Files changed (1) hide show
  1. modeling_eurobert.py +98 -1
modeling_eurobert.py CHANGED
@@ -30,7 +30,7 @@ from transformers.activations import ACT2FN
30
  from transformers.cache_utils import Cache, StaticCache
31
  from transformers.modeling_attn_mask_utils import AttentionMaskConverter
32
  from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
33
- from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPast, MaskedLMOutput, SequenceClassifierOutput, TokenClassifierOutput
34
  from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
35
  from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
36
  from transformers.processing_utils import Unpack
@@ -951,10 +951,107 @@ class EuroBertForTokenClassification(EuroBertPreTrainedModel):
951
  )
952
 
953
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
954
  __all__ = [
955
  "EuroBertPreTrainedModel",
956
  "EuroBertModel",
957
  "EuroBertForMaskedLM",
958
  "EuroBertForSequenceClassification",
959
  "EuroBertForTokenClassification",
 
960
  ]
 
30
  from transformers.cache_utils import Cache, StaticCache
31
  from transformers.modeling_attn_mask_utils import AttentionMaskConverter
32
  from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
33
+ from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPast, MaskedLMOutput, QuestionAnsweringModelOutput, SequenceClassifierOutput, TokenClassifierOutput
34
  from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
35
  from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
36
  from transformers.processing_utils import Unpack
 
951
  )
952
 
953
 
954
+ @add_start_docstrings(
955
+ """
956
+ The EuroBert Model with a span classification head on top for extractive question-answering tasks
957
+ like SQuAD (a linear layers on top of the hidden-states output to compute span start logits
958
+ and span end logits).
959
+ """,
960
+ EUROBERT_START_DOCSTRING,
961
+ )
962
+ class EuroBertForQuestionAnswering(EuroBertPreTrainedModel):
963
+ def __init__(self, config: EuroBertConfig):
964
+ super().__init__(config)
965
+ self.num_labels = config.num_labels
966
+ self.model = EuroBertModel(config)
967
+
968
+ self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
969
+ self.post_init()
970
+
971
+ def get_input_embeddings(self):
972
+ return self.model.embed_tokens
973
+
974
+ def set_input_embeddings(self, value):
975
+ self.model.embed_tokens = value
976
+
977
+ @add_start_docstrings_to_model_forward(EUROBERT_INPUTS_DOCSTRING)
978
+ def forward(
979
+ self,
980
+ input_ids: Optional[torch.Tensor] = None,
981
+ attention_mask: Optional[torch.Tensor] = None,
982
+ position_ids: Optional[torch.Tensor] = None,
983
+ inputs_embeds: Optional[torch.Tensor] = None,
984
+ use_cache: Optional[bool] = None,
985
+ start_positions: Optional[torch.Tensor] = None,
986
+ end_positions: Optional[torch.Tensor] = None,
987
+ output_attentions: Optional[bool] = None,
988
+ output_hidden_states: Optional[bool] = None,
989
+ return_dict: Optional[bool] = None,
990
+ ) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
991
+ r"""
992
+ start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
993
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
994
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
995
+ are not taken into account for computing the loss.
996
+ end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
997
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
998
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
999
+ are not taken into account for computing the loss.
1000
+ """
1001
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1002
+
1003
+ outputs = self.model(
1004
+ input_ids,
1005
+ attention_mask=attention_mask,
1006
+ position_ids=position_ids,
1007
+ inputs_embeds=inputs_embeds,
1008
+ use_cache=use_cache,
1009
+ output_attentions=output_attentions,
1010
+ output_hidden_states=output_hidden_states,
1011
+ return_dict=return_dict,
1012
+ )
1013
+ sequence_output = outputs[0]
1014
+
1015
+ logits = self.qa_outputs(sequence_output)
1016
+ start_logits, end_logits = logits.split(1, dim=-1)
1017
+ start_logits = start_logits.squeeze(-1).contiguous()
1018
+ end_logits = end_logits.squeeze(-1).contiguous()
1019
+
1020
+ total_loss = None
1021
+ if start_positions is not None and end_positions is not None:
1022
+ # If we are on multi-GPU, split add a dimension
1023
+ if len(start_positions.size()) > 1:
1024
+ start_positions = start_positions.squeeze(-1)
1025
+ if len(end_positions.size()) > 1:
1026
+ end_positions = end_positions.squeeze(-1)
1027
+ # sometimes the start/end positions are outside our model inputs, we ignore these terms
1028
+ ignored_index = start_logits.size(1)
1029
+ start_positions = start_positions.clamp(0, ignored_index)
1030
+ end_positions = end_positions.clamp(0, ignored_index)
1031
+
1032
+ loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
1033
+ start_loss = loss_fct(start_logits, start_positions)
1034
+ end_loss = loss_fct(end_logits, end_positions)
1035
+ total_loss = (start_loss + end_loss) / 2
1036
+
1037
+ if not return_dict:
1038
+ output = (start_logits, end_logits) + outputs[2:]
1039
+ return ((total_loss,) + output) if total_loss is not None else output
1040
+
1041
+ return QuestionAnsweringModelOutput(
1042
+ loss=total_loss,
1043
+ start_logits=start_logits,
1044
+ end_logits=end_logits,
1045
+ hidden_states=outputs.hidden_states,
1046
+ attentions=outputs.attentions,
1047
+ )
1048
+
1049
+
1050
  __all__ = [
1051
  "EuroBertPreTrainedModel",
1052
  "EuroBertModel",
1053
  "EuroBertForMaskedLM",
1054
  "EuroBertForSequenceClassification",
1055
  "EuroBertForTokenClassification",
1056
+ "EuroBertForQuestionAnswering",
1057
  ]