Create train_nq.py
Browse files- train_nq.py +111 -0
train_nq.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import logging
|
4 |
+
|
5 |
+
from datasets import load_dataset
|
6 |
+
|
7 |
+
from sentence_transformers.evaluation import SequentialEvaluator, SimilarityFunction
|
8 |
+
from sentence_transformers.models import Pooling, Transformer
|
9 |
+
from sentence_transformers.sparse_encoder import SparseEncoder
|
10 |
+
from sentence_transformers.sparse_encoder.evaluation import (
|
11 |
+
SparseEmbeddingSimilarityEvaluator,
|
12 |
+
)
|
13 |
+
from sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator import SparseNanoBEIREvaluator
|
14 |
+
from sentence_transformers.sparse_encoder.losses import CSRLoss
|
15 |
+
from sentence_transformers.sparse_encoder.models import CSRSparsity
|
16 |
+
from sentence_transformers.sparse_encoder.trainer import SparseEncoderTrainer
|
17 |
+
from sentence_transformers.sparse_encoder.training_args import (
|
18 |
+
SparseEncoderTrainingArguments,
|
19 |
+
)
|
20 |
+
from sentence_transformers.training_args import BatchSamplers
|
21 |
+
|
22 |
+
# Set up logging
|
23 |
+
logging.basicConfig(format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO)
|
24 |
+
|
25 |
+
|
26 |
+
def main():
|
27 |
+
# Initialize model components
|
28 |
+
model_name = "microsoft/mpnet-base"
|
29 |
+
transformer = Transformer(model_name)
|
30 |
+
# transformer.requires_grad_(False) # Freeze the transformer model
|
31 |
+
pooling = Pooling(transformer.get_word_embedding_dimension(), pooling_mode="mean")
|
32 |
+
csr_sparsity = CSRSparsity(
|
33 |
+
input_dim=transformer.get_word_embedding_dimension(),
|
34 |
+
hidden_dim=4 * transformer.get_word_embedding_dimension(),
|
35 |
+
k=256, # Number of top values to keep
|
36 |
+
k_aux=512, # Number of top values for auxiliary loss
|
37 |
+
)
|
38 |
+
|
39 |
+
# Create the SparseEncoder model
|
40 |
+
model = SparseEncoder(modules=[transformer, pooling, csr_sparsity])
|
41 |
+
|
42 |
+
# 2a. Load the NQ dataset: https://huggingface.co/datasets/sentence-transformers/natural-questions
|
43 |
+
logging.info("Read the Natural Questions training dataset")
|
44 |
+
full_dataset = load_dataset("sentence-transformers/natural-questions", split="train").select(range(100_000))
|
45 |
+
dataset_dict = full_dataset.train_test_split(test_size=1_000, seed=12)
|
46 |
+
train_dataset = dataset_dict["train"]
|
47 |
+
eval_dataset = dataset_dict["test"]
|
48 |
+
logging.info(train_dataset)
|
49 |
+
logging.info(eval_dataset)
|
50 |
+
|
51 |
+
# 3. Initialize the loss
|
52 |
+
loss = CSRLoss(
|
53 |
+
model=model,
|
54 |
+
beta=0.1, # Weight for auxiliary loss
|
55 |
+
gamma=1, # Weight for ranking loss
|
56 |
+
scale=20.0, # Scale for similarity computation
|
57 |
+
)
|
58 |
+
|
59 |
+
# 4. Define an evaluator for use during training. This is useful to keep track of alongside the evaluation loss.
|
60 |
+
evaluators = []
|
61 |
+
for k_dim in [16, 32, 64, 128, 256]:
|
62 |
+
evaluators.append(SparseNanoBEIREvaluator(["msmarco", "nfcorpus", "nq"], truncate_dim=k_dim))
|
63 |
+
dev_evaluator = SequentialEvaluator(evaluators, main_score_function=lambda scores: scores[-1])
|
64 |
+
dev_evaluator(model)
|
65 |
+
|
66 |
+
# Set up training arguments
|
67 |
+
run_name = "sparse-mpnet-base-nq-fresh"
|
68 |
+
training_args = SparseEncoderTrainingArguments(
|
69 |
+
output_dir=f"models/{run_name}",
|
70 |
+
num_train_epochs=1,
|
71 |
+
per_device_train_batch_size=32,
|
72 |
+
per_device_eval_batch_size=32,
|
73 |
+
warmup_ratio=0.1,
|
74 |
+
fp16=False, # Set to False if you get an error that your GPU can't run on FP16
|
75 |
+
bf16=True, # Set to True if you have a GPU that supports BF16
|
76 |
+
batch_sampler=BatchSamplers.NO_DUPLICATES, # MultipleNegativesRankingLoss benefits from no duplicate samples in a batch
|
77 |
+
logging_steps=200,
|
78 |
+
eval_strategy="steps",
|
79 |
+
eval_steps=400,
|
80 |
+
save_strategy="steps",
|
81 |
+
save_steps=400,
|
82 |
+
learning_rate=4e-5,
|
83 |
+
optim="adamw_torch",
|
84 |
+
weight_decay=1e-4,
|
85 |
+
adam_epsilon=6.25e-10,
|
86 |
+
run_name=run_name,
|
87 |
+
)
|
88 |
+
|
89 |
+
# Initialize trainer
|
90 |
+
trainer = SparseEncoderTrainer(
|
91 |
+
model=model,
|
92 |
+
args=training_args,
|
93 |
+
train_dataset=train_dataset,
|
94 |
+
eval_dataset=eval_dataset,
|
95 |
+
loss=loss,
|
96 |
+
evaluator=dev_evaluator,
|
97 |
+
)
|
98 |
+
|
99 |
+
# Train model
|
100 |
+
trainer.train()
|
101 |
+
|
102 |
+
# 7. Evaluate the model performance again after training
|
103 |
+
dev_evaluator(model)
|
104 |
+
|
105 |
+
# 8. Save the trained & evaluated model locally
|
106 |
+
model.save_pretrained(f"models/{run_name}/final")
|
107 |
+
|
108 |
+
model.push_to_hub(run_name)
|
109 |
+
|
110 |
+
if __name__ == "__main__":
|
111 |
+
main()
|