy()
n = s + partition_index # was -1
te = tr[s:n]
del tr[s:s + partition_index]
fold.append( (tr,te) )
s += partition_index
return fold | d4179c238da3e9ebe05ab3513b80bcce982c8728 | 4,911 |
def trim_filters(response):
"""Trim the leading and trailing zeros from a 1-D array or sequence, leaving
one zero on each side. This is a modified version of numpy.trim_zeros.
Parameters
----------
response : 1-D array or sequence
Input array.
Returns
-------
first : int
Index of the last leading zero.
last : int
Index of the first trailing zero.
"""
first = 0
for i in response:
if i != 0.:
if first == 0:
first += 1 # to avoid filters with non-zero edges
break
else:
first = first + 1
last = len(response)
for i in response[::-1]:
if i != 0.:
if last == len(response):
last -= 1 # to avoid filters with non-zero edges
break
else:
last = last - 1
first -= 1
last += 1
return first, last | 2582c5821bd5c8487c0f9d2f55d2d982767d2669 | 4,914 |
import bs4
def is_comment(obj):
"""Is comment."""
return isinstance(obj, bs4.Comment) | e56749b3d5f95754a031cc7286229d942333a22e | 4,919 |
import logging
def _VerifyOptions(options):
"""Verify the passed-in options.
Args:
options: The parsed options to verify.
Returns:
Boolean, True if verification passes, False otherwise.
"""
if options.endpoints_service and not options.openapi_template:
logging.error('Please specify openAPI template with --openapi_template '
'in deploying endpoints.')
return False
if options.openapi_template and not options.endpoints_service:
logging.error('Please specify endpoints service with --endpoints_service '
'in deploying endpoints.')
return False
if (options.endpoints_service and
options.project_id not in options.endpoints_service):
logging.error('The project "%s" is not matched to the endpoints service '
'"%s".', options.project_id, options.endpoints_service)
return False
return True | 872feb5ac314ed2ef28ddbfaeff1b5dafc5e9ed8 | 4,921 |
def parse_line(line):
""" Parse a queue trace line into a dict
"""
line = line.split()
result = {}
if len(line) < 12:
return result
result["event"] = line[0]
result["time"] = float(line[1])
result["from"] = int(line[2])
result["to"] = int(line[3])
result["type"] = line[4]
result["size"] = int(line[5])
result["flags"] = line[6]
result["fid"] = int(line[7])
result["src"] = line[8]
result["dst"] = line[9]
result["seqnum"] = int(line[10])
result["pktid"] = int(line[11])
return result | 432e6a624626e89d27fe6d3d9ed7c4230d97c0a6 | 4,922 |
def get_census_params(variable_ids, county_level=False):
"""Gets census url params to make an API call.
variable_ids: The ids of the variables to request. Automatically includes
NAME.
county_level: Whether to request at the county level, or the state level."""
keys = variable_ids.copy()
keys.append("NAME")
params = {"get": ",".join(keys)}
params["for"] = "county:*" if county_level else "state:*"
return params | b24204c8e9ef82575b54151bdc0ac98de0fb7fc0 | 4,923 |
def lookupName(n, names):
"""Check if name is in list of names
Parameters
----------
n : str
Name to check
names : list
List of names to check in
Returns
-------
bool
Flag denoting if name has been found in list (True) or not (False)
"""
if n in names:
return True
else:
return False | 0fbb97e252f5daf9de52a946c206fa74395b01c6 | 4,924 |
def calculate_appointments(new_set, old_set):
"""
Calculate different appointment types.
Used for making useful distinctions in the email message.
new_set will be the fresh set of all available appointments at a given interval
old_set will the previous appointments variable getting passed in.
Ex1: Addition of HONEOYE
new_set = {'LIVERPOOL', 'BROOKLYN', 'HONEOYE', 'KINGSTON'}
old_set = {'LIVERPOOL', 'BROOKLYN', 'KINGSTON'}
returns ->->
new_appointments = {'HONEOYE'}
all_appointments = {'LIVERPOOL', 'BROOKLYN', 'KINGSTON', HONEOYE}
Ex2: No Changes
new_set = {'LIVERPOOL', 'BROOKLYN', 'HONEOYE', 'KINGSTON'}
old_set = {'LIVERPOOL', 'BROOKLYN', 'HONEOYE', 'KINGSTON'}
returns ->->
new_appointments = set() (empty set)
all_appointments = {'LIVERPOOL', 'BROOKLYN', 'HONEOYE', 'KINGSTON'}
"""
new_appointments = new_set.difference(old_set) # set of All appointments minus set of Old appointments yields the set of New appointments
old_appointments = new_set.intersection(old_set) # New intersect Old. yields those appointments that (intersect is equivalent the overlap in a venn diagram)
return new_appointments, old_appointments # Return new sets | b54735293ba910e2b310e55e263e2611863d088a | 4,925 |
import random
def rand_x_digit_num(x):
"""Return an X digit number, leading_zeroes returns a string, otherwise int."""
return '{0:0{x}d}'.format(random.randint(0, 10**x-1), x=x) | b46864143ca6186ebeede6c687a85d1b585e70db | 4,927 |
def filter_X_dilutions(df, concentration):
"""Select only one dilution ('high', 'low', or some number)."""
assert concentration in ['high','low'] or type(concentration) is int
df = df.sort_index(level=['CID','Dilution'])
df = df.fillna(999) # Pandas doesn't select correctly on NaNs
if concentration == 'low':
df = df.groupby(level=['CID']).first()
elif concentration == 'high':
df = df.groupby(level=['CID']).last()
else:
df = df.loc[[x for x in df.index if x[1]==concentration]]
df = df.groupby(level=['CID']).last()
df = df.replace(999,float('NaN')) # Undo the fillna line above.
return df | b886c87c1c5b96e6efc951ef197d3a0fb13707c1 | 4,930 |
def update_params(base_param: dict, additional: dict):
"""overwrite base parameter dictionary
Parameters
----------
base_param : dict
base param dictionary
additional : dict
additional param dictionary
Returns
-------
dict
updated parameter dictionary
"""
for key in additional:
base_param[key] = additional[key]
return base_param | e73581cb0b8d264343ead56da52c6dc12fe49dd7 | 4,931 |
import pathlib
def check_path(path: pathlib.Path) -> bool:
"""Check path."""
return path.exists() and path.is_file() | 2279dde6912ae6f6eb51d90ed5e71e0b3892fea9 | 4,933 |
def count(A,target):
"""invoke recursive function to return number of times target appears in A."""
def rcount(lo, hi, target):
"""Use recursion to find maximum value in A[lo:hi+1]."""
if lo == hi:
return 1 if A[lo] == target else 0
mid = (lo+hi)//2
left = rcount(lo, mid, target)
right = rcount(mid+1, hi, target)
return left + right
return rcount(0, len(A)-1, target) | 79d9be64d332a11993f65f3c0deba8b4de39ebda | 4,935 |
def is_bool_type(typ):
"""
Check if the given type is a bool.
"""
if hasattr(typ, '__supertype__'):
typ = typ.__supertype__
return isinstance(typ, type) and issubclass(typ, bool) | 3d8dfae184be330c8cbd7c0e7382311fef31ede5 | 4,936 |
def get_jmp_addr(bb):
"""
@param bb List of PseudoInstructions of one basic block
@return Address of jump instruction in this basic block
"""
for inst in bb:
if inst.inst_type == 'jmp_T':
return inst.addr
return None | 13e69032bc7d6ed5413b5efbb42729e11661eab1 | 4,939 |
import torch
def predict_batch(model, x_batch, dynamics, fast_init):
"""
Compute the softmax prediction probabilities for a given data batch.
Args:
model: EnergyBasedModel
x_batch: Batch of input tensors
dynamics: Dictionary containing the keyword arguments
for the relaxation dynamics on u
fast_init: Boolean to specify if fast feedforward initilization
is used for the prediction
Returns:
Softmax classification probabilities for the given data batch
"""
# Initialize the neural state variables
model.reset_state()
# Clamp the input to the test sample, and remove nudging from ouput
model.clamp_layer(0, x_batch.view(-1, model.dimensions[0]))
model.set_C_target(None)
# Generate the prediction
if fast_init:
model.fast_init()
else:
model.u_relax(**dynamics)
return torch.nn.functional.softmax(model.u[-1].detach(), dim=1) | 61102cfa3bcb3e7d52e9f3eca8c97db4d726c1a7 | 4,944 |
def spot_centroid(regions):
"""Returns centroids for a list of regionprops.
Args:
regions (regionprops): List of region proposals (skimage.measure).
Returns:
list: Centroids of regionprops.
"""
return [r.centroid for r in regions] | f53f403dddf0af123afd207e33cc06254a0f2538 | 4,952 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.