See axolotl config
axolotl version: 0.8.0
base_model: google/gemma-3-1b-it
model_type: gemma
tokenizer_type: AutoTokenizer
trust_remote_code: true
load_in_4bit: true
adapter: qlora
lora_r: 8 # 💡 уменьшено для маленького датасета
lora_alpha: 16 # 💡 пропорционально уменьшено
lora_dropout: 0.05
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
- gate_proj
- up_proj
- down_proj
deepspeed: /mnt/d/druban/axolotl/try1/zero1.json
datasets:
- path: /mnt/d/druban/axolotl/try1/data/finetuning-dataset-chatml.jsonl
type: chat_template
field_messages: conversations
val_set_size: 0.1 # 💡 10% для более надёжной валидации
output_dir: /mnt/d/druban/axolotl/try2
sequence_len: 2048
sample_packing: true
eval_sample_packing: false
gradient_checkpointing: true
batch_size: 2
micro_batch_size: 1
num_epochs: 10 # 💡 увеличено с 3 до 10 для глубокого дообучения
optimizer: adamw_bnb_8bit
learning_rate: 5e-5 # 💡 чуть выше для малых данных
lr_scheduler: cosine
warmup_steps: 10
wandb_project: gemma-finetune
mnt/d/druban/axolotl/try2
This model is a fine-tuned version of google/gemma-3-1b-it on the /mnt/d/druban/axolotl/try1/data/finetuning-dataset-chatml.jsonl dataset. It achieves the following results on the evaluation set:
- Loss: 4.5024
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- total_train_batch_size: 2
- total_eval_batch_size: 2
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 10.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
6.4781 | 1.0 | 7 | 13.0395 |
5.5099 | 2.0 | 14 | 9.8655 |
4.5869 | 3.0 | 21 | 7.0045 |
4.1804 | 4.0 | 28 | 5.8688 |
4.0683 | 5.0 | 35 | 5.1847 |
4.0524 | 6.0 | 42 | 4.7762 |
3.9197 | 7.0 | 49 | 4.6118 |
3.6931 | 8.0 | 56 | 4.5488 |
3.995 | 9.0 | 63 | 4.5053 |
3.7989 | 10.0 | 70 | 4.5024 |
Framework versions
- PEFT 0.15.1
- Transformers 4.51.0
- Pytorch 2.5.1+cu121
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 11
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support