|
# Evaluation with LMDeploy |
|
|
|
We now support evaluation of models accelerated by the [LMDeploy](https://github.com/InternLM/lmdeploy). LMDeploy is a toolkit designed for compressing, deploying, and serving LLM. **TurboMind** is an efficient inference engine proposed by LMDeploy. OpenCompass is compatible with TurboMind. We now illustrate how to evaluate a model with the support of TurboMind in OpenCompass. |
|
|
|
## Setup |
|
|
|
### Install OpenCompass |
|
|
|
Please follow the [instructions](https://opencompass.readthedocs.io/en/latest/get_started.html) to install the OpenCompass and prepare the evaluation datasets. |
|
|
|
### Install LMDeploy |
|
|
|
Install lmdeploy via pip (python 3.8+) |
|
|
|
```shell |
|
pip install lmdeploy |
|
``` |
|
|
|
## Evaluation |
|
|
|
OpenCompass integrates turbomind's python API for evaluation. |
|
|
|
We take the InternLM-20B as example. Firstly, we prepare the evaluation config `configs/eval_internlm_turbomind.py`: |
|
|
|
```python |
|
from mmengine.config import read_base |
|
from opencompass.models.turbomind import TurboMindModel |
|
|
|
|
|
with read_base(): |
|
# choose a list of datasets |
|
from .datasets.mmlu.mmlu_gen_a484b3 import mmlu_datasets |
|
from .datasets.ceval.ceval_gen_5f30c7 import ceval_datasets |
|
from .datasets.SuperGLUE_WiC.SuperGLUE_WiC_gen_d06864 import WiC_datasets |
|
from .datasets.triviaqa.triviaqa_gen_2121ce import triviaqa_datasets |
|
from .datasets.gsm8k.gsm8k_gen_1d7fe4 import gsm8k_datasets |
|
from .datasets.humaneval.humaneval_gen_8e312c import humaneval_datasets |
|
# and output the results in a chosen format |
|
from .summarizers.medium import summarizer |
|
|
|
datasets = sum((v for k, v in locals().items() if k.endswith('_datasets')), []) |
|
|
|
# config for internlm-20b model |
|
internlm_20b = dict( |
|
type=TurboMindModel, |
|
abbr='internlm-20b-turbomind', |
|
path="internlm/internlm-20b", # this path should be same as in huggingface |
|
engine_config=dict(session_len=2048, |
|
max_batch_size=8, |
|
rope_scaling_factor=1.0), |
|
gen_config=dict(top_k=1, top_p=0.8, |
|
temperature=1.0, |
|
max_new_tokens=100), |
|
max_out_len=100, |
|
max_seq_len=2048, |
|
batch_size=8, |
|
concurrency=8, |
|
run_cfg=dict(num_gpus=1, num_procs=1), |
|
end_str='<eoa>' |
|
) |
|
|
|
models = [internlm_20b] |
|
``` |
|
|
|
Then, in the home folder of OpenCompass, start evaluation by the following command: |
|
|
|
```shell |
|
python run.py configs/eval_internlm_turbomind.py -w outputs/turbomind/internlm-20b |
|
``` |
|
|
|
You are expected to get the evaluation results after the inference and evaluation. |
|
|
|
**Note**: |
|
|
|
- If you want to pass more arguments for `engine_config`和`gen_config` in the evaluation config file, please refer to [TurbomindEngineConfig](https://lmdeploy.readthedocs.io/en/latest/inference/pipeline.html#turbomindengineconfig) |
|
and [EngineGenerationConfig](https://lmdeploy.readthedocs.io/en/latest/inference/pipeline.html#generationconfig) |
|
- If you evaluate the InternLM Chat model, please use configuration file `eval_internlm_chat_turbomind.py` |
|
- If you evaluate the InternLM 7B model, please modify `eval_internlm_turbomind.py` or `eval_internlm_chat_turbomind.py` by changing to the setting `models = [internlm_7b]` in the last line. |
|
|