Dataset Viewer
Auto-converted to Parquet
audio
audioduration (s)
0.35
1.53
text
stringlengths
2
13
audio_len
float64
0.35
1.53
transcript_len
int64
2
13
len_ratio
float64
4.24
15.3
muraho
0.6
6
9.95
bite
0.5
4
8.016
amakuru
0.71
7
9.804
neza
0.62
4
6.431
murakoze
0.71
8
11.236
urakoze
0.74
7
9.409
murabeho
0.76
8
10.582
ndagushimira
0.95
12
12.632
turabashimiye
0.85
13
15.348
ndagukunda
1.07
10
9.362
ni iki
0.74
6
8.086
ni ryari
0.82
8
9.792
ni inde
0.7
7
10.057
ni hehe
0.69
7
10.174
kuki
0.52
4
7.663
gute
0.56
4
7.13
cyane
0.45
5
11.038
wigeze
0.89
6
6.711
wumva
0.72
5
6.983
ushobora
0.79
8
10.101
ndi
0.53
3
5.618
uri
0.57
3
5.245
Rwanda
0.81
6
7.383
twebwe
0.52
6
11.561
mwebwe
0.54
6
11.173
bo
0.35
2
5.65
njye
0.44
4
9.174
wowe
0.44
4
9.132
uyu
0.43
3
6.977
Kigali
0.66
6
9.067
we
0.47
2
4.237
kubona
0.62
6
9.74
kugenda
0.64
7
10.903
kubwira
0.63
7
11.094
kuvuga
0.86
6
6.984
kumva
0.66
5
7.553
kumenya
0.66
7
10.558
gukora
0.73
6
8.186
kugura
0.7
6
8.523
kugira
0.76
6
7.895
gutekereza
1.2
10
8.363
ishuri
0.82
6
7.344
umuryango
0.84
9
10.676
umuhanda
0.92
8
8.743
inzu
0.53
4
7.519
isoko
0.86
5
5.814
amashuri
0.88
8
9.091
umusozi
0.8
7
8.728
umugezi
0.85
7
8.274
amasaha
1
7
6.979
Nyirahabimana
1.53
13
8.483
uyu munsi
0.94
9
9.615
ejo
0.51
3
5.917
icyumweru
1.06
9
8.475
ukwezi
1.15
6
5.22
umwaka
0.87
6
6.891
ejo hashize
1.1
11
9.973
samoya
0.89
6
6.749
itariki
0.88
7
7.919
rimwe
0.51
5
9.785
kabiri
0.45
6
13.483
rimwe
0.6
5
8.333
kabiri
0.69
6
8.683
gatatu
0.8
6
7.472
kane
0.67
4
5.935
gatanu
0.88
6
6.857
gatandatu
0.92
9
9.772
karindwi
0.79
8
10.114
umunani
0.85
7
8.274
icyenda
1.01
7
6.93
icumi
0.68
5
7.407
amazi
0.84
5
5.981
ifunguro
0.87
8
9.164
ibiryo
0.75
6
8.021
umuceri
0.78
7
8.951
amata
0.7
5
7.102
imboga
0.73
6
8.242
inka
0.54
4
7.38
inzu
0.57
4
7.03
umuryango
1.35
9
6.672
icyumba
0.9
7
7.786
umuryango
1.25
9
7.223
yego
0.59
4
6.757
oya
0.5
3
5.988
nibyo
0.57
5
8.818
sibyo
0.55
5
9.058
ntabwo
0.99
6
6.08
hariho
0.62
6
9.646
ninde
0.67
5
7.429
umwana
0.73
6
8.197
ababyeyi
0.81
8
9.864
umugabo
0.76
7
9.247
umogore
0.81
7
8.663
umukobwa
0.9
8
8.869
umuhungu
0.77
8
10.39
inyamaswa
1.14
9
7.93
imodoka
0.83
7
8.424
moto
0.62
4
6.441
isaha
0.77
5
6.494
telefone
0.81
8
9.816
End of preview. Expand in Data Studio

Kinyarwanda Spoken Words Dataset

This dataset contains 102 short audio samples of spoken Kinyarwanda words, each labeled with its corresponding transcription. It is designed for training, evaluating, and experimenting with Automatic Speech Recognition (ASR) models in low-resource settings.

Structure

  • audio/: Contains 102 .wav files (mono, 16kHz)
  • transcripts.txt: Tab-separated transcription file (e.g., 001.wav\tmuraho)
  • manifest.jsonl: JSONL file with audio paths and text labels (compatible with 🤗 Datasets and Whisper training scripts)

Example

{"audio_filepath": "audio/001.wav", "text": "muraho"}

Usage

from datasets import load_dataset

ds = load_dataset("benax-rw/my_kinyarwanda_dataset", split="train")
example = ds[0]
print(example["audio"]["array"], example["text"])

License

This dataset is published for educational and research purposes.

Citation

If you use this dataset, please cite:

Benax Labs, KinyaWhisper Dataset for Fine-tuning Whisper on Kinyarwanda (2025)

Downloads last month
63

Models trained or fine-tuned on benax-rw/my_kinyarwanda_dataset

Space using benax-rw/my_kinyarwanda_dataset 1