Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,6 +3,10 @@ from datasets import load_dataset
|
|
3 |
from langchain.llms import HuggingFaceEndpoint
|
4 |
from langchain.prompts import FewShotChatMessagePromptTemplate, ChatPromptTemplate
|
5 |
from langchain.schema.messages import SystemMessage
|
|
|
|
|
|
|
|
|
6 |
|
7 |
# Set page config at the very top, before anything else
|
8 |
st.set_page_config(page_title="DialogSum Few-Shot Summarizer", page_icon="🧠")
|
@@ -44,17 +48,17 @@ if user_input:
|
|
44 |
formatted_prompt = few_shot_prompt.format_messages(dialogue=user_input)
|
45 |
|
46 |
# Add formatted examples to the final prompt
|
47 |
-
|
48 |
|
49 |
# Convert the list of messages into a single string
|
50 |
-
prompt_string = "\n".join([msg.content for msg in
|
51 |
|
52 |
# Get response from model with correct explicit parameters
|
53 |
llm = HuggingFaceEndpoint(
|
54 |
repo_id="google/pegasus-xsum",
|
55 |
-
task="summarization", #
|
56 |
temperature=0.3, # Explicitly passing temperature here
|
57 |
-
|
58 |
)
|
59 |
|
60 |
# Run the LLM with the prompt string
|
|
|
3 |
from langchain.llms import HuggingFaceEndpoint
|
4 |
from langchain.prompts import FewShotChatMessagePromptTemplate, ChatPromptTemplate
|
5 |
from langchain.schema.messages import SystemMessage
|
6 |
+
from huggingface_hub import login
|
7 |
+
|
8 |
+
# Authenticate using Hugging Face token
|
9 |
+
login("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") # Use your Hugging Face token here
|
10 |
|
11 |
# Set page config at the very top, before anything else
|
12 |
st.set_page_config(page_title="DialogSum Few-Shot Summarizer", page_icon="🧠")
|
|
|
48 |
formatted_prompt = few_shot_prompt.format_messages(dialogue=user_input)
|
49 |
|
50 |
# Add formatted examples to the final prompt
|
51 |
+
final_formatted_prompt = final_prompt.format_messages(dialogue=user_input)
|
52 |
|
53 |
# Convert the list of messages into a single string
|
54 |
+
prompt_string = "\n".join([msg.content for msg in final_formatted_prompt]) # Access content with .content
|
55 |
|
56 |
# Get response from model with correct explicit parameters
|
57 |
llm = HuggingFaceEndpoint(
|
58 |
repo_id="google/pegasus-xsum",
|
59 |
+
task="summarization", # Correct task for text summarization
|
60 |
temperature=0.3, # Explicitly passing temperature here
|
61 |
+
max_length=128 # Explicitly passing max_length here
|
62 |
)
|
63 |
|
64 |
# Run the LLM with the prompt string
|