
benax-rw/KinyaWhisper
Automatic Speech Recognition
•
Updated
•
149
•
6
audio
audioduration (s) 0.35
1.53
| text
stringlengths 2
13
| audio_len
float64 0.35
1.53
| transcript_len
int64 2
13
| len_ratio
float64 4.24
15.3
|
---|---|---|---|---|
muraho | 0.6 | 6 | 9.95 |
|
bite | 0.5 | 4 | 8.016 |
|
amakuru | 0.71 | 7 | 9.804 |
|
neza | 0.62 | 4 | 6.431 |
|
murakoze | 0.71 | 8 | 11.236 |
|
urakoze | 0.74 | 7 | 9.409 |
|
murabeho | 0.76 | 8 | 10.582 |
|
ndagushimira | 0.95 | 12 | 12.632 |
|
turabashimiye | 0.85 | 13 | 15.348 |
|
ndagukunda | 1.07 | 10 | 9.362 |
|
ni iki | 0.74 | 6 | 8.086 |
|
ni ryari | 0.82 | 8 | 9.792 |
|
ni inde | 0.7 | 7 | 10.057 |
|
ni hehe | 0.69 | 7 | 10.174 |
|
kuki | 0.52 | 4 | 7.663 |
|
gute | 0.56 | 4 | 7.13 |
|
cyane | 0.45 | 5 | 11.038 |
|
wigeze | 0.89 | 6 | 6.711 |
|
wumva | 0.72 | 5 | 6.983 |
|
ushobora | 0.79 | 8 | 10.101 |
|
ndi | 0.53 | 3 | 5.618 |
|
uri | 0.57 | 3 | 5.245 |
|
Rwanda | 0.81 | 6 | 7.383 |
|
twebwe | 0.52 | 6 | 11.561 |
|
mwebwe | 0.54 | 6 | 11.173 |
|
bo | 0.35 | 2 | 5.65 |
|
njye | 0.44 | 4 | 9.174 |
|
wowe | 0.44 | 4 | 9.132 |
|
uyu | 0.43 | 3 | 6.977 |
|
Kigali | 0.66 | 6 | 9.067 |
|
we | 0.47 | 2 | 4.237 |
|
kubona | 0.62 | 6 | 9.74 |
|
kugenda | 0.64 | 7 | 10.903 |
|
kubwira | 0.63 | 7 | 11.094 |
|
kuvuga | 0.86 | 6 | 6.984 |
|
kumva | 0.66 | 5 | 7.553 |
|
kumenya | 0.66 | 7 | 10.558 |
|
gukora | 0.73 | 6 | 8.186 |
|
kugura | 0.7 | 6 | 8.523 |
|
kugira | 0.76 | 6 | 7.895 |
|
gutekereza | 1.2 | 10 | 8.363 |
|
ishuri | 0.82 | 6 | 7.344 |
|
umuryango | 0.84 | 9 | 10.676 |
|
umuhanda | 0.92 | 8 | 8.743 |
|
inzu | 0.53 | 4 | 7.519 |
|
isoko | 0.86 | 5 | 5.814 |
|
amashuri | 0.88 | 8 | 9.091 |
|
umusozi | 0.8 | 7 | 8.728 |
|
umugezi | 0.85 | 7 | 8.274 |
|
amasaha | 1 | 7 | 6.979 |
|
Nyirahabimana | 1.53 | 13 | 8.483 |
|
uyu munsi | 0.94 | 9 | 9.615 |
|
ejo | 0.51 | 3 | 5.917 |
|
icyumweru | 1.06 | 9 | 8.475 |
|
ukwezi | 1.15 | 6 | 5.22 |
|
umwaka | 0.87 | 6 | 6.891 |
|
ejo hashize | 1.1 | 11 | 9.973 |
|
samoya | 0.89 | 6 | 6.749 |
|
itariki | 0.88 | 7 | 7.919 |
|
rimwe | 0.51 | 5 | 9.785 |
|
kabiri | 0.45 | 6 | 13.483 |
|
rimwe | 0.6 | 5 | 8.333 |
|
kabiri | 0.69 | 6 | 8.683 |
|
gatatu | 0.8 | 6 | 7.472 |
|
kane | 0.67 | 4 | 5.935 |
|
gatanu | 0.88 | 6 | 6.857 |
|
gatandatu | 0.92 | 9 | 9.772 |
|
karindwi | 0.79 | 8 | 10.114 |
|
umunani | 0.85 | 7 | 8.274 |
|
icyenda | 1.01 | 7 | 6.93 |
|
icumi | 0.68 | 5 | 7.407 |
|
amazi | 0.84 | 5 | 5.981 |
|
ifunguro | 0.87 | 8 | 9.164 |
|
ibiryo | 0.75 | 6 | 8.021 |
|
umuceri | 0.78 | 7 | 8.951 |
|
amata | 0.7 | 5 | 7.102 |
|
imboga | 0.73 | 6 | 8.242 |
|
inka | 0.54 | 4 | 7.38 |
|
inzu | 0.57 | 4 | 7.03 |
|
umuryango | 1.35 | 9 | 6.672 |
|
icyumba | 0.9 | 7 | 7.786 |
|
umuryango | 1.25 | 9 | 7.223 |
|
yego | 0.59 | 4 | 6.757 |
|
oya | 0.5 | 3 | 5.988 |
|
nibyo | 0.57 | 5 | 8.818 |
|
sibyo | 0.55 | 5 | 9.058 |
|
ntabwo | 0.99 | 6 | 6.08 |
|
hariho | 0.62 | 6 | 9.646 |
|
ninde | 0.67 | 5 | 7.429 |
|
umwana | 0.73 | 6 | 8.197 |
|
ababyeyi | 0.81 | 8 | 9.864 |
|
umugabo | 0.76 | 7 | 9.247 |
|
umogore | 0.81 | 7 | 8.663 |
|
umukobwa | 0.9 | 8 | 8.869 |
|
umuhungu | 0.77 | 8 | 10.39 |
|
inyamaswa | 1.14 | 9 | 7.93 |
|
imodoka | 0.83 | 7 | 8.424 |
|
moto | 0.62 | 4 | 6.441 |
|
isaha | 0.77 | 5 | 6.494 |
|
telefone | 0.81 | 8 | 9.816 |
This dataset contains 102 short audio samples of spoken Kinyarwanda words, each labeled with its corresponding transcription. It is designed for training, evaluating, and experimenting with Automatic Speech Recognition (ASR) models in low-resource settings.
audio/
: Contains 102 .wav
files (mono, 16kHz)transcripts.txt
: Tab-separated transcription file (e.g., 001.wav\tmuraho
)manifest.jsonl
: JSONL file with audio paths and text labels (compatible with 🤗 Datasets and Whisper training scripts){"audio_filepath": "audio/001.wav", "text": "muraho"}
from datasets import load_dataset
ds = load_dataset("benax-rw/my_kinyarwanda_dataset", split="train")
example = ds[0]
print(example["audio"]["array"], example["text"])
This dataset is published for educational and research purposes.
If you use this dataset, please cite:
Benax Labs, KinyaWhisper Dataset for Fine-tuning Whisper on Kinyarwanda (2025)