|
--- |
|
license: mit |
|
language: |
|
- en |
|
pipeline_tag: unconditional-image-generation |
|
--- |
|
# galaxy_gen |
|
|
|
`galaxy_gen` is a library to generate galaxy data/distributions. The models used are present in this page. |
|
|
|
## Installation |
|
|
|
You can install the package using pip: |
|
|
|
```sh |
|
pip install galaxy_gen |
|
``` |
|
|
|
## Usage |
|
Here is an example of how to use the galaxy_gen library: |
|
|
|
```python |
|
# example_usage.py |
|
import torch |
|
import matplotlib.pyplot as plt |
|
import galaxy_gen |
|
from galaxy_gen.sampler import load_model, generate_samples |
|
import os |
|
|
|
# Path to your saved model checkpoint. |
|
model_path = os.path.join(os.path.dirname(galaxy_gen.__file__), 'models/sample_model') |
|
device = 'cpu' # or 'cuda' if you have a GPU |
|
|
|
# Load the model. |
|
model = load_sample_model(model_path, device=device) |
|
|
|
# Generate random samples. |
|
samples = generate_samples(model) |
|
|
|
# (Optional) Visualize the samples. |
|
samples = samples.cpu().numpy() |
|
fig, axes = plt.subplots(4, 4, figsize=(8, 8)) |
|
for i, ax in enumerate(axes.flatten()): |
|
ax.imshow(samples[i][0], cmap='gray') |
|
ax.axis('off') |
|
plt.show() |
|
``` |
|
|
|
Another expample to use the pre-trained model |
|
```python |
|
# example_usage.py |
|
import torch |
|
import matplotlib.pyplot as plt |
|
from galaxy_gen.sampler import load_model, generate_metallicity_samples, generate_formationtime_samples |
|
|
|
# Path to your saved model checkpoint. |
|
model_path = 'models/formationtime_model.pth' |
|
device = 'cpu' # or 'cuda' if you have a GPU |
|
|
|
# Load the model. |
|
model = load_model("formation_time",model_path, device=device) |
|
|
|
# Generate random samples. |
|
samples = generate_formationtime_samples(model) |
|
|
|
# (Optional) Visualize the samples. |
|
samples = samples.cpu().numpy() |
|
fig, axes = plt.subplots(4, 4, figsize=(8, 8)) |
|
for i, ax in enumerate(axes.flatten()): |
|
ax.imshow(samples[i][0]) |
|
ax.axis('off') |
|
plt.show() |
|
|
|
``` |
|
|
|
## License |
|
This project is licensed under the MIT License - see the LICENSE file for details. |