[MIA'25] MambaMIM: Pre-training Mamba with State Space Token Interpolation and its Application to Medical Image Segmentation
1
School of Biomedical Engineering, University of Science and Technology of Chinaβ
2 Suzhou Institute for Advanced Research, University of Science and Technology of Chinaβ
3 Department of Automation, Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University
2 Suzhou Institute for Advanced Research, University of Science and Technology of Chinaβ
3 Department of Automation, Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University
News
- MambaMIM accepted by Medical Image Analyses (MIA'25) ! π₯°
- Weights released ! π
- Code released ! π
- Code and weights will be released soon ! π
- [2024/08/16] Paper released !
TODOs
- Paper released
- Code released
- Weight released
Getting Started
Download weights
Name | Resolution | Intensities | Spacing | Weights |
---|---|---|---|---|
MambaMIM | 96 x 96 x 96 | [-175, - 250] | 1.5 x 1.5 x 1.5 mm | Google Drive (87MB) |
Prepare Environments
conda create -n mambamim python=3.9
conda activate mambamim
pip install torch==1.13.0 torchvision==0.14.0 torchaudio==0.13.0 --extra-index-url https://download.pytorch.org/whl/cu117
pip install packaging timm==0.5.4
pip install transformers==4.34.1 typed-argument-parser
pip install numpy==1.21.2 opencv-python==4.5.5.64 opencv-python-headless==4.5.5.64
pip install 'monai[all]'
pip install monai==1.2.0
pip install causal_conv1d-1.2.0.post2+cu118torch1.13cxx11abiTRUE-cp38-cp38-linux_x86_64.whl
pip install mamba_ssm-1.2.0.post1+cu118torch1.13cxx11abiFALSE-cp38-cp38-linux_x86_64.whl
Prepare Datasets
We recommend that you convert the dataset into the nnUNet format.
βββ MambaMIM
βββ data
βββ Dataset060_TotalSegmentator
βββ imagesTr
βββ xxx_0000.nii.gz
βββ ...
βββ Dataset006_FLARE2022
βββ imagesTr
βββ xxx_0000.nii.gz
βββ ...
βββ Other_dataset
βββ imagesTr
βββ xxx_0000.nii.gz
βββ ...
An example dataset.json
will be generated in ./data
The content should be like below:
{
"training": [
{
"image": "./Dataset060_TotalSegmentator/imagesTr/xxx_0000.nii.gz"
},
{
"image": "./Dataset006_FLARE2022/imagesTr/xxx_0000.nii.gz"
},
]
}
Start Training
Run training on multi-GPU :
# An example of training on 4 GPUs with DDP
torchrun --nproc_per_node=4 --nnodes=1 --node_rank=0 --master_addr=localhost --master_port=12351 main.py --exp_name=debug --data_path=./data --model=mambamim --bs=16 --exp_dir=debug_mambamim_ddp_4
Run training on the single-GPU :
# An example of training on the single GPU
python main.py --exp_name=debug --data_path=./data --model=mambamim --bs=4 --exp_dir=debug_mambamim
Fine-tuning
Load pre-training weights :
# An example of Fine-tuning on BTCV (num_classes=14)
from models.network.hymamba import build_hybird
model = build_hybird(in_channel=1, n_classes=14, img_size=96).cuda()
model_dict = torch.load("mambamim_mask75.pth")
if model.load_state_dict(model_dict, strict=False):
print("MambaMIM use pretrained weights successfully !")
Downstream pipeline can be referred to [UNETR](research-contributions/UNETR/BTCV at main Β· Project-MONAI/research-contributions (github.com)).
Acknowledgements:
This code uses helper functions from SparK and HySparK.
Citation
If the code, paper and weights help your research, please cite:
@article{tang2024mambamim,
title={MambaMIM: Pre-training Mamba with State Space Token-interpolation},
author={Tang, Fenghe and Nian, Bingkun and Li, Yingtai and Yang, Jie and Wei, Liu and Zhou, S Kevin},
journal={arXiv preprint arXiv:2408.08070},
year={2024}
}
License
This project is released under the Apache 2.0 license. Please see the LICENSE file for more information.
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
π
Ask for provider support