from models import * from utils import * from .knowledge_base.case_repository import CaseRepositoryHandler class InformationExtractor: def __init__(self, llm: BaseEngine): self.llm = llm def extract_information(self, instruction="", text="", examples="", schema="", additional_info=""): examples = good_case_wrapper(examples) prompt = extract_instruction.format(instruction=instruction, examples=examples, text=text, additional_info=additional_info, schema=schema) response = self.llm.get_chat_response(prompt) response = extract_json_dict(response) return response def extract_information_compatible(self, task="", text="", constraint=""): instruction = instruction_mapper.get(task) prompt = extract_instruction_json.format(instruction=instruction, constraint=constraint, input=text) response = self.llm.get_chat_response(prompt) response = extract_json_dict(response) return response def summarize_answer(self, instruction="", answer_list="", schema="", additional_info=""): prompt = summarize_instruction.format(instruction=instruction, answer_list=answer_list, schema=schema, additional_info=additional_info) response = self.llm.get_chat_response(prompt) response = extract_json_dict(response) return response class ExtractionAgent: def __init__(self, llm: BaseEngine, case_repo: CaseRepositoryHandler): self.llm = llm self.module = InformationExtractor(llm = llm) self.case_repo = case_repo self.methods = ["extract_information_direct", "extract_information_with_case"] def __get_constraint(self, data: DataPoint): if data.constraint == "": return data if data.task == "NER": constraint = json.dumps(data.constraint) if "**Entity Type Constraint**" in constraint or self.llm.name == "OneKE": return data data.constraint = f"\n**Entity Type Constraint**: The type of entities must be chosen from the following list.\n{constraint}\n" elif data.task == "RE": constraint = json.dumps(data.constraint) if "**Relation Type Constraint**" in constraint or self.llm.name == "OneKE": return data data.constraint = f"\n**Relation Type Constraint**: The type of relations must be chosen from the following list.\n{constraint}\n" elif data.task == "EE": constraint = json.dumps(data.constraint) if "**Event Extraction Constraint**" in constraint: return data if self.llm.name != "OneKE": data.constraint = f"\n**Event Extraction Constraint**: The event type must be selected from the following dictionary keys, and its event arguments should be chosen from its corresponding dictionary values. \n{constraint}\n" else: try: result = [ { "event_type": key, "trigger": True, "arguments": value } for key, value in data.constraint.items() ] data.constraint = json.dumps(result) except: print("Invalid Constraint: Event Extraction constraint must be a dictionary with event types as keys and lists of arguments as values.", data.constraint) elif data.task == "Triple": constraint = json.dumps(data.constraint) if "**Triple Extraction Constraint**" in constraint: return data if self.llm.name != "OneKE": if len(data.constraint) == 1: # 1 list means entity data.constraint = f"\n**Triple Extraction Constraint**: Entities type must chosen from following list:\n{constraint}\n" elif len(data.constraint) == 2: # 2 list means entity and relation if data.constraint[0] == []: data.constraint = f"\n**Triple Extraction Constraint**: Relation type must chosen from following list:\n{data.constraint[1]}\n" elif data.constraint[1] == []: data.constraint = f"\n**Triple Extraction Constraint**: Entities type must chosen from following list:\n{data.constraint[0]}\n" else: data.constraint = f"\n**Triple Extraction Constraint**: Entities type must chosen from following list:\n{data.constraint[0]}\nRelation type must chosen from following list:\n{data.constraint[1]}\n" elif len(data.constraint) == 3: # 3 list means entity, relation and object if data.constraint[0] == []: data.constraint = f"\n**Triple Extraction Constraint**: Relation type must chosen from following list:\n{data.constraint[1]}\nObject Entities must chosen from following list:\n{data.constraint[2]}\n" elif data.constraint[1] == []: data.constraint = f"\n**Triple Extraction Constraint**: Subject Entities must chosen from following list:\n{data.constraint[0]}\nObject Entities must chosen from following list:\n{data.constraint[2]}\n" elif data.constraint[2] == []: data.constraint = f"\n**Triple Extraction Constraint**: Subject Entities must chosen from following list:\n{data.constraint[0]}\nRelation type must chosen from following list:\n{data.constraint[1]}\n" else: data.constraint = f"\n**Triple Extraction Constraint**: Subject Entities must chosen from following list:\n{data.constraint[0]}\nRelation type must chosen from following list:\n{data.constraint[1]}\nObject Entities must chosen from following list:\n{data.constraint[2]}\n" else: data.constraint = f"\n**Triple Extraction Constraint**: The type of entities must be chosen from the following list:\n{constraint}\n" else: print("OneKE does not support Triple Extraction task now, please wait for the next version.") # print("data.constraint", data.constraint) return data def extract_information_direct(self, data: DataPoint): data = self.__get_constraint(data) result_list = [] for chunk_text in data.chunk_text_list: if self.llm.name != "OneKE": extract_direct_result = self.module.extract_information(instruction=data.instruction, text=chunk_text, schema=data.output_schema, examples="", additional_info=data.constraint) else: extract_direct_result = self.module.extract_information_compatible(task=data.task, text=chunk_text, constraint=data.constraint) result_list.append(extract_direct_result) function_name = current_function_name() data.set_result_list(result_list) data.update_trajectory(function_name, result_list) return data def extract_information_with_case(self, data: DataPoint): data = self.__get_constraint(data) result_list = [] for chunk_text in data.chunk_text_list: examples = self.case_repo.query_good_case(data) extract_case_result = self.module.extract_information(instruction=data.instruction, text=chunk_text, schema=data.output_schema, examples=examples, additional_info=data.constraint) result_list.append(extract_case_result) function_name = current_function_name() data.set_result_list(result_list) data.update_trajectory(function_name, result_list) return data def summarize_answer(self, data: DataPoint): if len(data.result_list) == 0: return data if len(data.result_list) == 1: data.set_pred(data.result_list[0]) return data summarized_result = self.module.summarize_answer(instruction=data.instruction, answer_list=data.result_list, schema=data.output_schema, additional_info=data.constraint) funtion_name = current_function_name() data.set_pred(summarized_result) data.update_trajectory(funtion_name, summarized_result) return data