galaxy_gen / README.md
Abhiroop174's picture
Update README.md
621843d verified
---
license: mit
language:
- en
pipeline_tag: unconditional-image-generation
---
# galaxy_gen
`galaxy_gen` is a library to generate galaxy data/distributions. The models used are present in this page.
## Installation
You can install the package using pip:
```sh
pip install galaxy_gen
```
## Usage
Here is an example of how to use the galaxy_gen library:
```python
# example_usage.py
import torch
import matplotlib.pyplot as plt
import galaxy_gen
from galaxy_gen.sampler import load_model, generate_samples
import os
# Path to your saved model checkpoint.
model_path = os.path.join(os.path.dirname(galaxy_gen.__file__), 'models/sample_model')
device = 'cpu' # or 'cuda' if you have a GPU
# Load the model.
model = load_sample_model(model_path, device=device)
# Generate random samples.
samples = generate_samples(model)
# (Optional) Visualize the samples.
samples = samples.cpu().numpy()
fig, axes = plt.subplots(4, 4, figsize=(8, 8))
for i, ax in enumerate(axes.flatten()):
ax.imshow(samples[i][0], cmap='gray')
ax.axis('off')
plt.show()
```
Another expample to use the pre-trained model
```python
# example_usage.py
import torch
import matplotlib.pyplot as plt
from galaxy_gen.sampler import load_model, generate_metallicity_samples, generate_formationtime_samples
# Path to your saved model checkpoint.
model_path = 'models/formationtime_model.pth'
device = 'cpu' # or 'cuda' if you have a GPU
# Load the model.
model = load_model("formation_time",model_path, device=device)
# Generate random samples.
samples = generate_formationtime_samples(model)
# (Optional) Visualize the samples.
samples = samples.cpu().numpy()
fig, axes = plt.subplots(4, 4, figsize=(8, 8))
for i, ax in enumerate(axes.flatten()):
ax.imshow(samples[i][0])
ax.axis('off')
plt.show()
```
## License
This project is licensed under the MIT License - see the LICENSE file for details.