Llama-3.3-70B-Instruct-FP8-dynamic
Model Overview
- Model Architecture: Meta-Llama-3.1
- Input: Text
- Output: Text
- Model Optimizations:
- Weight quantization: FP8
- Activation quantization: FP8
- Intended Use Cases: Intended for commercial and research use in multiple languages. Instruction tuned text only models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks. The Llama 3.3 model also supports the ability to leverage the outputs of its models to improve other models including synthetic data generation and distillation. The Llama 3.3 Community License allows for these use cases.
- Out-of-scope: Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in any other way that is prohibited by the Acceptable Use Policy and Llama 3.3 Community License. Use in languages beyond English, German, French, Italian, Portuguese, Hindi, Spanish, and Thai.
- Release Date: 12/11/2024
- Version: 1.0
- License(s): llama3.3
- Model Developers: RedHat (Neural Magic)
Model Optimizations
This model was obtained by quantizing activation and weights of Llama-3.3-70B-Instruct to FP8 data type. This optimization reduces the number of bits used to represent weights and activations from 16 to 8, reducing GPU memory requirements (by approximately 50%) and increasing matrix-multiply compute throughput (by approximately 2x). Weight quantization also reduces disk size requirements by approximately 50%.
Only weights and activations of the linear operators within transformers blocks are quantized. Weights are quantized with a symmetric static per-channel scheme, whereas activations are quantized with a symmetric dynamic per-token scheme. The llm-compressor library is used for quantization.
Deployment
This model can be deployed efficiently using the vLLM backend, as shown in the example below.
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer
model_id = "RedHatAI/Llama-3.3-70B-Instruct-FP8-dynamic"
number_gpus = 1
sampling_params = SamplingParams(temperature=0.7, top_p=0.8, max_tokens=256)
tokenizer = AutoTokenizer.from_pretrained(model_id)
messages = [
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
{"role": "user", "content": "Who are you?"},
]
prompts = tokenizer.apply_chat_template(messages, tokenize=False)
llm = LLM(model=model_id, tensor_parallel_size=number_gpus)
outputs = llm.generate(prompts, sampling_params)
generated_text = outputs[0].outputs[0].text
print(generated_text)
vLLM aslo supports OpenAI-compatible serving. See the documentation for more details.
Creation
Creation details
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below.from transformers import AutoModelForCausalLM, AutoTokenizer
from llmcompressor.modifiers.quantization import QuantizationModifier
from llmcompressor.transformers import oneshot
# Load model
model_stub = "meta-llama/Llama-3.3-70B-Instruct"
model_name = model_stub.split("/")[-1]
tokenizer = AutoTokenizer.from_pretrained(model_stub)
model = AutoModelForCausalLM.from_pretrained(
model_stub,
device_map="auto",
torch_dtype="auto",
)
# Configure the quantization algorithm and scheme
recipe = QuantizationModifier(
targets="Linear",
scheme="FP8_dynamic",
ignore=["lm_head"],
)
# Apply quantization
oneshot(
model=model,
recipe=recipe,
)
# Save to disk in compressed-tensors format
save_path = model_name + "-FP8-dynamic"
model.save_pretrained(save_path)
tokenizer.save_pretrained(save_path)
print(f"Model and tokenizer saved to: {save_path}")
Evaluation
This model was evaluated on the well-known OpenLLM v1, OpenLLM v2, HumanEval, and HumanEval+ benchmarks. In all cases, model outputs were generated with the vLLM engine.
OpenLLM v1 and v2 evaluations were conducted using lm-evaluation-harness and the prompting style of Meta-Llama-3.1-Instruct-evals when available.
HumanEval and HumanEval+ evaluations were conducted using Neural Magic's fork of the EvalPlus repository.
Evaluation details
MMLU
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Llama-3.3-70B-Instruct-FP8-dynamic",dtype=auto,max_model_len=3850,max_gen_toks=10,tensor_parallel_size=1 \
--tasks mmlu_llama \
--fewshot_as_multiturn \
--apply_chat_template \
--num_fewshot 5 \
--batch_size auto
MMLU-CoT
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Llama-3.3-70B-Instruct-FP8-dynamic",dtype=auto,max_model_len=4064,max_gen_toks=1024,tensor_parallel_size=1 \
--tasks mmlu_cot_llama \
--apply_chat_template \
--num_fewshot 0 \
--batch_size auto
ARC-Challenge
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Llama-3.3-70B-Instruct-FP8-dynamic",dtype=auto,max_model_len=3940,max_gen_toks=100,tensor_parallel_size=1 \
--tasks arc_challenge_llama \
--apply_chat_template \
--num_fewshot 0 \
--batch_size auto
GSM-8K
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Llama-3.3-70B-Instruct-FP8-dynamic",dtype=auto,max_model_len=4096,max_gen_toks=1024,tensor_parallel_size=1 \
--tasks gsm8k_llama \
--fewshot_as_multiturn \
--apply_chat_template \
--num_fewshot 8 \
--batch_size auto
Hellaswag
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Llama-3.3-70B-Instruct-FP8-dynamic",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1 \
--tasks hellaswag \
--num_fewshot 10 \
--batch_size auto
Winogrande
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Llama-3.3-70B-Instruct-FP8-dynamic",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1 \
--tasks winogrande \
--num_fewshot 5 \
--batch_size auto
TruthfulQA
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Llama-3.3-70B-Instruct-FP8-dynamic",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1 \
--tasks truthfulqa \
--num_fewshot 0 \
--batch_size auto
OpenLLM v2
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Llama-3.3-70B-Instruct-FP8-dynamic",dtype=auto,max_model_len=4096,tensor_parallel_size=1,enable_chunked_prefill=True \
--apply_chat_template \
--fewshot_as_multiturn \
--tasks leaderboard \
--batch_size auto
MMLU Portuguese
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Llama-3.3-70B-Instruct-FP8-dynamic",dtype=auto,max_model_len=3850,max_gen_toks=10,tensor_parallel_size=1 \
--tasks mmlu_pt_llama \
--fewshot_as_multiturn \
--apply_chat_template \
--num_fewshot 5 \
--batch_size auto
MMLU Spanish
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Llama-3.3-70B-Instruct-FP8-dynamic",dtype=auto,max_model_len=3850,max_gen_toks=10,tensor_parallel_size=1 \
--tasks mmlu_es_llama \
--fewshot_as_multiturn \
--apply_chat_template \
--num_fewshot 5 \
--batch_size auto
MMLU Italian
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Llama-3.3-70B-Instruct-FP8-dynamic",dtype=auto,max_model_len=3850,max_gen_toks=10,tensor_parallel_size=1 \
--tasks mmlu_it_llama \
--fewshot_as_multiturn \
--apply_chat_template \
--num_fewshot 5 \
--batch_size auto
MMLU German
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Llama-3.3-70B-Instruct-FP8-dynamic",dtype=auto,max_model_len=3850,max_gen_toks=10,tensor_parallel_size=1 \
--tasks mmlu_de_llama \
--fewshot_as_multiturn \
--apply_chat_template \
--num_fewshot 5 \
--batch_size auto
MMLU French
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Llama-3.3-70B-Instruct-FP8-dynamic",dtype=auto,max_model_len=3850,max_gen_toks=10,tensor_parallel_size=1 \
--tasks mmlu_fr_llama \
--fewshot_as_multiturn \
--apply_chat_template \
--num_fewshot 5 \
--batch_size auto
MMLU Hindi
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Llama-3.3-70B-Instruct-FP8-dynamic",dtype=auto,max_model_len=3850,max_gen_toks=10,tensor_parallel_size=1 \
--tasks mmlu_hi_llama \
--fewshot_as_multiturn \
--apply_chat_template \
--num_fewshot 5 \
--batch_size auto
MMLU Thai
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Llama-3.3-70B-Instruct-FP8-dynamic",dtype=auto,max_model_len=3850,max_gen_toks=10,tensor_parallel_size=1 \
--tasks mmlu_th_llama \
--fewshot_as_multiturn \
--apply_chat_template \
--num_fewshot 5 \
--batch_size auto
HumanEval and HumanEval+ Generation
python3 codegen/generate.py \
--model RedHatAI/Llama-3.3-70B-Instruct-FP8-dynamic \
--bs 16 \
--temperature 0.2 \
--n_samples 50 \
--root "." \
--dataset humaneval
Sanitization
python3 evalplus/sanitize.py \
humaneval/RedHatAI--Llama-3.3-70B-Instruct-FP8-dynamic_vllm_temp_0.2
Evaluation
evalplus.evaluate \
--dataset humaneval \
--samples humaneval/RedHatAI--Llama-3.3-70B-Instruct-FP8-dynamic_vllm_temp_0.2-sanitized
Accuracy
Category | Benchmark | Llama-3.3-70B-Instruct | Llama-3.3-70B-Instruct-FP8-dynamic (this model) |
Recovery |
---|---|---|---|---|
OpenLLM v1 | MMLU (5-shot) | 81.60 | 81.31 | 99.6% |
MMLU (CoT, 0-shot) | 86.58 | 86.34 | 99.7% | |
ARC Challenge (0-shot) | 49.23 | 51.96 | 105.6% | |
GSM-8K (CoT, 8-shot, strict-match) | 94.16 | 94.92 | 100.8% | |
Hellaswag (10-shot) | 86.49 | 86.43 | 99.9% | |
Winogrande (5-shot) | 84.77 | 84.53 | 99.7% | |
TruthfulQA (0-shot, mc2) | 62.75 | 63.21 | 100.7% | |
Average | 77.94 | 78.39 | 100.6% | |
OpenLLM v2 | MMLU-Pro (5-shot) | 51.89 | 51.50 | 99.3% |
IFEval (0-shot) | 90.89 | 90.92 | 100.0% | |
BBH (3-shot) | 63.15 | 62.84 | 99.5% | |
Math-lvl-5 (4-shot) | 0.17 | 0.33 | N/A | |
GPQA (0-shot) | 46.10 | 46.30 | 100.4% | |
MuSR (0-shot) | 44.35 | 43.96 | 99.1% | |
Average | 49.42 | 49.31 | 99.8% | |
Coding | HumanEval pass@1 | 83.20 | 83.70 | 100.6% |
HumanEval+ pass@1 | 78.40 | 78.70 | 100.4% | |
Multilingual | Portuguese MMLU (5-shot) | 79.76 | 79.75 | 100.0% |
Spanish MMLU (5-shot) | 79.33 | 79.17 | 99.8% | |
Italian MMLU (5-shot) | 79.15 | 78.84 | 99.6% | |
German MMLU (5-shot) | 77.94 | 77.95 | 100.0% | |
French MMLU (5-shot) | 75.69 | 75.45 | 99.7% | |
Hindi MMLU (5-shot) | 73.81 | 73.71 | 99.9% | |
Thai MMLU (5-shot) | 71.98 | 71.77 | 99.7% |
- Downloads last month
- 636
Model tree for RedHatAI/Llama-3.3-70B-Instruct-FP8-dynamic
Base model
meta-llama/Llama-3.1-70B