|
''' |
|
File modification from LLAVA project @DeepGlintAI 2025 |
|
https://github.com/haotian-liu/LLaVA |
|
|
|
origin copyright: |
|
|
|
Copyright 2023 Haotian Liu |
|
|
|
Licensed under the Apache License, Version 2.0 (the "License"); |
|
you may not use this file except in compliance with the License. |
|
You may obtain a copy of the License at |
|
|
|
http://www.apache.org/licenses/LICENSE-2.0 |
|
|
|
Unless required by applicable law or agreed to in writing, software |
|
distributed under the License is distributed on an "AS IS" BASIS, |
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
See the License for the specific language governing permissions and |
|
limitations under the License. |
|
''' |
|
|
|
|
|
from abc import ABC, abstractmethod |
|
|
|
import math |
|
import random |
|
import ast |
|
import re |
|
import json |
|
import os |
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from pathlib import Path |
|
from dataclasses import dataclass |
|
from PIL import Image |
|
from transformers import Qwen2Config, Qwen2Model, Qwen2ForCausalLM, AutoConfig, AutoModelForCausalLM, PreTrainedTokenizer |
|
from transformers.modeling_outputs import CausalLMOutputWithPast |
|
from transformers.generation.utils import GenerateOutput |
|
from transformers.utils import cached_file |
|
from safetensors.torch import load_file as safetensors_load |
|
from .vision_tower import build_vision_tower |
|
from .vision_resampler import build_vision_resampler |
|
from .vision_projector import build_vision_projector |
|
from .sam import build_sam_vit_h, text2sam_projection_layer |
|
from .conversation_mlcd_seg import conv_templates, default_conversation |
|
from .transform import ResizeLongestSide |
|
from typing import Optional, Any, List, Tuple, Union, Dict |
|
|
|
IGNORE_INDEX = -100 |
|
IMAGE_TOKEN_INDEX = -200 |
|
DEFAULT_SEG_TOKEN = "[SEG]" |
|
|
|
IMG_MEAN = torch.Tensor([123.675, 116.28, 103.53]).view(-1, 1, 1) |
|
IMG_STD = torch.Tensor([58.395, 57.12, 57.375]).view(-1, 1, 1) |
|
IMG_SIZE = 1024 |
|
|
|
def select_best_resolution(original_size, possible_resolutions): |
|
""" |
|
Selects the best resolution from a list of possible resolutions based on the original size. |
|
|
|
Args: |
|
original_size (tuple): The original size of the image in the format (width, height). |
|
possible_resolutions (list): A list of possible resolutions in the format [(width1, height1), (width2, height2), ...]. |
|
|
|
Returns: |
|
tuple: The best fit resolution in the format (width, height). |
|
""" |
|
original_width, original_height = original_size |
|
best_fit = None |
|
max_effective_resolution = 0 |
|
min_wasted_resolution = float("inf") |
|
|
|
for width, height in possible_resolutions: |
|
|
|
scale = min(width / original_width, height / original_height) |
|
downscaled_width, downscaled_height = int(original_width * scale), int(original_height * scale) |
|
|
|
|
|
effective_resolution = min(downscaled_width * downscaled_height, original_width * original_height) |
|
wasted_resolution = (width * height) - effective_resolution |
|
|
|
if effective_resolution > max_effective_resolution or (effective_resolution == max_effective_resolution and wasted_resolution < min_wasted_resolution): |
|
max_effective_resolution = effective_resolution |
|
min_wasted_resolution = wasted_resolution |
|
best_fit = (width, height) |
|
|
|
return best_fit |
|
|
|
|
|
def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size): |
|
""" |
|
Calculate the shape of the image patch grid after the preprocessing for images of any resolution. |
|
|
|
Args: |
|
image_size (tuple): The size of the input image in the format (width, height). |
|
grid_pinpoints (str): A string representation of a list of possible resolutions. |
|
patch_size (int): The size of each image patch. |
|
|
|
Returns: |
|
tuple: The shape of the image patch grid in the format (width, height). |
|
""" |
|
if isinstance(grid_pinpoints, str) and "x" in grid_pinpoints: |
|
assert patch_size in [224, 336, 384, 448, 512], "patch_size should be in [224, 336, 384, 448, 512]" |
|
|
|
matches = re.findall(r"\((\d+)x(\d+)\)", grid_pinpoints) |
|
range_start = tuple(map(int, matches[0])) |
|
range_end = tuple(map(int, matches[-1])) |
|
|
|
grid_pinpoints = [(i, j) for i in range(range_start[0], range_end[0] + 1) for j in range(range_start[1], range_end[1] + 1)] |
|
|
|
grid_pinpoints = [[dim * patch_size for dim in pair] for pair in grid_pinpoints] |
|
if type(grid_pinpoints) is list: |
|
possible_resolutions = grid_pinpoints |
|
else: |
|
possible_resolutions = ast.literal_eval(grid_pinpoints) |
|
width, height = select_best_resolution(image_size, possible_resolutions) |
|
return width // patch_size, height // patch_size |
|
|
|
|
|
class MLCDSegMetaModel: |
|
|
|
def __init__(self, config): |
|
super(MLCDSegMetaModel, self).__init__(config) |
|
|
|
if hasattr(config, "vision_tower_config"): |
|
vision_tower_weight, sam_weight, projector_weight, text2sam_projection_weight = self.dispatch_weight(config) |
|
delay_load = getattr(config, "delay_load", False) |
|
self.vision_tower = build_vision_tower(config, delay_load=delay_load) |
|
self.vision_resampler = build_vision_resampler(config, vision_tower=self.vision_tower) |
|
self.mm_projector = build_vision_projector(config, vision_cfg=self.vision_tower.config) |
|
self.vision_tower.vision_tower.load_state_dict(vision_tower_weight) |
|
self.mm_projector.load_state_dict(projector_weight) |
|
self.sam = build_sam_vit_h() |
|
self.sam.load_state_dict(sam_weight) |
|
self.text2sam_projection = text2sam_projection_layer(config) |
|
self.text2sam_projection.load_state_dict(text2sam_projection_weight) |
|
|
|
if "unpad" in getattr(config, "mm_patch_merge_type", ""): |
|
self.image_newline = nn.Parameter(torch.empty(config.hidden_size, dtype=self.dtype)) |
|
|
|
def dispatch_weight(self, config): |
|
safetensors_set = set() |
|
repo = getattr(config, "_name_or_path", "'DeepGlint-AI/MLCD-Seg'") |
|
index_file = cached_file(repo, "model.safetensors.index.json") |
|
with open(index_file, "r") as safetensors_index: |
|
safetensors_map = json.loads(safetensors_index.read()) |
|
for key, value in safetensors_map["weight_map"].items(): |
|
if key.startswith("model.vision_tower.vision_tower") or key.startswith("model.sam") or \ |
|
key.startswith("model.mm_projector") or key.startswith("model.text2sam_projection"): |
|
safetensors_set.add(value) |
|
vision_tower_weight = {} |
|
sam_weight = {} |
|
projector_weight = {} |
|
text2sam_projection_weight = {} |
|
for safetensors_file in safetensors_set: |
|
temp_load = safetensors_load(cached_file(repo, safetensors_file)) |
|
for key, value in temp_load.items(): |
|
if key.startswith("model.sam."): |
|
sam_weight[key.replace("model.sam.", "")] = value |
|
if key.startswith("model.vision_tower.vision_tower."): |
|
vision_tower_weight[key.replace("model.vision_tower.vision_tower.", "")] = value |
|
if key.startswith("model.mm_projector."): |
|
projector_weight[key.replace("model.mm_projector.", "")] = value |
|
if key.startswith("model.text2sam_projection."): |
|
text2sam_projection_weight[key.replace("model.text2sam_projection.", "")] = value |
|
return vision_tower_weight, sam_weight, projector_weight, text2sam_projection_weight |
|
|
|
def get_vision_tower(self): |
|
vision_tower = getattr(self, "vision_tower", None) |
|
if type(vision_tower) is list: |
|
vision_tower = vision_tower[0] |
|
return vision_tower |
|
|
|
|
|
def unpad_image(tensor, original_size): |
|
""" |
|
Unpads a PyTorch tensor of a padded and resized image. |
|
|
|
Args: |
|
tensor (torch.Tensor): The image tensor, assumed to be in CxHxW format. |
|
original_size (tuple): The original size of the image (height, width). |
|
|
|
Returns: |
|
torch.Tensor: The unpadded image tensor. |
|
""" |
|
original_width, original_height = original_size |
|
current_height, current_width = tensor.shape[1:] |
|
|
|
|
|
original_aspect_ratio = original_width / original_height |
|
current_aspect_ratio = current_width / current_height |
|
|
|
|
|
if original_aspect_ratio > current_aspect_ratio: |
|
|
|
scale_factor = current_width / original_width |
|
new_height = int(original_height * scale_factor) |
|
padding = (current_height - new_height) // 2 |
|
unpadded_tensor = tensor[:, padding : current_height - padding, :] |
|
else: |
|
|
|
scale_factor = current_height / original_height |
|
new_width = int(original_width * scale_factor) |
|
padding = (current_width - new_width) // 2 |
|
unpadded_tensor = tensor[:, :, padding : current_width - padding] |
|
|
|
return unpadded_tensor |
|
|
|
|
|
def resize_and_pad_image(image, target_resolution): |
|
""" |
|
Resize and pad an image to a target resolution while maintaining aspect ratio. |
|
|
|
Args: |
|
image (PIL.Image.Image): The input image. |
|
target_resolution (tuple): The target resolution (width, height) of the image. |
|
|
|
Returns: |
|
PIL.Image.Image: The resized and padded image. |
|
""" |
|
original_width, original_height = image.size |
|
target_width, target_height = target_resolution |
|
|
|
|
|
scale_w = target_width / original_width |
|
scale_h = target_height / original_height |
|
|
|
if scale_w < scale_h: |
|
|
|
new_width = target_width |
|
new_height = min(math.ceil(original_height * scale_w), target_height) |
|
else: |
|
|
|
new_height = target_height |
|
new_width = min(math.ceil(original_width * scale_h), target_width) |
|
|
|
|
|
resized_image = image.resize((new_width, new_height)) |
|
|
|
|
|
new_image = Image.new("RGB", (target_width, target_height), (0, 0, 0)) |
|
paste_x = (target_width - new_width) // 2 |
|
paste_y = (target_height - new_height) // 2 |
|
new_image.paste(resized_image, (paste_x, paste_y)) |
|
|
|
return new_image |
|
|
|
|
|
def divide_to_patches(image, patch_size): |
|
""" |
|
Divides an image into patches of a specified size. |
|
|
|
Args: |
|
image (PIL.Image.Image): The input image. |
|
patch_size (int): The size of each patch. |
|
|
|
Returns: |
|
list: A list of PIL.Image.Image objects representing the patches. |
|
""" |
|
patches = [] |
|
width, height = image.size |
|
for i in range(0, height, patch_size): |
|
for j in range(0, width, patch_size): |
|
box = (j, i, j + patch_size, i + patch_size) |
|
patch = image.crop(box) |
|
patches.append(patch) |
|
|
|
return patches |
|
|
|
|
|
def process_anyres_image(image, processor, grid_pinpoints): |
|
""" |
|
Process an image with variable resolutions. |
|
|
|
Args: |
|
image (PIL.Image.Image): The input image to be processed. |
|
processor: The image processor object. |
|
grid_pinpoints (str): A string representation of a list of possible resolutions. |
|
|
|
Returns: |
|
torch.Tensor: A tensor containing the processed image patches. |
|
""" |
|
|
|
if isinstance(grid_pinpoints, str) and "x" in grid_pinpoints: |
|
try: |
|
patch_size = processor.size[0] |
|
except Exception as e: |
|
patch_size = processor.size["shortest_edge"] |
|
assert patch_size in [224, 336, 384, 448, 512], "patch_size should be in [224, 336, 384, 448, 512]" |
|
|
|
matches = re.findall(r"\((\d+)x(\d+)\)", grid_pinpoints) |
|
range_start = tuple(map(int, matches[0])) |
|
range_end = tuple(map(int, matches[-1])) |
|
|
|
grid_pinpoints = [(i, j) for i in range(range_start[0], range_end[0] + 1) for j in range(range_start[1], range_end[1] + 1)] |
|
|
|
grid_pinpoints = [[dim * patch_size for dim in pair] for pair in grid_pinpoints] |
|
|
|
if type(grid_pinpoints) is list: |
|
possible_resolutions = grid_pinpoints |
|
else: |
|
possible_resolutions = ast.literal_eval(grid_pinpoints) |
|
best_resolution = select_best_resolution(image.size, possible_resolutions) |
|
image_padded = resize_and_pad_image(image, best_resolution) |
|
|
|
patches = divide_to_patches(image_padded, processor.crop_size["height"]) |
|
|
|
|
|
|
|
|
|
if isinstance(processor.size, dict): |
|
shortest_edge = processor.size["shortest_edge"] |
|
else: |
|
shortest_edge = min(processor.size) |
|
image_original_resize = image.resize((shortest_edge, shortest_edge)) |
|
|
|
|
|
|
|
image_patches = [image_original_resize] + patches |
|
image_patches = [processor.preprocess(image_patch, return_tensors="pt")["pixel_values"][0] for image_patch in image_patches] |
|
return torch.stack(image_patches, dim=0) |
|
|
|
|
|
class MLCDSegMetaForCausalLM(ABC): |
|
|
|
@abstractmethod |
|
def get_model(self): |
|
pass |
|
|
|
def get_vision_tower(self): |
|
return self.get_model().get_vision_tower() |
|
|
|
def get_2dPool(self, image_feature, stride=2): |
|
height = width = self.get_vision_tower().num_patches_per_side |
|
num_frames, num_tokens, num_dim = image_feature.shape |
|
image_feature = image_feature.view(num_frames, height, width, -1) |
|
image_feature = image_feature.permute(0, 3, 1, 2).contiguous() |
|
|
|
if self.config.mm_spatial_pool_mode == "average": |
|
image_feature = nn.functional.avg_pool2d(image_feature, stride) |
|
elif self.config.mm_spatial_pool_mode == "max": |
|
image_feature = nn.functional.max_pool2d(image_feature, stride) |
|
elif self.config.mm_spatial_pool_mode == "bilinear": |
|
height, width = image_feature.shape[2:] |
|
scaled_shape = [math.ceil(height / stride), math.ceil(width / stride)] |
|
image_feature = nn.functional.interpolate(image_feature, size=scaled_shape, mode='bilinear') |
|
|
|
else: |
|
raise ValueError(f"Unexpected mm_spatial_pool_mode: {self.config.mm_spatial_pool_mode}") |
|
image_feature = image_feature.permute(0, 2, 3, 1) |
|
image_feature = image_feature.view(num_frames, -1, num_dim) |
|
return image_feature |
|
|
|
def encode_images(self, images): |
|
image_features = self.get_model().get_vision_tower()(images) |
|
|
|
image_features = self.get_model().mm_projector(image_features) |
|
return image_features |
|
|
|
def encode_multimodals(self, videos_or_images, video_idx_in_batch, split_sizes=None): |
|
videos_or_images_features = self.get_model().get_vision_tower()(videos_or_images) |
|
per_videos_or_images_features = torch.split(videos_or_images_features, split_sizes, dim=0) |
|
all_videos_or_images_features = [] |
|
all_faster_video_features = [] |
|
cur_mm_spatial_pool_stride = self.config.mm_spatial_pool_stride |
|
|
|
for idx, feat in enumerate(per_videos_or_images_features): |
|
|
|
feat = self.get_model().mm_projector(feat) |
|
faster_video_feature = 0 |
|
slower_img_feat = 0 |
|
if idx in video_idx_in_batch and cur_mm_spatial_pool_stride > 1: |
|
slower_img_feat = self.get_2dPool(feat,cur_mm_spatial_pool_stride) |
|
if self.config.add_faster_video: |
|
cur_mm_spatial_pool_stride = cur_mm_spatial_pool_stride * 2 |
|
faster_video_feature = self.get_2dPool(feat,cur_mm_spatial_pool_stride) |
|
if slower_img_feat != 0: |
|
all_videos_or_images_features.append(slower_img_feat) |
|
else: |
|
all_videos_or_images_features.append(feat) |
|
all_faster_video_features.append(faster_video_feature) |
|
return all_videos_or_images_features,all_faster_video_features |
|
|
|
def prepare_inputs_labels_for_multimodal(self, input_ids, position_ids, attention_mask, past_key_values, labels, images, modalities=["image"], image_sizes=None): |
|
vision_tower = self.get_vision_tower() |
|
|
|
if vision_tower is None or images is None or input_ids.shape[1] == 1: |
|
return input_ids, position_ids, attention_mask, past_key_values, None, labels |
|
|
|
if isinstance(modalities, str): |
|
modalities = [modalities] |
|
|
|
|
|
if type(images) is list or images.ndim == 5: |
|
if type(images) is list: |
|
images = [x.unsqueeze(0) if x.ndim == 3 else x for x in images] |
|
images_list = [] |
|
for image in images: |
|
if image.ndim == 4: |
|
images_list.append(image) |
|
else: |
|
images_list.append(image.unsqueeze(0)) |
|
concat_images = torch.cat([image for image in images_list], dim=0) |
|
split_sizes = [image.shape[0] for image in images_list] |
|
encoded_image_features = self.encode_images(concat_images) |
|
|
|
|
|
|
|
|
|
encoded_image_features = torch.split(encoded_image_features, split_sizes) |
|
image_features = [] |
|
for idx, image_feat in enumerate(encoded_image_features): |
|
image_features.append(image_feat) |
|
|
|
|
|
|
|
mm_patch_merge_type = getattr(self.config, "mm_patch_merge_type", "flat") |
|
image_aspect_ratio = getattr(self.config, "image_aspect_ratio", "square") |
|
mm_newline_position = getattr(self.config, "mm_newline_position", "one_token") |
|
|
|
if mm_patch_merge_type == "flat": |
|
image_features = [x.flatten(0, 1) for x in image_features] |
|
|
|
elif mm_patch_merge_type.startswith("spatial"): |
|
new_image_features = [] |
|
for image_idx, image_feature in enumerate(image_features): |
|
|
|
|
|
|
|
|
|
|
|
|
|
if image_feature.shape[0] > 1: |
|
|
|
base_image_feature = image_feature[0] |
|
image_feature = image_feature[1:] |
|
height = width = self.get_vision_tower().num_patches_per_side |
|
assert height * width == base_image_feature.shape[0] |
|
|
|
if "anyres_max" in image_aspect_ratio: |
|
matched_anyres_max_num_patches = re.match(r"anyres_max_(\d+)", image_aspect_ratio) |
|
if matched_anyres_max_num_patches: |
|
max_num_patches = int(matched_anyres_max_num_patches.group(1)) |
|
|
|
if image_aspect_ratio == "anyres" or "anyres_max" in image_aspect_ratio: |
|
if hasattr(self.get_vision_tower(), "image_size"): |
|
vision_tower_image_size = self.get_vision_tower().image_size |
|
else: |
|
raise ValueError("vision_tower_image_size is not found in the vision tower.") |
|
try: |
|
num_patch_width, num_patch_height = get_anyres_image_grid_shape(image_sizes[image_idx], self.config.image_grid_pinpoints, vision_tower_image_size) |
|
except Exception as e: |
|
num_patch_width, num_patch_height = 2, 2 |
|
image_feature = image_feature.view(num_patch_height, num_patch_width, height, width, -1) |
|
else: |
|
image_feature = image_feature.view(2, 2, height, width, -1) |
|
|
|
if "maxpool2x2" in mm_patch_merge_type: |
|
image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous() |
|
image_feature = image_feature.flatten(1, 2).flatten(2, 3) |
|
image_feature = nn.functional.max_pool2d(image_feature, 2) |
|
image_feature = image_feature.flatten(1, 2).transpose(0, 1) |
|
elif "unpad" in mm_patch_merge_type and "anyres_max" in image_aspect_ratio and matched_anyres_max_num_patches: |
|
unit = image_feature.shape[2] |
|
image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous() |
|
image_feature = image_feature.flatten(1, 2).flatten(2, 3) |
|
image_feature = unpad_image(image_feature, image_sizes[image_idx]) |
|
c, h, w = image_feature.shape |
|
times = math.sqrt(h * w / (max_num_patches * unit**2)) |
|
if times > 1.1: |
|
image_feature = image_feature[None] |
|
image_feature = nn.functional.interpolate(image_feature, [int(h // times), int(w // times)], mode="bilinear")[0] |
|
image_feature = torch.cat((image_feature, self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1).to(image_feature.device)), dim=-1) |
|
image_feature = image_feature.flatten(1, 2).transpose(0, 1) |
|
elif "unpad" in mm_patch_merge_type: |
|
image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous() |
|
image_feature = image_feature.flatten(1, 2).flatten(2, 3) |
|
image_feature = unpad_image(image_feature, image_sizes[image_idx]) |
|
image_feature = torch.cat((image_feature, self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1).to(image_feature.device)), dim=-1) |
|
image_feature = image_feature.flatten(1, 2).transpose(0, 1) |
|
else: |
|
image_feature = image_feature.permute(0, 2, 1, 3, 4).contiguous() |
|
image_feature = image_feature.flatten(0, 3) |
|
if "nobase" in mm_patch_merge_type: |
|
pass |
|
else: |
|
image_feature = torch.cat((base_image_feature, image_feature), dim=0) |
|
new_image_features.append(image_feature) |
|
else: |
|
image_feature = image_feature[0] |
|
if "unpad" in mm_patch_merge_type: |
|
image_feature = torch.cat((image_feature, self.model.image_newline[None]), dim=0) |
|
|
|
new_image_features.append(image_feature) |
|
image_features = new_image_features |
|
else: |
|
raise ValueError(f"Unexpected mm_patch_merge_type: {self.config.mm_patch_merge_type}") |
|
else: |
|
image_features = self.encode_images(images) |
|
|
|
|
|
if getattr(self.config, "tune_mm_mlp_adapter", False) and getattr(self.config, "mm_use_im_start_end", False): |
|
raise NotImplementedError |
|
|
|
|
|
|
|
|
|
|
|
|
|
_labels = labels |
|
_position_ids = position_ids |
|
_attention_mask = attention_mask |
|
if attention_mask is None: |
|
attention_mask = torch.ones_like(input_ids, dtype=torch.bool) |
|
else: |
|
attention_mask = attention_mask.bool() |
|
if position_ids is None: |
|
position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device) |
|
if labels is None: |
|
labels = torch.full_like(input_ids, IGNORE_INDEX) |
|
|
|
|
|
_input_ids = input_ids |
|
input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)] |
|
labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)] |
|
old_attention_mask = attention_mask.clone().detach() |
|
|
|
new_input_embeds = [] |
|
new_labels = [] |
|
cur_image_idx = 0 |
|
img_token_num = [0 for _ in range(len(input_ids))] |
|
num_images_batch = [] |
|
|
|
for batch_idx, cur_input_ids in enumerate(input_ids): |
|
num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum() |
|
num_images_batch.append(num_images) |
|
|
|
if num_images == 0: |
|
cur_image_features = image_features[cur_image_idx] |
|
cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids) |
|
cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0) |
|
new_input_embeds.append(cur_input_embeds) |
|
new_labels.append(labels[batch_idx]) |
|
cur_image_idx += 1 |
|
continue |
|
|
|
image_token_indices = [-1] + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]] |
|
cur_input_ids_noim = [] |
|
cur_labels = labels[batch_idx] |
|
cur_labels_noim = [] |
|
for i in range(len(image_token_indices) - 1): |
|
cur_input_ids_noim.append(cur_input_ids[image_token_indices[i] + 1 : image_token_indices[i + 1]]) |
|
cur_labels_noim.append(cur_labels[image_token_indices[i] + 1 : image_token_indices[i + 1]]) |
|
split_sizes = [x.shape[0] for x in cur_labels_noim] |
|
cur_input_embeds = self.get_model().embed_tokens(torch.cat(cur_input_ids_noim)) |
|
cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0) |
|
cur_new_input_embeds = [] |
|
cur_new_labels = [] |
|
|
|
for i in range(num_images + 1): |
|
cur_new_input_embeds.append(cur_input_embeds_no_im[i]) |
|
cur_new_labels.append(cur_labels_noim[i]) |
|
if i < num_images: |
|
try: |
|
cur_image_features = image_features[cur_image_idx] |
|
except IndexError: |
|
cur_image_features = image_features[cur_image_idx - 1] |
|
img_token_num[batch_idx] += image_features[cur_image_idx].shape[0] |
|
cur_image_idx += 1 |
|
cur_new_input_embeds.append(cur_image_features) |
|
cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype)) |
|
|
|
cur_new_input_embeds = [x.to(self.device) for x in cur_new_input_embeds] |
|
|
|
|
|
cur_new_input_embeds = torch.cat(cur_new_input_embeds) |
|
cur_new_labels = torch.cat(cur_new_labels) |
|
|
|
new_input_embeds.append(cur_new_input_embeds) |
|
new_labels.append(cur_new_labels) |
|
|
|
|
|
tokenizer_model_max_length = getattr(self.config, "tokenizer_model_max_length", None) |
|
|
|
|
|
new_input_embeds = [x[:tokenizer_model_max_length] for x, modality in zip(new_input_embeds, modalities)] |
|
new_labels = [x[:tokenizer_model_max_length] for x, modality in zip(new_labels, modalities)] |
|
|
|
|
|
|
|
|
|
|
|
|
|
max_len = max(x.shape[0] for x in new_input_embeds) |
|
batch_size = len(new_input_embeds) |
|
|
|
new_input_embeds_padded = [] |
|
new_labels_padded = torch.full((batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device) |
|
attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device) |
|
position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device) |
|
|
|
|
|
for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)): |
|
cur_len = cur_new_embed.shape[0] |
|
if getattr(self.config, "tokenizer_padding_side", "right") == "left": |
|
new_input_embeds_padded.append(torch.cat((torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device), cur_new_embed), dim=0)) |
|
if cur_len > 0: |
|
new_labels_padded[i, -cur_len:] = cur_new_labels |
|
attention_mask[i, -cur_len:] = True |
|
position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device) |
|
else: |
|
new_input_embeds_padded.append(torch.cat((cur_new_embed, torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)), dim=0)) |
|
if cur_len > 0: |
|
new_labels_padded[i, :cur_len] = cur_new_labels |
|
attention_mask[i, :cur_len] = True |
|
position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device) |
|
|
|
new_input_embeds = torch.stack(new_input_embeds_padded, dim=0) |
|
|
|
|
|
if _labels is None: |
|
new_labels = None |
|
else: |
|
new_labels = new_labels_padded |
|
|
|
if _attention_mask is None: |
|
attention_mask = None |
|
else: |
|
attention_mask = attention_mask.to(dtype=_attention_mask.dtype) |
|
|
|
if _position_ids is None: |
|
position_ids = None |
|
if getattr(self.config, "use_pos_skipping", False) and self.training: |
|
position_ids = torch.arange(new_input_embeds.size(1), device=new_input_embeds.device).unsqueeze(0).to(new_input_embeds.device) |
|
split_position = random.randint(0, new_input_embeds.size(1)) |
|
left_add = random.randint(0, self.config.pos_skipping_range) |
|
right_add = random.randint(left_add, self.config.pos_skipping_range) |
|
position_ids[:, :split_position] += left_add |
|
position_ids[:, split_position:] += right_add |
|
|
|
|
|
return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels, old_attention_mask, img_token_num, num_images_batch |
|
|
|
|
|
class MLCDSegConfig(Qwen2Config): |
|
model_type = "mlcd_seg" |
|
|
|
|
|
class MLCDSegModel(MLCDSegMetaModel, Qwen2Model): |
|
config_class = MLCDSegConfig |
|
|
|
def __init__(self, config: Qwen2Config): |
|
super(MLCDSegModel, self).__init__(config) |
|
|
|
@dataclass |
|
class MLCDSegOutputWithPast(CausalLMOutputWithPast): |
|
labels: Optional[torch.FloatTensor] = None |
|
|
|
class MLCDSegForCausalLM(Qwen2ForCausalLM, MLCDSegMetaForCausalLM): |
|
config_class = MLCDSegConfig |
|
|
|
def __init__(self, config): |
|
|
|
Qwen2ForCausalLM.__init__(self, config) |
|
config.model_type = "mlcd_seg_clm" |
|
config.rope_scaling = None |
|
|
|
self.model = MLCDSegModel(config) |
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
self.post_init() |
|
self.sam_transform = ResizeLongestSide(IMG_SIZE) |
|
|
|
def get_model(self): |
|
return self.model |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
images: Optional[torch.FloatTensor] = None, |
|
image_sizes: Optional[List[List[int]]] = None, |
|
return_dict: Optional[bool] = None, |
|
modalities: Optional[List[str]] = ["image"], |
|
dpo_forward: Optional[bool] = False, |
|
cache_position=None, |
|
grounding_enc_imgs: Optional[List[torch.FloatTensor]] = None, |
|
image_sam_resizes: Optional[List[torch.FloatTensor]] = None, |
|
original_sizes: Optional[List[torch.FloatTensor]] = None, |
|
masks_list: Optional[List[List[torch.FloatTensor]]] = None, |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
if inputs_embeds is None: |
|
( |
|
input_ids, |
|
position_ids, |
|
attention_mask, |
|
past_key_values, |
|
inputs_embeds, |
|
labels |
|
) = self.prepare_inputs_labels_for_multimodal( |
|
input_ids, |
|
position_ids, |
|
attention_mask, |
|
past_key_values, |
|
labels, |
|
images, |
|
modalities, |
|
image_sizes |
|
) |
|
output = super().forward( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
labels=labels, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=True, |
|
return_dict=return_dict, |
|
cache_position=cache_position |
|
) |
|
return MLCDSegOutputWithPast(**output) |
|
|
|
def seg_forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
images: Optional[torch.FloatTensor] = None, |
|
image_sizes: Optional[List[List[int]]] = None, |
|
return_dict: Optional[bool] = None, |
|
modalities: Optional[List[str]] = ["image"], |
|
dpo_forward: Optional[bool] = False, |
|
cache_position=None, |
|
grounding_enc_imgs: Optional[List[torch.FloatTensor]] = None, |
|
image_sam_resizes: Optional[List[torch.FloatTensor]] = None, |
|
original_sizes: Optional[List[torch.FloatTensor]] = None, |
|
masks_list: Optional[List[List[torch.FloatTensor]]] = None, |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
input_ids_ = input_ids |
|
if inputs_embeds is None: |
|
( |
|
input_ids, |
|
position_ids, |
|
attention_mask, |
|
past_key_values, |
|
inputs_embeds, |
|
labels, |
|
old_attention_mask, |
|
img_token_num, |
|
num_images_batch |
|
) = self.prepare_inputs_labels_for_multimodal( |
|
input_ids, |
|
position_ids, |
|
attention_mask, |
|
past_key_values, |
|
labels, |
|
images, |
|
modalities, |
|
image_sizes |
|
) |
|
|
|
if dpo_forward: |
|
outputs = self.model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
logits = self.lm_head(hidden_states) |
|
return logits, labels |
|
|
|
else: |
|
output = super().forward( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
labels=labels, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=True, |
|
return_dict=return_dict, |
|
cache_position=cache_position |
|
) |
|
sam_image_embeddings = self.get_grounding_encoder_embs(grounding_enc_imgs) |
|
seg_token_mask = self.create_seg_token_mask(input_ids_, old_attention_mask, img_token_num, num_images_batch) |
|
seg_text_embeds_batch = self.process_hidden_states(output["hidden_states"], seg_token_mask) |
|
pred_masks_batch = self.generate_and_postprocess_masks(seg_text_embeds_batch, sam_image_embeddings, num_images_batch, image_sam_resizes, original_sizes) |
|
return pred_masks_batch |
|
|
|
@torch.no_grad() |
|
def generate( |
|
self, |
|
inputs: Optional[torch.Tensor] = None, |
|
images: Optional[torch.Tensor] = None, |
|
image_sizes: Optional[torch.Tensor] = None, |
|
modalities: Optional[List[str]] = ["image"], |
|
**kwargs, |
|
) -> Union[GenerateOutput, torch.LongTensor]: |
|
position_ids = kwargs.pop("position_ids", None) |
|
attention_mask = kwargs.pop("attention_mask", None) |
|
if "inputs_embeds" in kwargs: |
|
raise NotImplementedError("`inputs_embeds` is not supported") |
|
( |
|
inputs, |
|
position_ids, |
|
attention_mask, |
|
_, |
|
inputs_embeds, |
|
_, |
|
old_attention_mask, |
|
img_token_num, |
|
num_images_batch |
|
) = self.prepare_inputs_labels_for_multimodal( |
|
inputs, |
|
position_ids, |
|
attention_mask, |
|
None, |
|
None, |
|
images, |
|
image_sizes=image_sizes, |
|
|
|
) |
|
llm_out = super().generate(position_ids=position_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, output_hidden_states=True, return_dict_in_generate=True, max_length=4096, **kwargs) |
|
return llm_out.sequences |
|
|
|
|
|
def generate_and_postprocess_masks(self, seg_text_embeds_batch, sam_image_embeddings, num_images_batch, image_sam_resizes, original_sizes): |
|
assert len(seg_text_embeds_batch) == len(num_images_batch) |
|
|
|
pred_masks_batch = [] |
|
for batch_i, seg_text_embeds in enumerate(seg_text_embeds_batch): |
|
num_img = max(1, num_images_batch[batch_i]) |
|
|
|
pred_mask_ = torch.empty((0, original_sizes[batch_i][0], original_sizes[batch_i][1]), device=seg_text_embeds.device) |
|
for img_i in range(num_img): |
|
sparse_embeddings, dense_embeddings = self.model.sam.prompt_encoder( |
|
points=None, boxes=None, masks=None, text_embeds=seg_text_embeds.unsqueeze(1)[img_i::num_img,:,:] |
|
) |
|
sparse_embeddings = sparse_embeddings.to(seg_text_embeds.dtype) |
|
|
|
low_res_masks, _ = self.model.sam.mask_decoder( |
|
image_embeddings=sam_image_embeddings[batch_i][img_i].unsqueeze(0), |
|
image_pe=self.model.sam.prompt_encoder.get_dense_pe(), |
|
sparse_prompt_embeddings=sparse_embeddings, |
|
dense_prompt_embeddings=dense_embeddings, |
|
multimask_output=False, ) |
|
pred_mask = self.model.sam.postprocess_masks( |
|
low_res_masks, input_size=image_sam_resizes[batch_i][img_i], original_size=original_sizes[batch_i],) |
|
pred_mask_ = torch.cat([pred_mask_, pred_mask[:,0]], dim=0) |
|
pred_masks_batch.append(pred_mask_) |
|
return pred_masks_batch |
|
|
|
def process_hidden_states(self, output_hidden_states, seg_token_mask): |
|
hidden_states_ = [self.model.text2sam_projection(output_hidden_states[-1])] |
|
hidden_states_ = torch.stack(hidden_states_, dim=-1).sum(dim=-1) |
|
seg_text_embeds_batch = [] |
|
for i, hidden_state_ in enumerate(hidden_states_): |
|
|
|
|
|
seg_text_embeds_batch.append(hidden_state_[seg_token_mask[i][:hidden_state_.shape[0]]]) |
|
return seg_text_embeds_batch |
|
|
|
def create_seg_token_mask(self, input_ids, attention_mask, img_token_num, num_images_batch): |
|
input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)] |
|
max_len = 0 |
|
for i, _ in enumerate(input_ids): |
|
max_len = max(max_len, len(input_ids[i]) + img_token_num[i] - num_images_batch[i]) |
|
|
|
seg_token_mask = [] |
|
for i, _ in enumerate(input_ids): |
|
mask = input_ids[i][num_images_batch[i]:] == self.seg_token_idx |
|
seg_token_mask.append( |
|
torch.cat( |
|
[torch.zeros((1, img_token_num[i])).bool().to(device=self.device), mask.unsqueeze(0), torch.zeros((1, max_len-(len(input_ids[i]) + img_token_num[i] - num_images_batch[i]))).bool().to(device=self.device)], dim=1 |
|
) |
|
) |
|
return torch.cat(seg_token_mask, dim=0) |
|
|
|
def get_grounding_encoder_embs(self, batch_images: torch.FloatTensor): |
|
batch_feats = [] |
|
for images in batch_images: |
|
batch_feats.append(torch.cat([self._encode_single_image(img) for img in images], dim=0)) |
|
return batch_feats |
|
|
|
def _encode_single_image(self, image): |
|
return self.model.sam.image_encoder(image.unsqueeze(0)) |
|
|
|
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs): |
|
images = kwargs.pop("images", None) |
|
image_sizes = kwargs.pop("image_sizes", None) |
|
inputs = super().prepare_inputs_for_generation(input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs) |
|
if images is not None: |
|
inputs["images"] = images |
|
if image_sizes is not None: |
|
inputs["image_sizes"] = image_sizes |
|
return inputs |
|
|
|
def process_prompt(self, text, tokenizer: PreTrainedTokenizer, stage="gen") -> Dict: |
|
if stage.lower() not in ["gen", "seg"]: |
|
stage = "seg" |
|
if stage.lower() == "gen": |
|
conv = conv_templates['qwen_2'].copy() |
|
conv.append_message(conv.roles[0], text) |
|
conv.append_message(conv.roles[1], None) |
|
full_prompt = conv.get_prompt() |
|
input_ids = torch.stack([gen_image_token(full_prompt, tokenizer, return_tensors='pt')], dim=0) |
|
return dict( |
|
input_ids=input_ids, |
|
labels=None, |
|
) |
|
else: |
|
conv = default_conversation.copy() |
|
BEGIN_SIGNAL = "### " |
|
END_SIGNAL = "\n" |
|
roles = {"human": conv.roles[0], "gpt": conv.roles[1]} |
|
|
|
sys_prompt = default_conversation.system + "\n\n" + "The <image> provides an overview of the picture.\n" |
|
full_prompt = sys_prompt + BEGIN_SIGNAL + roles["human"] + ": " + text + END_SIGNAL |
|
full_prompt += BEGIN_SIGNAL + roles["gpt"] + ": It is [SEG]." + END_SIGNAL |
|
full_prompt += BEGIN_SIGNAL |
|
input_ids = torch.stack([gen_image_token(full_prompt, tokenizer, return_tensors='pt')], dim=0) |
|
return dict( |
|
input_ids=input_ids, |
|
labels=None, |
|
) |
|
|
|
def process_images(self, images, image_processor, model_cfg): |
|
image_aspect_ratio = getattr(model_cfg, "image_aspect_ratio", None) |
|
new_images = [] |
|
if image_aspect_ratio == "anyres" or "anyres_max" in image_aspect_ratio: |
|
for image in images: |
|
image = process_anyres_image(image, image_processor, model_cfg.image_grid_pinpoints) |
|
new_images.append(image) |
|
else: |
|
return image_processor.preprocess(images, return_tensors="pt")["pixel_values"] |
|
if all(x.shape == new_images[0].shape for x in new_images): |
|
new_images = torch.stack(new_images, dim=0) |
|
return new_images |
|
|
|
def seg(self, image, prompt, tokenizer, force_seg = False): |
|
self.seg_token_idx = tokenizer(DEFAULT_SEG_TOKEN, add_special_tokens=False).input_ids[0] |
|
image_np = np.array(image) |
|
image_sizes = [image.size] |
|
input_ids = self.process_prompt(prompt, tokenizer, "gen")["input_ids"].to(self.device) |
|
image_processor = self.get_vision_tower().image_processor |
|
image_tensors = self.process_images([image], image_processor, self.config) |
|
image_np_resize = self.sam_transform.apply_image(image_np) |
|
original_size_list = [image_np.shape[:2]] |
|
image_sam_resize_list = [image_np_resize.shape[:2]] |
|
grounding_enc_img_list = [grounding_enc_processor(torch.from_numpy(image_np_resize).permute(2, 0, 1).contiguous()).to(dtype=self.dtype, device=self.device, non_blocking=True)] |
|
collect_size = list(set(original_size_list)) |
|
if len(collect_size) == 0: |
|
mask_h, mask_w = 336, 336 |
|
elif len(collect_size) == 1: |
|
mask_h, mask_w = collect_size[0] |
|
else: |
|
areas = [h*w for (h, w) in collect_size] |
|
mask_h, mask_w = collect_size[areas.index(max(areas))] |
|
if isinstance(image_tensors, list): |
|
image_aspect_ratio = getattr(self.config, "image_aspect_ratio", None) |
|
if image_aspect_ratio=="anyres_mul" or image_aspect_ratio=="anyres": |
|
image_tensors = [[x_.to(dtype=self.dtype, device=self.device, non_blocking=True)for x_ in image_tensors]] |
|
else: |
|
image_tensors = [[x_.unsqueeze(dim=0).to(dtype=self.dtype, device=self.device, non_blocking=True) for x_ in image_tensors]] |
|
else: |
|
image_tensors = image_tensors.to(dtype=self.dtype, device='cuda', non_blocking=True) |
|
if not force_seg: |
|
attention_mask = torch.ones(input_ids.shape).bool().to(device=self.device) |
|
with torch.inference_mode(): |
|
llm_gen = self.generate( |
|
inputs=input_ids, |
|
attention_mask=attention_mask, |
|
images=image_tensors, |
|
image_sizes=image_sizes, |
|
grounding_enc_imgs=[torch.stack(grounding_enc_img_list, dim=0)], |
|
image_sam_resizes=[image_sam_resize_list], |
|
original_sizes=[(mask_h, mask_w)], |
|
pad_token_id=tokenizer.eos_token_id |
|
) |
|
seg_flag = llm_gen == self.seg_token_idx |
|
seg_flag = torch.sum(seg_flag.int()).item() |
|
if seg_flag > 0: |
|
force_seg = True |
|
if force_seg: |
|
input_ids = self.process_prompt(prompt, tokenizer, "seg")["input_ids"].to(self.device) |
|
with torch.inference_mode(): |
|
net_out = self.seg_forward( |
|
input_ids=input_ids, |
|
output_hidden_states=True, |
|
images=image_tensors, |
|
image_sizes=image_sizes, |
|
grounding_enc_imgs=[torch.stack(grounding_enc_img_list, dim=0)], |
|
image_sam_resizes=[image_sam_resize_list], |
|
original_sizes=[(mask_h, mask_w)], |
|
) |
|
pred_mask = net_out[0] |
|
mask_tensor = (pred_mask > 0).int() |
|
return mask_tensor |
|
else: |
|
return torch.zeros([0] + list(image_np.shape[:2]), device=self.device) |
|
|
|
|
|
def gen_image_token(prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None): |
|
prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split("<image>")] |
|
|
|
def insert_separator(X, sep): |
|
return [ele for sublist in zip(X, [sep] * len(X)) for ele in sublist][:-1] |
|
|
|
input_ids = [] |
|
offset = 0 |
|
if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id: |
|
offset = 1 |
|
input_ids.append(prompt_chunks[0][0]) |
|
|
|
for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)): |
|
input_ids.extend(x[offset:]) |
|
|
|
if return_tensors is not None: |
|
if return_tensors == "pt": |
|
return torch.tensor(input_ids, dtype=torch.long) |
|
raise ValueError(f"Unsupported tensor type: {return_tensors}") |
|
return input_ids |
|
|
|
|
|
def grounding_enc_processor(x: torch.Tensor) -> torch.Tensor: |
|
x = (x - IMG_MEAN) / IMG_STD |
|
h, w = x.shape[-2:] |
|
x = F.pad(x, (0, IMG_SIZE - w, 0, IMG_SIZE - h)) |
|
return x |
|
|
|
|
|
AutoConfig.register("mlcd_seg", MLCDSegConfig) |
|
AutoModelForCausalLM.register(MLCDSegConfig, MLCDSegForCausalLM) |
|
|