Llama-4-Scout-17B-16E-Instruct-quantized.w4a16

Model Overview

  • Model Architecture: Llama4ForConditionalGeneration
    • Input: Text / Image
    • Output: Text
  • Model Optimizations:
    • Activation quantization: None
    • Weight quantization: INT4
  • Release Date: 04/25/2025
  • Version: 1.0
  • Model Developers: Red Hat (Neural Magic)

Model Optimizations

This model was obtained by quantizing weights of Llama-4-Scout-17B-16E-Instruct to INT4 data type. This optimization reduces the number of bits used to represent weights from 16 to 4, reducing GPU memory requirements by approximately 75%. Weight quantization also reduces disk size requirements by approximately 75%. The llm-compressor library is used for quantization.

Deployment

This model can be deployed efficiently using the vLLM backend, as shown in the example below.

from vllm import LLM, SamplingParams
from transformers import AutoTokenizer

model_id = "RedHatAI/Llama-4-Scout-17B-16E-Instruct-quantized.w4a16"
number_gpus = 4

sampling_params = SamplingParams(temperature=0.7, top_p=0.8, max_tokens=256)

tokenizer = AutoTokenizer.from_pretrained(model_id)

prompt = "Give me a short introduction to large language model."

llm = LLM(model=model_id, tensor_parallel_size=number_gpus)

outputs = llm.generate(prompt, sampling_params)

generated_text = outputs[0].outputs[0].text
print(generated_text)

vLLM also supports OpenAI-compatible serving. See the documentation for more details.

Evaluation

The model was evaluated on the OpenLLM leaderboard tasks (v1 and v2), long context RULER, multimodal MMMU, and multimodal ChartQA. All evaluations are obtained through lm-evaluation-harness.

Evaluation details

OpenLLM v1

lm_eval \
  --model vllm \
  --model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-quantized.w4a16",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=8,gpu_memory_utilization=0.7,enable_chunked_prefill=True,trust_remote_code=True \
  --tasks openllm \
  --batch_size auto 

OpenLLM v2

lm_eval \
  --model vllm \
  --model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-quantized.w4a16",dtype=auto,add_bos_token=False,max_model_len=16384,tensor_parallel_size=8,gpu_memory_utilization=0.5,enable_chunked_prefill=True,trust_remote_code=True \
  --tasks leaderboard \
  --apply_chat_template \
  --fewshot_as_multiturn \
  --batch_size auto 

Long Context RULER

lm_eval \
  --model vllm \
  --model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-quantized.w4a16",dtype=auto,add_bos_token=False,max_model_len=524288,tensor_parallel_size=8,gpu_memory_utilization=0.9,enable_chunked_prefill=True,trust_remote_code=True \
  --tasks ruler \
  --metadata='{"max_seq_lengths":[131072]}' \
  --batch_size auto 

Multimodal MMMU

lm_eval \
  --model vllm-vlm \
  --model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-quantized.w4a16",dtype=auto,add_bos_token=False,max_model_len=1000000,tensor_parallel_size=8,gpu_memory_utilization=0.9,enable_chunked_prefill=True,trust_remote_code=True,max_images=10 \
  --tasks mmmu_val \
  --apply_chat_template \
  --batch_size auto 

Multimodal ChartQA

export VLLM_MM_INPUT_CACHE_GIB=8
lm_eval \
  --model vllm-vlm \
  --model_args pretrained="RedHatAI/Llama-4-Scout-17B-16E-Instruct-quantized.w4a16",dtype=auto,add_bos_token=False,max_model_len=1000000,tensor_parallel_size=8,gpu_memory_utilization=0.9,enable_chunked_prefill=True,trust_remote_code=True,max_images=10 \
  --tasks chartqa \
  --apply_chat_template \
  --batch_size auto 

Accuracy

Recovery (%) meta-llama/Llama-4-Scout-17B-16E-Instruct RedHatAI/Llama-4-Scout-17B-16E-Instruct-quantized.w4a16
(this model)
ARC-Challenge
25-shot
98.64 69.37 68.43
GSM8k
5-shot
98.99 90.45 89.54
HellaSwag
10-shot
99.91 85.23 85.15
MMLU
5-shot
99.70 80.54 80.30
TruthfulQA
0-shot
99.44 61.41 61.07
WinoGrande
5-shot
100.2 77.90 78.06
OpenLLM v1
Average Score
99.00 77.48 77.09
IFEval
0-shot
avg of inst and prompt acc
100.6 86.90 87.45
Big Bench Hard
3-shot
99.78 65.13 64.99
Math Lvl 5
4-shot
100.6 57.78 58.16
GPQA
0-shot
102.6 31.88 32.72
MuSR
0-shot
101.2 42.20 42.72
MMLU-Pro
5-shot
99.12 55.70 55.21
OpenLLM v2
Average Score
100.48 56.60 56.87
MMMU
0-shot
101.6 53.44 54.33
ChartQA
0-shot
exact_match
100.8 65.88 66.44
ChartQA
0-shot
relaxed_accuracy
99.82 88.92 88.76
Multimodal Average Score 100.6 69.41 69.84
Downloads last month
0
Safetensors
Model size
19.6B params
Tensor type
BF16
I64
I32
Inference Providers NEW
This model isn't deployed by any Inference Provider. 馃檵 Ask for provider support

Model tree for RedHatAI/Llama-4-Scout-17B-16E-Instruct-quantized.w4a16