File size: 51,829 Bytes
b74e18c 305557f b74e18c 367cc7f b74e18c 305557f b74e18c 367cc7f b74e18c 367cc7f b74e18c 305557f b74e18c 305557f b74e18c 305557f b74e18c 305557f b74e18c 305557f b74e18c 305557f b74e18c 305557f b74e18c 305557f b74e18c 305557f b74e18c 305557f d8164b3 305557f b74e18c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 |
'''
File modification from LLAVA project @DeepGlintAI 2025
https://github.com/haotian-liu/LLaVA
origin copyright:
Copyright 2023 Haotian Liu
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
'''
from abc import ABC, abstractmethod
import math
import random
import ast
import re
import json
import os
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from pathlib import Path
from dataclasses import dataclass
from PIL import Image
from transformers import Qwen2Config, Qwen2Model, Qwen2ForCausalLM, AutoConfig, AutoModelForCausalLM, PreTrainedTokenizer
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.generation.utils import GenerateOutput
from transformers.utils import cached_file
from safetensors.torch import load_file as safetensors_load
from .vision_tower import build_vision_tower
from .vision_resampler import build_vision_resampler
from .vision_projector import build_vision_projector
from .sam import build_sam_vit_h, text2sam_projection_layer
from .conversation_mlcd_seg import conv_templates, default_conversation
from .transform import ResizeLongestSide
from typing import Optional, Any, List, Tuple, Union, Dict
IGNORE_INDEX = -100
IMAGE_TOKEN_INDEX = -200
DEFAULT_SEG_TOKEN = "[SEG]"
IMG_MEAN = torch.Tensor([123.675, 116.28, 103.53]).view(-1, 1, 1)
IMG_STD = torch.Tensor([58.395, 57.12, 57.375]).view(-1, 1, 1)
IMG_SIZE = 1024
def select_best_resolution(original_size, possible_resolutions):
"""
Selects the best resolution from a list of possible resolutions based on the original size.
Args:
original_size (tuple): The original size of the image in the format (width, height).
possible_resolutions (list): A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].
Returns:
tuple: The best fit resolution in the format (width, height).
"""
original_width, original_height = original_size
best_fit = None
max_effective_resolution = 0
min_wasted_resolution = float("inf")
for width, height in possible_resolutions:
# Calculate the downscaled size to keep the aspect ratio
scale = min(width / original_width, height / original_height)
downscaled_width, downscaled_height = int(original_width * scale), int(original_height * scale)
# Calculate effective and wasted resolutions
effective_resolution = min(downscaled_width * downscaled_height, original_width * original_height)
wasted_resolution = (width * height) - effective_resolution
if effective_resolution > max_effective_resolution or (effective_resolution == max_effective_resolution and wasted_resolution < min_wasted_resolution):
max_effective_resolution = effective_resolution
min_wasted_resolution = wasted_resolution
best_fit = (width, height)
return best_fit
def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size):
"""
Calculate the shape of the image patch grid after the preprocessing for images of any resolution.
Args:
image_size (tuple): The size of the input image in the format (width, height).
grid_pinpoints (str): A string representation of a list of possible resolutions.
patch_size (int): The size of each image patch.
Returns:
tuple: The shape of the image patch grid in the format (width, height).
"""
if isinstance(grid_pinpoints, str) and "x" in grid_pinpoints:
assert patch_size in [224, 336, 384, 448, 512], "patch_size should be in [224, 336, 384, 448, 512]"
# Use regex to extract the range from the input string
matches = re.findall(r"\((\d+)x(\d+)\)", grid_pinpoints)
range_start = tuple(map(int, matches[0]))
range_end = tuple(map(int, matches[-1]))
# Generate a matrix of tuples from (range_start[0], range_start[1]) to (range_end[0], range_end[1])
grid_pinpoints = [(i, j) for i in range(range_start[0], range_end[0] + 1) for j in range(range_start[1], range_end[1] + 1)]
# Multiply all elements by patch_size
grid_pinpoints = [[dim * patch_size for dim in pair] for pair in grid_pinpoints]
if type(grid_pinpoints) is list:
possible_resolutions = grid_pinpoints
else:
possible_resolutions = ast.literal_eval(grid_pinpoints)
width, height = select_best_resolution(image_size, possible_resolutions)
return width // patch_size, height // patch_size
class MLCDSegMetaModel:
def __init__(self, config):
super(MLCDSegMetaModel, self).__init__(config)
if hasattr(config, "vision_tower_config"):
vision_tower_weight, sam_weight, projector_weight, text2sam_projection_weight = self.dispatch_weight(config)
delay_load = getattr(config, "delay_load", False)
self.vision_tower = build_vision_tower(config, delay_load=delay_load)
self.vision_resampler = build_vision_resampler(config, vision_tower=self.vision_tower)
self.mm_projector = build_vision_projector(config, vision_cfg=self.vision_tower.config)
self.vision_tower.vision_tower.load_state_dict(vision_tower_weight)
self.mm_projector.load_state_dict(projector_weight)
self.sam = build_sam_vit_h()
self.sam.load_state_dict(sam_weight)
self.text2sam_projection = text2sam_projection_layer(config)
self.text2sam_projection.load_state_dict(text2sam_projection_weight)
if "unpad" in getattr(config, "mm_patch_merge_type", ""):
self.image_newline = nn.Parameter(torch.empty(config.hidden_size, dtype=self.dtype))
def dispatch_weight(self, config):
safetensors_set = set()
repo = getattr(config, "_name_or_path", "'DeepGlint-AI/MLCD-Seg'")
index_file = cached_file(repo, "model.safetensors.index.json")
with open(index_file, "r") as safetensors_index:
safetensors_map = json.loads(safetensors_index.read())
for key, value in safetensors_map["weight_map"].items():
if key.startswith("model.vision_tower.vision_tower") or key.startswith("model.sam") or \
key.startswith("model.mm_projector") or key.startswith("model.text2sam_projection"):
safetensors_set.add(value)
vision_tower_weight = {}
sam_weight = {}
projector_weight = {}
text2sam_projection_weight = {}
for safetensors_file in safetensors_set:
temp_load = safetensors_load(cached_file(repo, safetensors_file))
for key, value in temp_load.items():
if key.startswith("model.sam."):
sam_weight[key.replace("model.sam.", "")] = value
if key.startswith("model.vision_tower.vision_tower."):
vision_tower_weight[key.replace("model.vision_tower.vision_tower.", "")] = value
if key.startswith("model.mm_projector."):
projector_weight[key.replace("model.mm_projector.", "")] = value
if key.startswith("model.text2sam_projection."):
text2sam_projection_weight[key.replace("model.text2sam_projection.", "")] = value
return vision_tower_weight, sam_weight, projector_weight, text2sam_projection_weight
def get_vision_tower(self):
vision_tower = getattr(self, "vision_tower", None)
if type(vision_tower) is list:
vision_tower = vision_tower[0]
return vision_tower
def unpad_image(tensor, original_size):
"""
Unpads a PyTorch tensor of a padded and resized image.
Args:
tensor (torch.Tensor): The image tensor, assumed to be in CxHxW format.
original_size (tuple): The original size of the image (height, width).
Returns:
torch.Tensor: The unpadded image tensor.
"""
original_width, original_height = original_size
current_height, current_width = tensor.shape[1:]
# Compute aspect ratios
original_aspect_ratio = original_width / original_height
current_aspect_ratio = current_width / current_height
# Determine padding size and direction
if original_aspect_ratio > current_aspect_ratio:
# Padding was added to the height
scale_factor = current_width / original_width
new_height = int(original_height * scale_factor)
padding = (current_height - new_height) // 2
unpadded_tensor = tensor[:, padding : current_height - padding, :]
else:
# Padding was added to the width
scale_factor = current_height / original_height
new_width = int(original_width * scale_factor)
padding = (current_width - new_width) // 2
unpadded_tensor = tensor[:, :, padding : current_width - padding]
return unpadded_tensor
def resize_and_pad_image(image, target_resolution):
"""
Resize and pad an image to a target resolution while maintaining aspect ratio.
Args:
image (PIL.Image.Image): The input image.
target_resolution (tuple): The target resolution (width, height) of the image.
Returns:
PIL.Image.Image: The resized and padded image.
"""
original_width, original_height = image.size
target_width, target_height = target_resolution
# Determine which dimension (width or height) to fill
scale_w = target_width / original_width
scale_h = target_height / original_height
if scale_w < scale_h:
# Width will be filled completely
new_width = target_width
new_height = min(math.ceil(original_height * scale_w), target_height)
else:
# Height will be filled completely
new_height = target_height
new_width = min(math.ceil(original_width * scale_h), target_width)
# Resize the image
resized_image = image.resize((new_width, new_height))
# Create a new image with the target size and paste the resized image onto it
new_image = Image.new("RGB", (target_width, target_height), (0, 0, 0))
paste_x = (target_width - new_width) // 2
paste_y = (target_height - new_height) // 2
new_image.paste(resized_image, (paste_x, paste_y))
return new_image
def divide_to_patches(image, patch_size):
"""
Divides an image into patches of a specified size.
Args:
image (PIL.Image.Image): The input image.
patch_size (int): The size of each patch.
Returns:
list: A list of PIL.Image.Image objects representing the patches.
"""
patches = []
width, height = image.size
for i in range(0, height, patch_size):
for j in range(0, width, patch_size):
box = (j, i, j + patch_size, i + patch_size)
patch = image.crop(box)
patches.append(patch)
return patches
def process_anyres_image(image, processor, grid_pinpoints):
"""
Process an image with variable resolutions.
Args:
image (PIL.Image.Image): The input image to be processed.
processor: The image processor object.
grid_pinpoints (str): A string representation of a list of possible resolutions.
Returns:
torch.Tensor: A tensor containing the processed image patches.
"""
# Convert grid_pinpoints from string to list
if isinstance(grid_pinpoints, str) and "x" in grid_pinpoints:
try:
patch_size = processor.size[0]
except Exception as e:
patch_size = processor.size["shortest_edge"]
assert patch_size in [224, 336, 384, 448, 512], "patch_size should be in [224, 336, 384, 448, 512]"
# Use regex to extract the range from the input string
matches = re.findall(r"\((\d+)x(\d+)\)", grid_pinpoints)
range_start = tuple(map(int, matches[0]))
range_end = tuple(map(int, matches[-1]))
# Generate a matrix of tuples from (range_start[0], range_start[1]) to (range_end[0], range_end[1])
grid_pinpoints = [(i, j) for i in range(range_start[0], range_end[0] + 1) for j in range(range_start[1], range_end[1] + 1)]
# Multiply all elements by patch_size
grid_pinpoints = [[dim * patch_size for dim in pair] for pair in grid_pinpoints]
if type(grid_pinpoints) is list:
possible_resolutions = grid_pinpoints
else:
possible_resolutions = ast.literal_eval(grid_pinpoints)
best_resolution = select_best_resolution(image.size, possible_resolutions)
image_padded = resize_and_pad_image(image, best_resolution)
patches = divide_to_patches(image_padded, processor.crop_size["height"])
# FIXME: this seems to be a bug that it resizes instead of pad.
# but to keep it consistent with previous, i will keep it as it is
# TODO: uncomment below to ablate with the padding
if isinstance(processor.size, dict):
shortest_edge = processor.size["shortest_edge"]
else:
shortest_edge = min(processor.size)
image_original_resize = image.resize((shortest_edge, shortest_edge))
# image_padded_square = expand2square(image, tuple(int(x*255) for x in processor.image_mean))
# image_original_resize = image_padded_square.resize((processor.size['shortest_edge'], processor.size['shortest_edge']))
image_patches = [image_original_resize] + patches
image_patches = [processor.preprocess(image_patch, return_tensors="pt")["pixel_values"][0] for image_patch in image_patches]
return torch.stack(image_patches, dim=0)
class MLCDSegMetaForCausalLM(ABC):
@abstractmethod
def get_model(self):
pass
def get_vision_tower(self):
return self.get_model().get_vision_tower()
def get_2dPool(self, image_feature, stride=2):
height = width = self.get_vision_tower().num_patches_per_side
num_frames, num_tokens, num_dim = image_feature.shape
image_feature = image_feature.view(num_frames, height, width, -1)
image_feature = image_feature.permute(0, 3, 1, 2).contiguous()
# image_feature = nn.functional.max_pool2d(image_feature, self.config.mm_spatial_pool_stride)
if self.config.mm_spatial_pool_mode == "average":
image_feature = nn.functional.avg_pool2d(image_feature, stride)
elif self.config.mm_spatial_pool_mode == "max":
image_feature = nn.functional.max_pool2d(image_feature, stride)
elif self.config.mm_spatial_pool_mode == "bilinear":
height, width = image_feature.shape[2:]
scaled_shape = [math.ceil(height / stride), math.ceil(width / stride)]
image_feature = nn.functional.interpolate(image_feature, size=scaled_shape, mode='bilinear')
else:
raise ValueError(f"Unexpected mm_spatial_pool_mode: {self.config.mm_spatial_pool_mode}")
image_feature = image_feature.permute(0, 2, 3, 1)
image_feature = image_feature.view(num_frames, -1, num_dim)
return image_feature
def encode_images(self, images):
image_features = self.get_model().get_vision_tower()(images)
# image_features = self.get_model().vision_resampler(image_features, images=images)
image_features = self.get_model().mm_projector(image_features)
return image_features
def encode_multimodals(self, videos_or_images, video_idx_in_batch, split_sizes=None):
videos_or_images_features = self.get_model().get_vision_tower()(videos_or_images)
per_videos_or_images_features = torch.split(videos_or_images_features, split_sizes, dim=0) # tuple, (dim_1, 576, 4096)
all_videos_or_images_features = []
all_faster_video_features = []
cur_mm_spatial_pool_stride = self.config.mm_spatial_pool_stride
for idx, feat in enumerate(per_videos_or_images_features):
feat = self.get_model().mm_projector(feat)
faster_video_feature = 0
slower_img_feat = 0
if idx in video_idx_in_batch and cur_mm_spatial_pool_stride > 1:
slower_img_feat = self.get_2dPool(feat,cur_mm_spatial_pool_stride)
if self.config.add_faster_video:
cur_mm_spatial_pool_stride = cur_mm_spatial_pool_stride * 2
faster_video_feature = self.get_2dPool(feat,cur_mm_spatial_pool_stride)
if slower_img_feat != 0:
all_videos_or_images_features.append(slower_img_feat)
else:
all_videos_or_images_features.append(feat)
all_faster_video_features.append(faster_video_feature)
return all_videos_or_images_features,all_faster_video_features
def prepare_inputs_labels_for_multimodal(self, input_ids, position_ids, attention_mask, past_key_values, labels, images, modalities=["image"], image_sizes=None):
vision_tower = self.get_vision_tower()
# rank_print(modalities)
if vision_tower is None or images is None or input_ids.shape[1] == 1:
return input_ids, position_ids, attention_mask, past_key_values, None, labels
if isinstance(modalities, str):
modalities = [modalities]
# import pdb; pdb.set_trace()
if type(images) is list or images.ndim == 5:
if type(images) is list:
images = [x.unsqueeze(0) if x.ndim == 3 else x for x in images]
images_list = []
for image in images:
if image.ndim == 4:
images_list.append(image)
else:
images_list.append(image.unsqueeze(0))
concat_images = torch.cat([image for image in images_list], dim=0)
split_sizes = [image.shape[0] for image in images_list]
encoded_image_features = self.encode_images(concat_images)
# image_features,all_faster_video_features = self.encode_multimodals(concat_images, video_idx_in_batch, split_sizes)
# This is a list, each element is [num_images, patch * patch, dim]
# rank_print(f"Concat images : {concat_images.shape}")
encoded_image_features = torch.split(encoded_image_features, split_sizes)
image_features = []
for idx, image_feat in enumerate(encoded_image_features):
image_features.append(image_feat)
# image_features = self.encode_multimodals(concat_images, video_idx_in_batch, split_sizes)
# rank_print(f"Encoded image feats : {[x.shape for x in image_features]}")
# image_features = torch.split(image_features, split_sizes, dim=0)
mm_patch_merge_type = getattr(self.config, "mm_patch_merge_type", "flat")
image_aspect_ratio = getattr(self.config, "image_aspect_ratio", "square")
mm_newline_position = getattr(self.config, "mm_newline_position", "one_token")
if mm_patch_merge_type == "flat":
image_features = [x.flatten(0, 1) for x in image_features]
elif mm_patch_merge_type.startswith("spatial"):
new_image_features = []
for image_idx, image_feature in enumerate(image_features):
# FIXME: now assume the image is square, and split to 2x2 patches
# num_patches = h * w, where h = w = sqrt(num_patches)
# currently image_feature is a tensor of shape (4, num_patches, hidden_size)
# we want to first unflatten it to (2, 2, h, w, hidden_size)
# rank0_print("At least we are reaching here")
# import pdb; pdb.set_trace()
if image_feature.shape[0] > 1: # multi patches and multi images operations
# rank0_print("Single-images")
base_image_feature = image_feature[0]
image_feature = image_feature[1:]
height = width = self.get_vision_tower().num_patches_per_side
assert height * width == base_image_feature.shape[0]
if "anyres_max" in image_aspect_ratio:
matched_anyres_max_num_patches = re.match(r"anyres_max_(\d+)", image_aspect_ratio)
if matched_anyres_max_num_patches:
max_num_patches = int(matched_anyres_max_num_patches.group(1))
if image_aspect_ratio == "anyres" or "anyres_max" in image_aspect_ratio:
if hasattr(self.get_vision_tower(), "image_size"):
vision_tower_image_size = self.get_vision_tower().image_size
else:
raise ValueError("vision_tower_image_size is not found in the vision tower.")
try:
num_patch_width, num_patch_height = get_anyres_image_grid_shape(image_sizes[image_idx], self.config.image_grid_pinpoints, vision_tower_image_size)
except Exception as e:
num_patch_width, num_patch_height = 2, 2
image_feature = image_feature.view(num_patch_height, num_patch_width, height, width, -1)
else:
image_feature = image_feature.view(2, 2, height, width, -1)
if "maxpool2x2" in mm_patch_merge_type:
image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
image_feature = image_feature.flatten(1, 2).flatten(2, 3)
image_feature = nn.functional.max_pool2d(image_feature, 2)
image_feature = image_feature.flatten(1, 2).transpose(0, 1)
elif "unpad" in mm_patch_merge_type and "anyres_max" in image_aspect_ratio and matched_anyres_max_num_patches:
unit = image_feature.shape[2]
image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
image_feature = image_feature.flatten(1, 2).flatten(2, 3)
image_feature = unpad_image(image_feature, image_sizes[image_idx])
c, h, w = image_feature.shape
times = math.sqrt(h * w / (max_num_patches * unit**2))
if times > 1.1:
image_feature = image_feature[None]
image_feature = nn.functional.interpolate(image_feature, [int(h // times), int(w // times)], mode="bilinear")[0]
image_feature = torch.cat((image_feature, self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1).to(image_feature.device)), dim=-1)
image_feature = image_feature.flatten(1, 2).transpose(0, 1)
elif "unpad" in mm_patch_merge_type:
image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
image_feature = image_feature.flatten(1, 2).flatten(2, 3)
image_feature = unpad_image(image_feature, image_sizes[image_idx])
image_feature = torch.cat((image_feature, self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1).to(image_feature.device)), dim=-1)
image_feature = image_feature.flatten(1, 2).transpose(0, 1)
else:
image_feature = image_feature.permute(0, 2, 1, 3, 4).contiguous()
image_feature = image_feature.flatten(0, 3)
if "nobase" in mm_patch_merge_type:
pass
else:
image_feature = torch.cat((base_image_feature, image_feature), dim=0)
new_image_features.append(image_feature)
else: # single image operations
image_feature = image_feature[0]
if "unpad" in mm_patch_merge_type:
image_feature = torch.cat((image_feature, self.model.image_newline[None]), dim=0)
new_image_features.append(image_feature)
image_features = new_image_features
else:
raise ValueError(f"Unexpected mm_patch_merge_type: {self.config.mm_patch_merge_type}")
else:
image_features = self.encode_images(images)
# TODO: image start / end is not implemented here to support pretraining.
if getattr(self.config, "tune_mm_mlp_adapter", False) and getattr(self.config, "mm_use_im_start_end", False):
raise NotImplementedError
# rank_print(f"Total images : {len(image_features)}")
# Let's just add dummy tensors if they do not exist,
# it is a headache to deal with None all the time.
# But it is not ideal, and if you have a better idea,
# please open an issue / submit a PR, thanks.
_labels = labels
_position_ids = position_ids
_attention_mask = attention_mask
if attention_mask is None:
attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
else:
attention_mask = attention_mask.bool()
if position_ids is None:
position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device)
if labels is None:
labels = torch.full_like(input_ids, IGNORE_INDEX)
# remove the padding using attention_mask -- FIXME
_input_ids = input_ids
input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)]
labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)]
old_attention_mask = attention_mask.clone().detach()
new_input_embeds = []
new_labels = []
cur_image_idx = 0
img_token_num = [0 for _ in range(len(input_ids))]
num_images_batch = []
# rank_print("Inserting Images embedding")
for batch_idx, cur_input_ids in enumerate(input_ids):
num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum()
num_images_batch.append(num_images)
# rank0_print(num_images)
if num_images == 0:
cur_image_features = image_features[cur_image_idx]
cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids)
cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0)
new_input_embeds.append(cur_input_embeds)
new_labels.append(labels[batch_idx])
cur_image_idx += 1
continue
image_token_indices = [-1] + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]]
cur_input_ids_noim = []
cur_labels = labels[batch_idx]
cur_labels_noim = []
for i in range(len(image_token_indices) - 1):
cur_input_ids_noim.append(cur_input_ids[image_token_indices[i] + 1 : image_token_indices[i + 1]])
cur_labels_noim.append(cur_labels[image_token_indices[i] + 1 : image_token_indices[i + 1]])
split_sizes = [x.shape[0] for x in cur_labels_noim]
cur_input_embeds = self.get_model().embed_tokens(torch.cat(cur_input_ids_noim))
cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0)
cur_new_input_embeds = []
cur_new_labels = []
for i in range(num_images + 1):
cur_new_input_embeds.append(cur_input_embeds_no_im[i])
cur_new_labels.append(cur_labels_noim[i])
if i < num_images:
try:
cur_image_features = image_features[cur_image_idx]
except IndexError:
cur_image_features = image_features[cur_image_idx - 1]
img_token_num[batch_idx] += image_features[cur_image_idx].shape[0]
cur_image_idx += 1
cur_new_input_embeds.append(cur_image_features)
cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype))
cur_new_input_embeds = [x.to(self.device) for x in cur_new_input_embeds]
# import pdb; pdb.set_trace()
cur_new_input_embeds = torch.cat(cur_new_input_embeds)
cur_new_labels = torch.cat(cur_new_labels)
new_input_embeds.append(cur_new_input_embeds)
new_labels.append(cur_new_labels)
# Truncate sequences to max length as image embeddings can make the sequence longer
tokenizer_model_max_length = getattr(self.config, "tokenizer_model_max_length", None)
# rank_print("Finishing Inserting")
new_input_embeds = [x[:tokenizer_model_max_length] for x, modality in zip(new_input_embeds, modalities)]
new_labels = [x[:tokenizer_model_max_length] for x, modality in zip(new_labels, modalities)]
# TODO: Hard code for control loss spike
# if tokenizer_model_max_length is not None:
# new_input_embeds = [x[:4096] if modality != "video" else x[:tokenizer_model_max_length] for x, modality in zip(new_input_embeds, modalities)]
# new_labels = [x[:4096] if modality != "video" else x[:tokenizer_model_max_length] for x, modality in zip(new_labels, modalities)]
# Combine them
max_len = max(x.shape[0] for x in new_input_embeds)
batch_size = len(new_input_embeds)
new_input_embeds_padded = []
new_labels_padded = torch.full((batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device)
attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device)
position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device)
# rank0_print("Prepare pos id")
for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)):
cur_len = cur_new_embed.shape[0]
if getattr(self.config, "tokenizer_padding_side", "right") == "left":
new_input_embeds_padded.append(torch.cat((torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device), cur_new_embed), dim=0))
if cur_len > 0:
new_labels_padded[i, -cur_len:] = cur_new_labels
attention_mask[i, -cur_len:] = True
position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
else:
new_input_embeds_padded.append(torch.cat((cur_new_embed, torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)), dim=0))
if cur_len > 0:
new_labels_padded[i, :cur_len] = cur_new_labels
attention_mask[i, :cur_len] = True
position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
new_input_embeds = torch.stack(new_input_embeds_padded, dim=0)
# rank0_print("tokenizer padding")
if _labels is None:
new_labels = None
else:
new_labels = new_labels_padded
if _attention_mask is None:
attention_mask = None
else:
attention_mask = attention_mask.to(dtype=_attention_mask.dtype)
if _position_ids is None:
position_ids = None
if getattr(self.config, "use_pos_skipping", False) and self.training:
position_ids = torch.arange(new_input_embeds.size(1), device=new_input_embeds.device).unsqueeze(0).to(new_input_embeds.device)
split_position = random.randint(0, new_input_embeds.size(1))
left_add = random.randint(0, self.config.pos_skipping_range)
right_add = random.randint(left_add, self.config.pos_skipping_range)
position_ids[:, :split_position] += left_add
position_ids[:, split_position:] += right_add
# import pdb; pdb.set_trace()
# rank0_print("Finish preparing")
return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels, old_attention_mask, img_token_num, num_images_batch
class MLCDSegConfig(Qwen2Config):
model_type = "mlcd_seg"
class MLCDSegModel(MLCDSegMetaModel, Qwen2Model):
config_class = MLCDSegConfig
def __init__(self, config: Qwen2Config):
super(MLCDSegModel, self).__init__(config)
@dataclass
class MLCDSegOutputWithPast(CausalLMOutputWithPast):
labels: Optional[torch.FloatTensor] = None
class MLCDSegForCausalLM(Qwen2ForCausalLM, MLCDSegMetaForCausalLM):
config_class = MLCDSegConfig
def __init__(self, config):
# super(Qwen2ForCausalLM, self).__init__(config)
Qwen2ForCausalLM.__init__(self, config)
config.model_type = "mlcd_seg_clm"
config.rope_scaling = None
self.model = MLCDSegModel(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
self.sam_transform = ResizeLongestSide(IMG_SIZE)
def get_model(self):
return self.model
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
images: Optional[torch.FloatTensor] = None,
image_sizes: Optional[List[List[int]]] = None,
return_dict: Optional[bool] = None,
modalities: Optional[List[str]] = ["image"],
dpo_forward: Optional[bool] = False,
cache_position=None,
grounding_enc_imgs: Optional[List[torch.FloatTensor]] = None,
image_sam_resizes: Optional[List[torch.FloatTensor]] = None,
original_sizes: Optional[List[torch.FloatTensor]] = None,
masks_list: Optional[List[List[torch.FloatTensor]]] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
if inputs_embeds is None:
(
input_ids,
position_ids,
attention_mask,
past_key_values,
inputs_embeds,
labels
) = self.prepare_inputs_labels_for_multimodal(
input_ids,
position_ids,
attention_mask,
past_key_values,
labels,
images,
modalities,
image_sizes
)
output = super().forward(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
labels=labels,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=True,
return_dict=return_dict,
cache_position=cache_position
)
return MLCDSegOutputWithPast(**output)
def seg_forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
images: Optional[torch.FloatTensor] = None,
image_sizes: Optional[List[List[int]]] = None,
return_dict: Optional[bool] = None,
modalities: Optional[List[str]] = ["image"],
dpo_forward: Optional[bool] = False,
cache_position=None,
grounding_enc_imgs: Optional[List[torch.FloatTensor]] = None,
image_sam_resizes: Optional[List[torch.FloatTensor]] = None,
original_sizes: Optional[List[torch.FloatTensor]] = None,
masks_list: Optional[List[List[torch.FloatTensor]]] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
input_ids_ = input_ids
if inputs_embeds is None:
(
input_ids,
position_ids,
attention_mask,
past_key_values,
inputs_embeds,
labels,
old_attention_mask,
img_token_num,
num_images_batch
) = self.prepare_inputs_labels_for_multimodal(
input_ids,
position_ids,
attention_mask,
past_key_values,
labels,
images,
modalities,
image_sizes
)
if dpo_forward:
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
logits = self.lm_head(hidden_states)
return logits, labels
else:
output = super().forward(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
labels=labels,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=True,
return_dict=return_dict,
cache_position=cache_position
)
sam_image_embeddings = self.get_grounding_encoder_embs(grounding_enc_imgs)
seg_token_mask = self.create_seg_token_mask(input_ids_, old_attention_mask, img_token_num, num_images_batch)
seg_text_embeds_batch = self.process_hidden_states(output["hidden_states"], seg_token_mask)
pred_masks_batch = self.generate_and_postprocess_masks(seg_text_embeds_batch, sam_image_embeddings, num_images_batch, image_sam_resizes, original_sizes)
return pred_masks_batch
@torch.no_grad()
def generate(
self,
inputs: Optional[torch.Tensor] = None,
images: Optional[torch.Tensor] = None,
image_sizes: Optional[torch.Tensor] = None,
modalities: Optional[List[str]] = ["image"],
**kwargs,
) -> Union[GenerateOutput, torch.LongTensor]:
position_ids = kwargs.pop("position_ids", None)
attention_mask = kwargs.pop("attention_mask", None)
if "inputs_embeds" in kwargs:
raise NotImplementedError("`inputs_embeds` is not supported")
(
inputs,
position_ids,
attention_mask,
_,
inputs_embeds,
_,
old_attention_mask,
img_token_num,
num_images_batch
) = self.prepare_inputs_labels_for_multimodal(
inputs,
position_ids,
attention_mask,
None,
None,
images,
image_sizes=image_sizes,
# batch_pboxes=all_pboxes
)
llm_out = super().generate(position_ids=position_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, output_hidden_states=True, return_dict_in_generate=True, max_length=4096, **kwargs)
return llm_out.sequences
def generate_and_postprocess_masks(self, seg_text_embeds_batch, sam_image_embeddings, num_images_batch, image_sam_resizes, original_sizes):
assert len(seg_text_embeds_batch) == len(num_images_batch)
pred_masks_batch = [] # list()
for batch_i, seg_text_embeds in enumerate(seg_text_embeds_batch):
num_img = max(1, num_images_batch[batch_i])
pred_mask_ = torch.empty((0, original_sizes[batch_i][0], original_sizes[batch_i][1]), device=seg_text_embeds.device)
for img_i in range(num_img):
sparse_embeddings, dense_embeddings = self.model.sam.prompt_encoder(
points=None, boxes=None, masks=None, text_embeds=seg_text_embeds.unsqueeze(1)[img_i::num_img,:,:]
)
sparse_embeddings = sparse_embeddings.to(seg_text_embeds.dtype)
low_res_masks, _ = self.model.sam.mask_decoder(
image_embeddings=sam_image_embeddings[batch_i][img_i].unsqueeze(0),
image_pe=self.model.sam.prompt_encoder.get_dense_pe(),
sparse_prompt_embeddings=sparse_embeddings,
dense_prompt_embeddings=dense_embeddings,
multimask_output=False, )
pred_mask = self.model.sam.postprocess_masks(
low_res_masks, input_size=image_sam_resizes[batch_i][img_i], original_size=original_sizes[batch_i],)
pred_mask_ = torch.cat([pred_mask_, pred_mask[:,0]], dim=0)
pred_masks_batch.append(pred_mask_)
return pred_masks_batch
def process_hidden_states(self, output_hidden_states, seg_token_mask):
hidden_states_ = [self.model.text2sam_projection(output_hidden_states[-1])]
hidden_states_ = torch.stack(hidden_states_, dim=-1).sum(dim=-1)
seg_text_embeds_batch = []
for i, hidden_state_ in enumerate(hidden_states_):
# assert hidden_state_.shape[0] == seg_token_mask.shape[1], f"hidden:{hidden_state_.shape}, segtoken:{seg_token_mask.shape}"
# seg_text_embeds_batch.append(hidden_state_[seg_token_mask[i]])
seg_text_embeds_batch.append(hidden_state_[seg_token_mask[i][:hidden_state_.shape[0]]])
return seg_text_embeds_batch
def create_seg_token_mask(self, input_ids, attention_mask, img_token_num, num_images_batch):
input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)]
max_len = 0
for i, _ in enumerate(input_ids):
max_len = max(max_len, len(input_ids[i]) + img_token_num[i] - num_images_batch[i])
seg_token_mask = []
for i, _ in enumerate(input_ids):
mask = input_ids[i][num_images_batch[i]:] == self.seg_token_idx
seg_token_mask.append(
torch.cat(
[torch.zeros((1, img_token_num[i])).bool().to(device=self.device), mask.unsqueeze(0), torch.zeros((1, max_len-(len(input_ids[i]) + img_token_num[i] - num_images_batch[i]))).bool().to(device=self.device)], dim=1
)
)
return torch.cat(seg_token_mask, dim=0)
def get_grounding_encoder_embs(self, batch_images: torch.FloatTensor):
batch_feats = []
for images in batch_images:
batch_feats.append(torch.cat([self._encode_single_image(img) for img in images], dim=0))
return batch_feats
def _encode_single_image(self, image):
return self.model.sam.image_encoder(image.unsqueeze(0))
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
images = kwargs.pop("images", None)
image_sizes = kwargs.pop("image_sizes", None)
inputs = super().prepare_inputs_for_generation(input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs)
if images is not None:
inputs["images"] = images
if image_sizes is not None:
inputs["image_sizes"] = image_sizes
return inputs
def process_prompt(self, text, tokenizer: PreTrainedTokenizer, stage="gen") -> Dict:
if stage.lower() not in ["gen", "seg"]:
stage = "seg"
if stage.lower() == "gen":
conv = conv_templates['qwen_2'].copy()
conv.append_message(conv.roles[0], text)
conv.append_message(conv.roles[1], None)
full_prompt = conv.get_prompt()
input_ids = torch.stack([gen_image_token(full_prompt, tokenizer, return_tensors='pt')], dim=0)
return dict(
input_ids=input_ids,
labels=None,
)
else:
conv = default_conversation.copy()
BEGIN_SIGNAL = "### "
END_SIGNAL = "\n"
roles = {"human": conv.roles[0], "gpt": conv.roles[1]}
# Apply prompt templates
sys_prompt = default_conversation.system + "\n\n" + "The <image> provides an overview of the picture.\n"
full_prompt = sys_prompt + BEGIN_SIGNAL + roles["human"] + ": " + text + END_SIGNAL
full_prompt += BEGIN_SIGNAL + roles["gpt"] + ": It is [SEG]." + END_SIGNAL
full_prompt += BEGIN_SIGNAL
input_ids = torch.stack([gen_image_token(full_prompt, tokenizer, return_tensors='pt')], dim=0)
return dict(
input_ids=input_ids,
labels=None,
)
def process_images(self, images, image_processor, model_cfg):
image_aspect_ratio = getattr(model_cfg, "image_aspect_ratio", None)
new_images = []
if image_aspect_ratio == "anyres" or "anyres_max" in image_aspect_ratio:
for image in images:
image = process_anyres_image(image, image_processor, model_cfg.image_grid_pinpoints)
new_images.append(image)
else:
return image_processor.preprocess(images, return_tensors="pt")["pixel_values"]
if all(x.shape == new_images[0].shape for x in new_images):
new_images = torch.stack(new_images, dim=0)
return new_images
def seg(self, image, prompt, tokenizer, force_seg = False):
self.seg_token_idx = tokenizer(DEFAULT_SEG_TOKEN, add_special_tokens=False).input_ids[0]
image_np = np.array(image)
image_sizes = [image.size]
input_ids = self.process_prompt(prompt, tokenizer, "gen")["input_ids"].to(self.device)
image_processor = self.get_vision_tower().image_processor
image_tensors = self.process_images([image], image_processor, self.config)
image_np_resize = self.sam_transform.apply_image(image_np)
original_size_list = [image_np.shape[:2]]
image_sam_resize_list = [image_np_resize.shape[:2]]
grounding_enc_img_list = [grounding_enc_processor(torch.from_numpy(image_np_resize).permute(2, 0, 1).contiguous()).to(dtype=self.dtype, device=self.device, non_blocking=True)]
collect_size = list(set(original_size_list))
if len(collect_size) == 0:
mask_h, mask_w = 336, 336
elif len(collect_size) == 1:
mask_h, mask_w = collect_size[0]
else:
areas = [h*w for (h, w) in collect_size]
mask_h, mask_w = collect_size[areas.index(max(areas))]
if isinstance(image_tensors, list):
image_aspect_ratio = getattr(self.config, "image_aspect_ratio", None)
if image_aspect_ratio=="anyres_mul" or image_aspect_ratio=="anyres":
image_tensors = [[x_.to(dtype=self.dtype, device=self.device, non_blocking=True)for x_ in image_tensors]]
else:
image_tensors = [[x_.unsqueeze(dim=0).to(dtype=self.dtype, device=self.device, non_blocking=True) for x_ in image_tensors]]
else:
image_tensors = image_tensors.to(dtype=self.dtype, device='cuda', non_blocking=True)
if not force_seg:
attention_mask = torch.ones(input_ids.shape).bool().to(device=self.device)
with torch.inference_mode():
llm_gen = self.generate(
inputs=input_ids,
attention_mask=attention_mask,
images=image_tensors,
image_sizes=image_sizes,
grounding_enc_imgs=[torch.stack(grounding_enc_img_list, dim=0)],
image_sam_resizes=[image_sam_resize_list],
original_sizes=[(mask_h, mask_w)],
pad_token_id=tokenizer.eos_token_id
)
seg_flag = llm_gen == self.seg_token_idx
seg_flag = torch.sum(seg_flag.int()).item()
if seg_flag > 0:
force_seg = True
if force_seg:
input_ids = self.process_prompt(prompt, tokenizer, "seg")["input_ids"].to(self.device)
with torch.inference_mode():
net_out = self.seg_forward(
input_ids=input_ids,
output_hidden_states=True,
images=image_tensors,
image_sizes=image_sizes,
grounding_enc_imgs=[torch.stack(grounding_enc_img_list, dim=0)],
image_sam_resizes=[image_sam_resize_list],
original_sizes=[(mask_h, mask_w)],
)
pred_mask = net_out[0]
mask_tensor = (pred_mask > 0).int()
return mask_tensor
else:
return torch.zeros([0] + list(image_np.shape[:2]), device=self.device)
def gen_image_token(prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None):
prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split("<image>")]
def insert_separator(X, sep):
return [ele for sublist in zip(X, [sep] * len(X)) for ele in sublist][:-1]
input_ids = []
offset = 0
if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id:
offset = 1
input_ids.append(prompt_chunks[0][0])
for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)):
input_ids.extend(x[offset:])
if return_tensors is not None:
if return_tensors == "pt":
return torch.tensor(input_ids, dtype=torch.long)
raise ValueError(f"Unsupported tensor type: {return_tensors}")
return input_ids
def grounding_enc_processor(x: torch.Tensor) -> torch.Tensor:
x = (x - IMG_MEAN) / IMG_STD
h, w = x.shape[-2:]
x = F.pad(x, (0, IMG_SIZE - w, 0, IMG_SIZE - h))
return x
AutoConfig.register("mlcd_seg", MLCDSegConfig)
AutoModelForCausalLM.register(MLCDSegConfig, MLCDSegForCausalLM)
|