import torch | |
import torch.nn as nn | |
class SimpleRNN(nn.Module): | |
def __init__(self, input_size, hidden_size, output_size): | |
super(SimpleRNN, self).__init__() | |
self.input_size = input_size | |
self.hidden_size = hidden_size | |
self.rnn = nn.RNN(input_size, hidden_size, batch_first=True) | |
self.fc = nn.Linear(hidden_size, output_size) | |
def forward(self, x, hidden): | |
x = torch.nn.functional.one_hot(x, num_classes=self.input_size).float() | |
out, hidden = self.rnn(x.unsqueeze(0), hidden) | |
out = self.fc(out[:, -1, :]) | |
return out, hidden | |