File size: 51,829 Bytes
b74e18c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
305557f
b74e18c
 
 
 
 
 
 
 
 
 
367cc7f
b74e18c
 
 
 
 
305557f
b74e18c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
367cc7f
 
b74e18c
 
 
 
 
 
 
 
 
 
 
367cc7f
b74e18c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
305557f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b74e18c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
305557f
b74e18c
 
305557f
b74e18c
 
 
 
 
 
 
 
 
 
 
 
 
 
305557f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b74e18c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
305557f
b74e18c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
305557f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b74e18c
305557f
 
 
 
 
 
b74e18c
 
 
 
 
 
 
 
 
 
 
 
 
 
305557f
b74e18c
 
 
305557f
b74e18c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
305557f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8164b3
 
305557f
 
b74e18c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
'''
File modification from LLAVA project @DeepGlintAI 2025
https://github.com/haotian-liu/LLaVA

origin copyright:

   Copyright 2023 Haotian Liu

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

       http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License.
'''


from abc import ABC, abstractmethod

import math
import random
import ast
import re
import json
import os
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from pathlib import Path
from dataclasses import dataclass
from PIL import Image
from transformers import Qwen2Config, Qwen2Model, Qwen2ForCausalLM, AutoConfig, AutoModelForCausalLM, PreTrainedTokenizer
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.generation.utils import GenerateOutput
from transformers.utils import cached_file
from safetensors.torch import load_file as safetensors_load
from .vision_tower import build_vision_tower
from .vision_resampler import build_vision_resampler
from .vision_projector import build_vision_projector
from .sam import build_sam_vit_h, text2sam_projection_layer
from .conversation_mlcd_seg import conv_templates, default_conversation
from .transform import ResizeLongestSide
from typing import Optional, Any, List, Tuple, Union, Dict

IGNORE_INDEX = -100
IMAGE_TOKEN_INDEX = -200
DEFAULT_SEG_TOKEN = "[SEG]"

IMG_MEAN = torch.Tensor([123.675, 116.28, 103.53]).view(-1, 1, 1)
IMG_STD = torch.Tensor([58.395, 57.12, 57.375]).view(-1, 1, 1)
IMG_SIZE = 1024

def select_best_resolution(original_size, possible_resolutions):
    """
    Selects the best resolution from a list of possible resolutions based on the original size.

    Args:
        original_size (tuple): The original size of the image in the format (width, height).
        possible_resolutions (list): A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].

    Returns:
        tuple: The best fit resolution in the format (width, height).
    """
    original_width, original_height = original_size
    best_fit = None
    max_effective_resolution = 0
    min_wasted_resolution = float("inf")

    for width, height in possible_resolutions:
        # Calculate the downscaled size to keep the aspect ratio
        scale = min(width / original_width, height / original_height)
        downscaled_width, downscaled_height = int(original_width * scale), int(original_height * scale)

        # Calculate effective and wasted resolutions
        effective_resolution = min(downscaled_width * downscaled_height, original_width * original_height)
        wasted_resolution = (width * height) - effective_resolution

        if effective_resolution > max_effective_resolution or (effective_resolution == max_effective_resolution and wasted_resolution < min_wasted_resolution):
            max_effective_resolution = effective_resolution
            min_wasted_resolution = wasted_resolution
            best_fit = (width, height)

    return best_fit


def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size):
    """
    Calculate the shape of the image patch grid after the preprocessing for images of any resolution.

    Args:
        image_size (tuple): The size of the input image in the format (width, height).
        grid_pinpoints (str): A string representation of a list of possible resolutions.
        patch_size (int): The size of each image patch.

    Returns:
        tuple: The shape of the image patch grid in the format (width, height).
    """
    if isinstance(grid_pinpoints, str) and "x" in grid_pinpoints:
        assert patch_size in [224, 336, 384, 448, 512], "patch_size should be in [224, 336, 384, 448, 512]"
        # Use regex to extract the range from the input string
        matches = re.findall(r"\((\d+)x(\d+)\)", grid_pinpoints)
        range_start = tuple(map(int, matches[0]))
        range_end = tuple(map(int, matches[-1]))
        # Generate a matrix of tuples from (range_start[0], range_start[1]) to (range_end[0], range_end[1])
        grid_pinpoints = [(i, j) for i in range(range_start[0], range_end[0] + 1) for j in range(range_start[1], range_end[1] + 1)]
        # Multiply all elements by patch_size
        grid_pinpoints = [[dim * patch_size for dim in pair] for pair in grid_pinpoints]
    if type(grid_pinpoints) is list:
        possible_resolutions = grid_pinpoints
    else:
        possible_resolutions = ast.literal_eval(grid_pinpoints)
    width, height = select_best_resolution(image_size, possible_resolutions)
    return width // patch_size, height // patch_size


class MLCDSegMetaModel:

    def __init__(self, config):
        super(MLCDSegMetaModel, self).__init__(config)

        if hasattr(config, "vision_tower_config"):
            vision_tower_weight, sam_weight, projector_weight, text2sam_projection_weight = self.dispatch_weight(config)
            delay_load = getattr(config, "delay_load", False)
            self.vision_tower = build_vision_tower(config, delay_load=delay_load)
            self.vision_resampler = build_vision_resampler(config, vision_tower=self.vision_tower)
            self.mm_projector = build_vision_projector(config, vision_cfg=self.vision_tower.config)
            self.vision_tower.vision_tower.load_state_dict(vision_tower_weight)
            self.mm_projector.load_state_dict(projector_weight)
            self.sam = build_sam_vit_h()
            self.sam.load_state_dict(sam_weight)
            self.text2sam_projection = text2sam_projection_layer(config)
            self.text2sam_projection.load_state_dict(text2sam_projection_weight)
                
            if "unpad" in getattr(config, "mm_patch_merge_type", ""):
                self.image_newline = nn.Parameter(torch.empty(config.hidden_size, dtype=self.dtype))

    def dispatch_weight(self, config):
        safetensors_set = set()
        repo = getattr(config, "_name_or_path", "'DeepGlint-AI/MLCD-Seg'")
        index_file = cached_file(repo, "model.safetensors.index.json")
        with open(index_file, "r") as safetensors_index:
            safetensors_map = json.loads(safetensors_index.read())
            for key, value in safetensors_map["weight_map"].items():
                if key.startswith("model.vision_tower.vision_tower") or key.startswith("model.sam") or \
                     key.startswith("model.mm_projector") or key.startswith("model.text2sam_projection"):
                    safetensors_set.add(value)
        vision_tower_weight = {}
        sam_weight = {}
        projector_weight = {}
        text2sam_projection_weight = {}
        for safetensors_file in safetensors_set:
            temp_load = safetensors_load(cached_file(repo, safetensors_file))
            for key, value in temp_load.items():
                if key.startswith("model.sam."):
                    sam_weight[key.replace("model.sam.", "")] = value
                if key.startswith("model.vision_tower.vision_tower."):
                    vision_tower_weight[key.replace("model.vision_tower.vision_tower.", "")] = value
                if key.startswith("model.mm_projector."):
                    projector_weight[key.replace("model.mm_projector.", "")] = value
                if key.startswith("model.text2sam_projection."):
                    text2sam_projection_weight[key.replace("model.text2sam_projection.", "")] = value
        return vision_tower_weight, sam_weight, projector_weight, text2sam_projection_weight

    def get_vision_tower(self):
        vision_tower = getattr(self, "vision_tower", None)
        if type(vision_tower) is list:
            vision_tower = vision_tower[0]
        return vision_tower


def unpad_image(tensor, original_size):
    """
    Unpads a PyTorch tensor of a padded and resized image.

    Args:
    tensor (torch.Tensor): The image tensor, assumed to be in CxHxW format.
    original_size (tuple): The original size of the image (height, width).

    Returns:
    torch.Tensor: The unpadded image tensor.
    """
    original_width, original_height = original_size
    current_height, current_width = tensor.shape[1:]

    # Compute aspect ratios
    original_aspect_ratio = original_width / original_height
    current_aspect_ratio = current_width / current_height

    # Determine padding size and direction
    if original_aspect_ratio > current_aspect_ratio:
        # Padding was added to the height
        scale_factor = current_width / original_width
        new_height = int(original_height * scale_factor)
        padding = (current_height - new_height) // 2
        unpadded_tensor = tensor[:, padding : current_height - padding, :]
    else:
        # Padding was added to the width
        scale_factor = current_height / original_height
        new_width = int(original_width * scale_factor)
        padding = (current_width - new_width) // 2
        unpadded_tensor = tensor[:, :, padding : current_width - padding]

    return unpadded_tensor


def resize_and_pad_image(image, target_resolution):
    """
    Resize and pad an image to a target resolution while maintaining aspect ratio.

    Args:
        image (PIL.Image.Image): The input image.
        target_resolution (tuple): The target resolution (width, height) of the image.

    Returns:
        PIL.Image.Image: The resized and padded image.
    """
    original_width, original_height = image.size
    target_width, target_height = target_resolution

    # Determine which dimension (width or height) to fill
    scale_w = target_width / original_width
    scale_h = target_height / original_height

    if scale_w < scale_h:
        # Width will be filled completely
        new_width = target_width
        new_height = min(math.ceil(original_height * scale_w), target_height)
    else:
        # Height will be filled completely
        new_height = target_height
        new_width = min(math.ceil(original_width * scale_h), target_width)

    # Resize the image
    resized_image = image.resize((new_width, new_height))

    # Create a new image with the target size and paste the resized image onto it
    new_image = Image.new("RGB", (target_width, target_height), (0, 0, 0))
    paste_x = (target_width - new_width) // 2
    paste_y = (target_height - new_height) // 2
    new_image.paste(resized_image, (paste_x, paste_y))

    return new_image


def divide_to_patches(image, patch_size):
    """
    Divides an image into patches of a specified size.

    Args:
        image (PIL.Image.Image): The input image.
        patch_size (int): The size of each patch.

    Returns:
        list: A list of PIL.Image.Image objects representing the patches.
    """
    patches = []
    width, height = image.size
    for i in range(0, height, patch_size):
        for j in range(0, width, patch_size):
            box = (j, i, j + patch_size, i + patch_size)
            patch = image.crop(box)
            patches.append(patch)

    return patches


def process_anyres_image(image, processor, grid_pinpoints):
    """
    Process an image with variable resolutions.

    Args:
        image (PIL.Image.Image): The input image to be processed.
        processor: The image processor object.
        grid_pinpoints (str): A string representation of a list of possible resolutions.

    Returns:
        torch.Tensor: A tensor containing the processed image patches.
    """
    # Convert grid_pinpoints from string to list
    if isinstance(grid_pinpoints, str) and "x" in grid_pinpoints:
        try:
            patch_size = processor.size[0]
        except Exception as e:
            patch_size = processor.size["shortest_edge"]
        assert patch_size in [224, 336, 384, 448, 512], "patch_size should be in [224, 336, 384, 448, 512]"
        # Use regex to extract the range from the input string
        matches = re.findall(r"\((\d+)x(\d+)\)", grid_pinpoints)
        range_start = tuple(map(int, matches[0]))
        range_end = tuple(map(int, matches[-1]))
        # Generate a matrix of tuples from (range_start[0], range_start[1]) to (range_end[0], range_end[1])
        grid_pinpoints = [(i, j) for i in range(range_start[0], range_end[0] + 1) for j in range(range_start[1], range_end[1] + 1)]
        # Multiply all elements by patch_size
        grid_pinpoints = [[dim * patch_size for dim in pair] for pair in grid_pinpoints]

    if type(grid_pinpoints) is list:
        possible_resolutions = grid_pinpoints
    else:
        possible_resolutions = ast.literal_eval(grid_pinpoints)
    best_resolution = select_best_resolution(image.size, possible_resolutions)
    image_padded = resize_and_pad_image(image, best_resolution)

    patches = divide_to_patches(image_padded, processor.crop_size["height"])

    # FIXME: this seems to be a bug that it resizes instead of pad.
    # but to keep it consistent with previous, i will keep it as it is
    # TODO: uncomment below to ablate with the padding
    if isinstance(processor.size, dict):
        shortest_edge = processor.size["shortest_edge"]
    else:
        shortest_edge = min(processor.size)
    image_original_resize = image.resize((shortest_edge, shortest_edge))
    # image_padded_square = expand2square(image, tuple(int(x*255) for x in processor.image_mean))
    # image_original_resize = image_padded_square.resize((processor.size['shortest_edge'], processor.size['shortest_edge']))

    image_patches = [image_original_resize] + patches
    image_patches = [processor.preprocess(image_patch, return_tensors="pt")["pixel_values"][0] for image_patch in image_patches]
    return torch.stack(image_patches, dim=0)


class MLCDSegMetaForCausalLM(ABC):

    @abstractmethod
    def get_model(self):
        pass

    def get_vision_tower(self):
        return self.get_model().get_vision_tower()

    def get_2dPool(self, image_feature, stride=2):
        height = width = self.get_vision_tower().num_patches_per_side
        num_frames, num_tokens, num_dim = image_feature.shape
        image_feature = image_feature.view(num_frames, height, width, -1)
        image_feature = image_feature.permute(0, 3, 1, 2).contiguous()
        # image_feature = nn.functional.max_pool2d(image_feature, self.config.mm_spatial_pool_stride)
        if self.config.mm_spatial_pool_mode == "average":
            image_feature = nn.functional.avg_pool2d(image_feature, stride)
        elif self.config.mm_spatial_pool_mode == "max":
            image_feature = nn.functional.max_pool2d(image_feature, stride)
        elif self.config.mm_spatial_pool_mode == "bilinear":
            height, width = image_feature.shape[2:]
            scaled_shape = [math.ceil(height / stride), math.ceil(width / stride)]
            image_feature = nn.functional.interpolate(image_feature, size=scaled_shape, mode='bilinear')

        else:
            raise ValueError(f"Unexpected mm_spatial_pool_mode: {self.config.mm_spatial_pool_mode}")
        image_feature = image_feature.permute(0, 2, 3, 1)
        image_feature = image_feature.view(num_frames, -1, num_dim)
        return image_feature

    def encode_images(self, images):
        image_features = self.get_model().get_vision_tower()(images)
        # image_features = self.get_model().vision_resampler(image_features, images=images)
        image_features = self.get_model().mm_projector(image_features)
        return image_features
    
    def encode_multimodals(self, videos_or_images, video_idx_in_batch, split_sizes=None):
        videos_or_images_features = self.get_model().get_vision_tower()(videos_or_images)
        per_videos_or_images_features = torch.split(videos_or_images_features, split_sizes, dim=0)  # tuple, (dim_1, 576, 4096)
        all_videos_or_images_features = []
        all_faster_video_features = []
        cur_mm_spatial_pool_stride = self.config.mm_spatial_pool_stride

        for idx, feat in enumerate(per_videos_or_images_features):
            
            feat = self.get_model().mm_projector(feat)
            faster_video_feature = 0
            slower_img_feat = 0
            if idx in video_idx_in_batch and cur_mm_spatial_pool_stride > 1:
                slower_img_feat = self.get_2dPool(feat,cur_mm_spatial_pool_stride)
                if self.config.add_faster_video:
                    cur_mm_spatial_pool_stride = cur_mm_spatial_pool_stride * 2
                    faster_video_feature = self.get_2dPool(feat,cur_mm_spatial_pool_stride)
            if slower_img_feat != 0:
                all_videos_or_images_features.append(slower_img_feat)
            else:
                all_videos_or_images_features.append(feat)
            all_faster_video_features.append(faster_video_feature)
        return all_videos_or_images_features,all_faster_video_features

    def prepare_inputs_labels_for_multimodal(self, input_ids, position_ids, attention_mask, past_key_values, labels, images, modalities=["image"], image_sizes=None):
        vision_tower = self.get_vision_tower()
        # rank_print(modalities)
        if vision_tower is None or images is None or input_ids.shape[1] == 1:
            return input_ids, position_ids, attention_mask, past_key_values, None, labels

        if isinstance(modalities, str):
            modalities = [modalities]

        # import pdb; pdb.set_trace()
        if type(images) is list or images.ndim == 5:
            if type(images) is list:
                images = [x.unsqueeze(0) if x.ndim == 3 else x for x in images]
            images_list = []
            for image in images:
                if image.ndim == 4:
                    images_list.append(image)
                else:
                    images_list.append(image.unsqueeze(0))
            concat_images = torch.cat([image for image in images_list], dim=0)
            split_sizes = [image.shape[0] for image in images_list]
            encoded_image_features = self.encode_images(concat_images)
            # image_features,all_faster_video_features = self.encode_multimodals(concat_images, video_idx_in_batch, split_sizes)

            # This is a list, each element is [num_images, patch * patch, dim]
            # rank_print(f"Concat images : {concat_images.shape}")
            encoded_image_features = torch.split(encoded_image_features, split_sizes)
            image_features = []
            for idx, image_feat in enumerate(encoded_image_features):
                image_features.append(image_feat)
            # image_features = self.encode_multimodals(concat_images, video_idx_in_batch, split_sizes)
            # rank_print(f"Encoded image feats : {[x.shape for x in image_features]}")
            # image_features = torch.split(image_features, split_sizes, dim=0)
            mm_patch_merge_type = getattr(self.config, "mm_patch_merge_type", "flat")
            image_aspect_ratio = getattr(self.config, "image_aspect_ratio", "square")
            mm_newline_position = getattr(self.config, "mm_newline_position", "one_token")

            if mm_patch_merge_type == "flat":
                image_features = [x.flatten(0, 1) for x in image_features]

            elif mm_patch_merge_type.startswith("spatial"):
                new_image_features = []
                for image_idx, image_feature in enumerate(image_features):
                    # FIXME: now assume the image is square, and split to 2x2 patches
                    # num_patches = h * w, where h = w = sqrt(num_patches)
                    # currently image_feature is a tensor of shape (4, num_patches, hidden_size)
                    # we want to first unflatten it to (2, 2, h, w, hidden_size)
                    # rank0_print("At least we are reaching here")
                    # import pdb; pdb.set_trace()
                    if image_feature.shape[0] > 1:  # multi patches and multi images operations
                        # rank0_print("Single-images")
                        base_image_feature = image_feature[0]
                        image_feature = image_feature[1:]
                        height = width = self.get_vision_tower().num_patches_per_side
                        assert height * width == base_image_feature.shape[0]

                        if "anyres_max" in image_aspect_ratio:
                            matched_anyres_max_num_patches = re.match(r"anyres_max_(\d+)", image_aspect_ratio)
                            if matched_anyres_max_num_patches:
                                max_num_patches = int(matched_anyres_max_num_patches.group(1))

                        if image_aspect_ratio == "anyres" or "anyres_max" in image_aspect_ratio:
                            if hasattr(self.get_vision_tower(), "image_size"):
                                vision_tower_image_size = self.get_vision_tower().image_size
                            else:
                                raise ValueError("vision_tower_image_size is not found in the vision tower.")
                            try:
                                num_patch_width, num_patch_height = get_anyres_image_grid_shape(image_sizes[image_idx], self.config.image_grid_pinpoints, vision_tower_image_size)
                            except Exception as e:
                                num_patch_width, num_patch_height = 2, 2
                            image_feature = image_feature.view(num_patch_height, num_patch_width, height, width, -1)
                        else:
                            image_feature = image_feature.view(2, 2, height, width, -1)

                        if "maxpool2x2" in mm_patch_merge_type:
                            image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
                            image_feature = image_feature.flatten(1, 2).flatten(2, 3)
                            image_feature = nn.functional.max_pool2d(image_feature, 2)
                            image_feature = image_feature.flatten(1, 2).transpose(0, 1)
                        elif "unpad" in mm_patch_merge_type and "anyres_max" in image_aspect_ratio and matched_anyres_max_num_patches:
                            unit = image_feature.shape[2]
                            image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
                            image_feature = image_feature.flatten(1, 2).flatten(2, 3)
                            image_feature = unpad_image(image_feature, image_sizes[image_idx])
                            c, h, w = image_feature.shape
                            times = math.sqrt(h * w / (max_num_patches * unit**2))
                            if times > 1.1:
                                image_feature = image_feature[None]
                                image_feature = nn.functional.interpolate(image_feature, [int(h // times), int(w // times)], mode="bilinear")[0]
                            image_feature = torch.cat((image_feature, self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1).to(image_feature.device)), dim=-1)
                            image_feature = image_feature.flatten(1, 2).transpose(0, 1)
                        elif "unpad" in mm_patch_merge_type:
                            image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
                            image_feature = image_feature.flatten(1, 2).flatten(2, 3)
                            image_feature = unpad_image(image_feature, image_sizes[image_idx])
                            image_feature = torch.cat((image_feature, self.model.image_newline[:, None, None].expand(*image_feature.shape[:-1], 1).to(image_feature.device)), dim=-1)
                            image_feature = image_feature.flatten(1, 2).transpose(0, 1)
                        else:
                            image_feature = image_feature.permute(0, 2, 1, 3, 4).contiguous()
                            image_feature = image_feature.flatten(0, 3)
                        if "nobase" in mm_patch_merge_type:
                            pass
                        else:
                            image_feature = torch.cat((base_image_feature, image_feature), dim=0)
                        new_image_features.append(image_feature)
                    else:  # single image operations
                        image_feature = image_feature[0]
                        if "unpad" in mm_patch_merge_type:
                            image_feature = torch.cat((image_feature, self.model.image_newline[None]), dim=0)

                        new_image_features.append(image_feature)
                image_features = new_image_features
            else:
                raise ValueError(f"Unexpected mm_patch_merge_type: {self.config.mm_patch_merge_type}")
        else:
            image_features = self.encode_images(images)

        # TODO: image start / end is not implemented here to support pretraining.
        if getattr(self.config, "tune_mm_mlp_adapter", False) and getattr(self.config, "mm_use_im_start_end", False):
            raise NotImplementedError
        # rank_print(f"Total images : {len(image_features)}")

        # Let's just add dummy tensors if they do not exist,
        # it is a headache to deal with None all the time.
        # But it is not ideal, and if you have a better idea,
        # please open an issue / submit a PR, thanks.
        _labels = labels
        _position_ids = position_ids
        _attention_mask = attention_mask
        if attention_mask is None:
            attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
        else:
            attention_mask = attention_mask.bool()
        if position_ids is None:
            position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device)
        if labels is None:
            labels = torch.full_like(input_ids, IGNORE_INDEX)

        # remove the padding using attention_mask -- FIXME
        _input_ids = input_ids
        input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)]
        labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)]
        old_attention_mask = attention_mask.clone().detach()

        new_input_embeds = []
        new_labels = []
        cur_image_idx = 0
        img_token_num = [0 for _ in range(len(input_ids))]
        num_images_batch = []
        # rank_print("Inserting Images embedding")
        for batch_idx, cur_input_ids in enumerate(input_ids):
            num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum()
            num_images_batch.append(num_images)
            # rank0_print(num_images)
            if num_images == 0:
                cur_image_features = image_features[cur_image_idx]
                cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids)
                cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0)
                new_input_embeds.append(cur_input_embeds)
                new_labels.append(labels[batch_idx])
                cur_image_idx += 1
                continue

            image_token_indices = [-1] + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]]
            cur_input_ids_noim = []
            cur_labels = labels[batch_idx]
            cur_labels_noim = []
            for i in range(len(image_token_indices) - 1):
                cur_input_ids_noim.append(cur_input_ids[image_token_indices[i] + 1 : image_token_indices[i + 1]])
                cur_labels_noim.append(cur_labels[image_token_indices[i] + 1 : image_token_indices[i + 1]])
            split_sizes = [x.shape[0] for x in cur_labels_noim]
            cur_input_embeds = self.get_model().embed_tokens(torch.cat(cur_input_ids_noim))
            cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0)
            cur_new_input_embeds = []
            cur_new_labels = []

            for i in range(num_images + 1):
                cur_new_input_embeds.append(cur_input_embeds_no_im[i])
                cur_new_labels.append(cur_labels_noim[i])
                if i < num_images:
                    try:
                        cur_image_features = image_features[cur_image_idx]
                    except IndexError:
                        cur_image_features = image_features[cur_image_idx - 1]
                    img_token_num[batch_idx] += image_features[cur_image_idx].shape[0]
                    cur_image_idx += 1
                    cur_new_input_embeds.append(cur_image_features)
                    cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype))

            cur_new_input_embeds = [x.to(self.device) for x in cur_new_input_embeds]

            # import pdb; pdb.set_trace()
            cur_new_input_embeds = torch.cat(cur_new_input_embeds)
            cur_new_labels = torch.cat(cur_new_labels)

            new_input_embeds.append(cur_new_input_embeds)
            new_labels.append(cur_new_labels)

        # Truncate sequences to max length as image embeddings can make the sequence longer
        tokenizer_model_max_length = getattr(self.config, "tokenizer_model_max_length", None)
        # rank_print("Finishing Inserting")

        new_input_embeds = [x[:tokenizer_model_max_length] for x, modality in zip(new_input_embeds, modalities)]
        new_labels = [x[:tokenizer_model_max_length] for x, modality in zip(new_labels, modalities)]
        # TODO: Hard code for control loss spike
        # if tokenizer_model_max_length is not None:
        #     new_input_embeds = [x[:4096] if modality != "video" else x[:tokenizer_model_max_length] for x, modality in zip(new_input_embeds, modalities)]
        #     new_labels = [x[:4096] if modality != "video" else x[:tokenizer_model_max_length] for x, modality in zip(new_labels, modalities)]

        # Combine them
        max_len = max(x.shape[0] for x in new_input_embeds)
        batch_size = len(new_input_embeds)

        new_input_embeds_padded = []
        new_labels_padded = torch.full((batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device)
        attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device)
        position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device)
        # rank0_print("Prepare pos id")

        for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)):
            cur_len = cur_new_embed.shape[0]
            if getattr(self.config, "tokenizer_padding_side", "right") == "left":
                new_input_embeds_padded.append(torch.cat((torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device), cur_new_embed), dim=0))
                if cur_len > 0:
                    new_labels_padded[i, -cur_len:] = cur_new_labels
                    attention_mask[i, -cur_len:] = True
                    position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
            else:
                new_input_embeds_padded.append(torch.cat((cur_new_embed, torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)), dim=0))
                if cur_len > 0:
                    new_labels_padded[i, :cur_len] = cur_new_labels
                    attention_mask[i, :cur_len] = True
                    position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)

        new_input_embeds = torch.stack(new_input_embeds_padded, dim=0)
        # rank0_print("tokenizer padding")

        if _labels is None:
            new_labels = None
        else:
            new_labels = new_labels_padded

        if _attention_mask is None:
            attention_mask = None
        else:
            attention_mask = attention_mask.to(dtype=_attention_mask.dtype)

        if _position_ids is None:
            position_ids = None
        if getattr(self.config, "use_pos_skipping", False) and self.training:
            position_ids = torch.arange(new_input_embeds.size(1), device=new_input_embeds.device).unsqueeze(0).to(new_input_embeds.device)
            split_position = random.randint(0, new_input_embeds.size(1))
            left_add = random.randint(0, self.config.pos_skipping_range)
            right_add = random.randint(left_add, self.config.pos_skipping_range)
            position_ids[:, :split_position] += left_add
            position_ids[:, split_position:] += right_add
        # import pdb; pdb.set_trace()
        # rank0_print("Finish preparing")
        return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels, old_attention_mask, img_token_num, num_images_batch


class MLCDSegConfig(Qwen2Config):
    model_type = "mlcd_seg"


class MLCDSegModel(MLCDSegMetaModel, Qwen2Model):
    config_class = MLCDSegConfig

    def __init__(self, config: Qwen2Config):
        super(MLCDSegModel, self).__init__(config)

@dataclass
class MLCDSegOutputWithPast(CausalLMOutputWithPast):
    labels: Optional[torch.FloatTensor] = None
    
class MLCDSegForCausalLM(Qwen2ForCausalLM, MLCDSegMetaForCausalLM):
    config_class = MLCDSegConfig

    def __init__(self, config):
        # super(Qwen2ForCausalLM, self).__init__(config)
        Qwen2ForCausalLM.__init__(self, config)
        config.model_type = "mlcd_seg_clm"
        config.rope_scaling = None

        self.model = MLCDSegModel(config)
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
        # Initialize weights and apply final processing
        self.post_init()
        self.sam_transform = ResizeLongestSide(IMG_SIZE)

    def get_model(self):
        return self.model

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        images: Optional[torch.FloatTensor] = None,
        image_sizes: Optional[List[List[int]]] = None,
        return_dict: Optional[bool] = None,
        modalities: Optional[List[str]] = ["image"],
        dpo_forward: Optional[bool] = False,
        cache_position=None,
        grounding_enc_imgs: Optional[List[torch.FloatTensor]] = None,
        image_sam_resizes: Optional[List[torch.FloatTensor]] = None,
        original_sizes: Optional[List[torch.FloatTensor]] = None,
        masks_list: Optional[List[List[torch.FloatTensor]]] = None,
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        if inputs_embeds is None:
            (
                input_ids,
                position_ids,
                attention_mask,
                past_key_values,
                inputs_embeds,
                labels
            ) = self.prepare_inputs_labels_for_multimodal(
                input_ids,
                position_ids,
                attention_mask,
                past_key_values,
                labels,
                images,
                modalities,
                image_sizes
            )
        output = super().forward(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            labels=labels,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=True,
            return_dict=return_dict,
            cache_position=cache_position
        )
        return MLCDSegOutputWithPast(**output)
    
    def seg_forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        images: Optional[torch.FloatTensor] = None,
        image_sizes: Optional[List[List[int]]] = None,
        return_dict: Optional[bool] = None,
        modalities: Optional[List[str]] = ["image"],
        dpo_forward: Optional[bool] = False,
        cache_position=None,
        grounding_enc_imgs: Optional[List[torch.FloatTensor]] = None,
        image_sam_resizes: Optional[List[torch.FloatTensor]] = None,
        original_sizes: Optional[List[torch.FloatTensor]] = None,
        masks_list: Optional[List[List[torch.FloatTensor]]] = None,
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        input_ids_ = input_ids
        if inputs_embeds is None:
            (
                input_ids,
                position_ids,
                attention_mask,
                past_key_values,
                inputs_embeds,
                labels,
                old_attention_mask,
                img_token_num,
                num_images_batch
            ) = self.prepare_inputs_labels_for_multimodal(
                input_ids,
                position_ids,
                attention_mask,
                past_key_values,
                labels,
                images,
                modalities,
                image_sizes
            )

        if dpo_forward:
            outputs = self.model(
                input_ids=input_ids,
                attention_mask=attention_mask,
                position_ids=position_ids,
                past_key_values=past_key_values,
                inputs_embeds=inputs_embeds,
                use_cache=use_cache,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
            )

            hidden_states = outputs[0]
            logits = self.lm_head(hidden_states)
            return logits, labels

        else:
            output = super().forward(
                input_ids=input_ids,
                attention_mask=attention_mask,
                position_ids=position_ids,
                past_key_values=past_key_values,
                inputs_embeds=inputs_embeds,
                labels=labels,
                use_cache=use_cache,
                output_attentions=output_attentions,
                output_hidden_states=True,
                return_dict=return_dict,
                cache_position=cache_position
            )
        sam_image_embeddings = self.get_grounding_encoder_embs(grounding_enc_imgs)
        seg_token_mask = self.create_seg_token_mask(input_ids_, old_attention_mask, img_token_num, num_images_batch)
        seg_text_embeds_batch = self.process_hidden_states(output["hidden_states"], seg_token_mask)
        pred_masks_batch = self.generate_and_postprocess_masks(seg_text_embeds_batch, sam_image_embeddings, num_images_batch, image_sam_resizes, original_sizes)
        return pred_masks_batch

    @torch.no_grad()
    def generate(
        self,
        inputs: Optional[torch.Tensor] = None,
        images: Optional[torch.Tensor] = None,
        image_sizes: Optional[torch.Tensor] = None,
        modalities: Optional[List[str]] = ["image"],
        **kwargs,
    ) -> Union[GenerateOutput, torch.LongTensor]:
        position_ids = kwargs.pop("position_ids", None)
        attention_mask = kwargs.pop("attention_mask", None)
        if "inputs_embeds" in kwargs:
            raise NotImplementedError("`inputs_embeds` is not supported")
        (
            inputs,
            position_ids,
            attention_mask,
            _,
            inputs_embeds,
            _,
            old_attention_mask,
            img_token_num,
            num_images_batch
        ) = self.prepare_inputs_labels_for_multimodal(
            inputs,
            position_ids,
            attention_mask,
            None,
            None,
            images,
            image_sizes=image_sizes,
            # batch_pboxes=all_pboxes
        )
        llm_out = super().generate(position_ids=position_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, output_hidden_states=True, return_dict_in_generate=True, max_length=4096, **kwargs)
        return llm_out.sequences


    def generate_and_postprocess_masks(self, seg_text_embeds_batch, sam_image_embeddings, num_images_batch, image_sam_resizes, original_sizes):
        assert len(seg_text_embeds_batch) == len(num_images_batch)
                
        pred_masks_batch = [] # list()
        for batch_i, seg_text_embeds in enumerate(seg_text_embeds_batch):
            num_img = max(1, num_images_batch[batch_i])

            pred_mask_  = torch.empty((0, original_sizes[batch_i][0], original_sizes[batch_i][1]), device=seg_text_embeds.device)
            for img_i in range(num_img):
                sparse_embeddings, dense_embeddings = self.model.sam.prompt_encoder(
                    points=None, boxes=None, masks=None, text_embeds=seg_text_embeds.unsqueeze(1)[img_i::num_img,:,:]
                )
                sparse_embeddings = sparse_embeddings.to(seg_text_embeds.dtype)
                
                low_res_masks, _ = self.model.sam.mask_decoder(
                    image_embeddings=sam_image_embeddings[batch_i][img_i].unsqueeze(0),
                    image_pe=self.model.sam.prompt_encoder.get_dense_pe(),
                    sparse_prompt_embeddings=sparse_embeddings, 
                    dense_prompt_embeddings=dense_embeddings,
                    multimask_output=False, )
                pred_mask = self.model.sam.postprocess_masks(
                low_res_masks, input_size=image_sam_resizes[batch_i][img_i], original_size=original_sizes[batch_i],)
                pred_mask_ = torch.cat([pred_mask_, pred_mask[:,0]], dim=0)
            pred_masks_batch.append(pred_mask_)
        return  pred_masks_batch
                
    def process_hidden_states(self, output_hidden_states, seg_token_mask):
        hidden_states_ = [self.model.text2sam_projection(output_hidden_states[-1])]
        hidden_states_ = torch.stack(hidden_states_, dim=-1).sum(dim=-1)
        seg_text_embeds_batch = []
        for i, hidden_state_ in enumerate(hidden_states_):
            # assert hidden_state_.shape[0] == seg_token_mask.shape[1], f"hidden:{hidden_state_.shape}, segtoken:{seg_token_mask.shape}"
            # seg_text_embeds_batch.append(hidden_state_[seg_token_mask[i]])
            seg_text_embeds_batch.append(hidden_state_[seg_token_mask[i][:hidden_state_.shape[0]]])
        return seg_text_embeds_batch
        
    def create_seg_token_mask(self, input_ids, attention_mask, img_token_num, num_images_batch):
        input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)]
        max_len = 0
        for i, _ in enumerate(input_ids):
            max_len = max(max_len, len(input_ids[i]) + img_token_num[i] - num_images_batch[i])
            
        seg_token_mask = []
        for i, _ in enumerate(input_ids):
            mask = input_ids[i][num_images_batch[i]:] == self.seg_token_idx
            seg_token_mask.append(
                torch.cat(
                    [torch.zeros((1, img_token_num[i])).bool().to(device=self.device), mask.unsqueeze(0), torch.zeros((1, max_len-(len(input_ids[i]) + img_token_num[i] - num_images_batch[i]))).bool().to(device=self.device)], dim=1
                )
            )
        return torch.cat(seg_token_mask, dim=0)
            
    def get_grounding_encoder_embs(self, batch_images: torch.FloatTensor):
        batch_feats = []
        for images in batch_images:
            batch_feats.append(torch.cat([self._encode_single_image(img) for img in images], dim=0))
        return batch_feats

    def _encode_single_image(self, image):
        return self.model.sam.image_encoder(image.unsqueeze(0))
 
    def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
        images = kwargs.pop("images", None)
        image_sizes = kwargs.pop("image_sizes", None)
        inputs = super().prepare_inputs_for_generation(input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs)
        if images is not None:
            inputs["images"] = images
        if image_sizes is not None:
            inputs["image_sizes"] = image_sizes
        return inputs
    
    def process_prompt(self, text, tokenizer: PreTrainedTokenizer, stage="gen") -> Dict:
        if stage.lower() not in ["gen", "seg"]:
            stage = "seg"
        if stage.lower() == "gen":
            conv = conv_templates['qwen_2'].copy()
            conv.append_message(conv.roles[0], text)
            conv.append_message(conv.roles[1], None)
            full_prompt = conv.get_prompt()
            input_ids = torch.stack([gen_image_token(full_prompt, tokenizer, return_tensors='pt')], dim=0)
            return dict(
                input_ids=input_ids,
                labels=None,
            )
        else:
            conv = default_conversation.copy()
            BEGIN_SIGNAL = "### "
            END_SIGNAL = "\n"
            roles = {"human": conv.roles[0], "gpt": conv.roles[1]}
            # Apply prompt templates
            sys_prompt = default_conversation.system + "\n\n" + "The <image> provides an overview of the picture.\n"
            full_prompt = sys_prompt + BEGIN_SIGNAL + roles["human"] + ": " + text + END_SIGNAL
            full_prompt += BEGIN_SIGNAL + roles["gpt"] + ": It is [SEG]." + END_SIGNAL
            full_prompt += BEGIN_SIGNAL
            input_ids = torch.stack([gen_image_token(full_prompt, tokenizer, return_tensors='pt')], dim=0)
            return dict(
                input_ids=input_ids,
                labels=None,
            )
    
    def process_images(self, images, image_processor, model_cfg):
        image_aspect_ratio = getattr(model_cfg, "image_aspect_ratio", None)
        new_images = []
        if image_aspect_ratio == "anyres" or "anyres_max" in image_aspect_ratio:
            for image in images:
                image = process_anyres_image(image, image_processor, model_cfg.image_grid_pinpoints)
                new_images.append(image)
        else:
            return image_processor.preprocess(images, return_tensors="pt")["pixel_values"]
        if all(x.shape == new_images[0].shape for x in new_images):
            new_images = torch.stack(new_images, dim=0)
        return new_images

    def seg(self, image, prompt, tokenizer, force_seg = False):
        self.seg_token_idx = tokenizer(DEFAULT_SEG_TOKEN, add_special_tokens=False).input_ids[0]
        image_np = np.array(image)
        image_sizes = [image.size]
        input_ids = self.process_prompt(prompt, tokenizer, "gen")["input_ids"].to(self.device)
        image_processor = self.get_vision_tower().image_processor
        image_tensors = self.process_images([image], image_processor, self.config)
        image_np_resize = self.sam_transform.apply_image(image_np)
        original_size_list = [image_np.shape[:2]]
        image_sam_resize_list = [image_np_resize.shape[:2]]
        grounding_enc_img_list = [grounding_enc_processor(torch.from_numpy(image_np_resize).permute(2, 0, 1).contiguous()).to(dtype=self.dtype, device=self.device, non_blocking=True)]
        collect_size = list(set(original_size_list))
        if len(collect_size) == 0:
            mask_h, mask_w = 336, 336
        elif len(collect_size) == 1:
            mask_h, mask_w = collect_size[0]
        else:
            areas = [h*w for (h, w) in collect_size]
            mask_h, mask_w = collect_size[areas.index(max(areas))]
        if isinstance(image_tensors, list):
            image_aspect_ratio = getattr(self.config, "image_aspect_ratio", None)
            if image_aspect_ratio=="anyres_mul" or image_aspect_ratio=="anyres":
                image_tensors = [[x_.to(dtype=self.dtype, device=self.device, non_blocking=True)for x_ in image_tensors]]
            else:
                image_tensors = [[x_.unsqueeze(dim=0).to(dtype=self.dtype, device=self.device, non_blocking=True) for x_ in image_tensors]]
        else:
            image_tensors = image_tensors.to(dtype=self.dtype, device='cuda', non_blocking=True)
        if not force_seg:
            attention_mask = torch.ones(input_ids.shape).bool().to(device=self.device)
            with torch.inference_mode():
                llm_gen = self.generate(
                    inputs=input_ids,
                    attention_mask=attention_mask,
                    images=image_tensors,
                    image_sizes=image_sizes,
                    grounding_enc_imgs=[torch.stack(grounding_enc_img_list, dim=0)],
                    image_sam_resizes=[image_sam_resize_list],
                    original_sizes=[(mask_h, mask_w)],
                    pad_token_id=tokenizer.eos_token_id
                )
            seg_flag = llm_gen == self.seg_token_idx
            seg_flag = torch.sum(seg_flag.int()).item()
            if seg_flag > 0:
                force_seg = True
        if force_seg:
            input_ids = self.process_prompt(prompt, tokenizer, "seg")["input_ids"].to(self.device)
            with torch.inference_mode():
                net_out = self.seg_forward(
                    input_ids=input_ids,
                    output_hidden_states=True,
                    images=image_tensors,
                    image_sizes=image_sizes,
                    grounding_enc_imgs=[torch.stack(grounding_enc_img_list, dim=0)],
                    image_sam_resizes=[image_sam_resize_list],
                    original_sizes=[(mask_h, mask_w)],
                )
            pred_mask = net_out[0]
            mask_tensor = (pred_mask > 0).int()
            return mask_tensor
        else:
            return torch.zeros([0] + list(image_np.shape[:2]), device=self.device)


def gen_image_token(prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None):
    prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split("<image>")]

    def insert_separator(X, sep):
        return [ele for sublist in zip(X, [sep] * len(X)) for ele in sublist][:-1]

    input_ids = []
    offset = 0
    if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id:
        offset = 1
        input_ids.append(prompt_chunks[0][0])

    for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)):
        input_ids.extend(x[offset:])

    if return_tensors is not None:
        if return_tensors == "pt":
            return torch.tensor(input_ids, dtype=torch.long)
        raise ValueError(f"Unsupported tensor type: {return_tensors}")
    return input_ids


def grounding_enc_processor(x: torch.Tensor) -> torch.Tensor:
    x = (x - IMG_MEAN) / IMG_STD
    h, w = x.shape[-2:]
    x = F.pad(x, (0, IMG_SIZE - w, 0, IMG_SIZE - h))
    return x


AutoConfig.register("mlcd_seg", MLCDSegConfig)
AutoModelForCausalLM.register(MLCDSegConfig, MLCDSegForCausalLM)