""" Surpported Models. Supports: - Open Source:LLaMA3, Qwen2.5, MiniCPM3, ChatGLM4 - Closed Source: ChatGPT, DeepSeek """ from transformers import pipeline from transformers import AutoTokenizer, AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, AutoConfig, GenerationConfig import torch import openai import os from openai import OpenAI # The inferencing code is taken from the official documentation class BaseEngine: def __init__(self, model_name_or_path: str): self.name = None self.tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True) self.temperature = 0.2 self.top_p = 0.9 self.max_tokens = 1024 self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") def get_chat_response(self, prompt): raise NotImplementedError def set_hyperparameter(self, temperature: float = 0.2, top_p: float = 0.9, max_tokens: int = 1024): self.temperature = temperature self.top_p = top_p self.max_tokens = max_tokens class LLaMA(BaseEngine): def __init__(self, model_name_or_path: str): super().__init__(model_name_or_path) self.name = "LLaMA" self.model_id = model_name_or_path self.pipeline = pipeline( "text-generation", model=self.model_id, model_kwargs={"torch_dtype": torch.bfloat16}, device_map="auto", ) self.terminators = [ self.pipeline.tokenizer.eos_token_id, self.pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>") ] def get_chat_response(self, prompt): messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": prompt}, ] outputs = self.pipeline( messages, max_new_tokens=self.max_tokens, eos_token_id=self.terminators, do_sample=True, temperature=self.temperature, top_p=self.top_p, ) return outputs[0]["generated_text"][-1]['content'].strip() class Qwen(BaseEngine): def __init__(self, model_name_or_path: str): super().__init__(model_name_or_path) self.name = "Qwen" self.model_id = model_name_or_path self.model = AutoModelForCausalLM.from_pretrained( self.model_id, torch_dtype="auto", device_map="auto" ) def get_chat_response(self, prompt): messages = [ {"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."}, {"role": "user", "content": prompt} ] text = self.tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = self.tokenizer([text], return_tensors="pt").to(self.device) generated_ids = self.model.generate( **model_inputs, temperature=self.temperature, top_p=self.top_p, max_new_tokens=self.max_tokens ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0].strip() return response class MiniCPM(BaseEngine): def __init__(self, model_name_or_path: str): super().__init__(model_name_or_path) self.name = "MiniCPM" self.model_id = model_name_or_path self.model = AutoModelForCausalLM.from_pretrained( self.model_id, torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True ) def get_chat_response(self, prompt): messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": prompt} ] model_inputs = self.tokenizer.apply_chat_template(messages, return_tensors="pt", add_generation_prompt=True).to(self.device) model_outputs = self.model.generate( model_inputs, temperature=self.temperature, top_p=self.top_p, max_new_tokens=self.max_tokens ) output_token_ids = [ model_outputs[i][len(model_inputs[i]):] for i in range(len(model_inputs)) ] response = self.tokenizer.batch_decode(output_token_ids, skip_special_tokens=True)[0].strip() return response class ChatGLM(BaseEngine): def __init__(self, model_name_or_path: str): super().__init__(model_name_or_path) self.name = "ChatGLM" self.model_id = model_name_or_path self.model = AutoModelForCausalLM.from_pretrained( self.model_id, torch_dtype=torch.bfloat16, device_map="auto", low_cpu_mem_usage=True, trust_remote_code=True ) def get_chat_response(self, prompt): messages = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": prompt} ] model_inputs = self.tokenizer.apply_chat_template(messages, return_tensors="pt", return_dict=True, add_generation_prompt=True, tokenize=True).to(self.device) model_outputs = self.model.generate( **model_inputs, temperature=self.temperature, top_p=self.top_p, max_new_tokens=self.max_tokens ) model_outputs = model_outputs[:, model_inputs['input_ids'].shape[1]:] response = self.tokenizer.batch_decode(model_outputs, skip_special_tokens=True)[0].strip() return response class OneKE(BaseEngine): def __init__(self, model_name_or_path: str): super().__init__(model_name_or_path) self.name = "OneKE" self.model_id = model_name_or_path config = AutoConfig.from_pretrained(self.model_id, trust_remote_code=True) quantization_config=BitsAndBytesConfig( load_in_4bit=True, llm_int8_threshold=6.0, llm_int8_has_fp16_weight=False, bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", ) self.model = AutoModelForCausalLM.from_pretrained( self.model_id, config=config, device_map="auto", quantization_config=quantization_config, torch_dtype=torch.bfloat16, trust_remote_code=True, ) def get_chat_response(self, prompt): system_prompt = '<>\nYou are a helpful assistant. 你是一个乐于助人的助手。\n<>\n\n' sintruct = '[INST] ' + system_prompt + prompt + '[/INST]' input_ids = self.tokenizer.encode(prompt, return_tensors='pt') input_ids = self.tokenizer.encode(sintruct, return_tensors="pt").to(self.device) input_length = input_ids.size(1) generation_output = self.model.generate(input_ids=input_ids, generation_config=GenerationConfig(max_length=1024, max_new_tokens=512, return_dict_in_generate=True,pad_token_id=self.tokenizer.pad_token_id,eos_token_id=self.tokenizer.eos_token_id)) generation_output = generation_output.sequences[0] generation_output = generation_output[input_length:] response = self.tokenizer.decode(generation_output, skip_special_tokens=True) return response class ChatGPT(BaseEngine): def __init__(self, model_name_or_path: str, api_key: str, base_url=openai.base_url): self.name = "ChatGPT" self.model = model_name_or_path self.base_url = base_url self.temperature = 0.2 self.top_p = 0.9 self.max_tokens = 4096 # Close source model if api_key != "": self.api_key = api_key else: self.api_key = os.environ["OPENAI_API_KEY"] self.client = OpenAI(api_key=self.api_key, base_url=self.base_url) def get_chat_response(self, input): response = self.client.chat.completions.create( model=self.model, messages=[ {"role": "user", "content": input}, ], stream=False, temperature=self.temperature, max_tokens=self.max_tokens, stop=None ) return response.choices[0].message.content class DeepSeek(BaseEngine): def __init__(self, model_name_or_path: str, api_key: str, base_url="https://api.deepseek.com"): self.name = "DeepSeek" self.model = model_name_or_path self.base_url = base_url self.temperature = 0.2 self.top_p = 0.9 self.max_tokens = 4096 # Close source model if api_key != "": self.api_key = api_key else: self.api_key = os.environ["DEEPSEEK_API_KEY"] self.client = OpenAI(api_key=self.api_key, base_url=self.base_url) def get_chat_response(self, input): response = self.client.chat.completions.create( model=self.model, messages=[ {"role": "user", "content": input}, ], stream=False, temperature=self.temperature, max_tokens=self.max_tokens, stop=None ) return response.choices[0].message.content class LocalServer(BaseEngine): def __init__(self, model_name_or_path: str, base_url="http://localhost:8000/v1"): self.name = model_name_or_path.split('/')[-1] self.model = model_name_or_path self.base_url = base_url self.temperature = 0.2 self.top_p = 0.9 self.max_tokens = 1024 self.api_key = "EMPTY_API_KEY" self.client = OpenAI(api_key=self.api_key, base_url=self.base_url) def get_chat_response(self, input): try: response = self.client.chat.completions.create( model=self.model, messages=[ {"role": "user", "content": input}, ], stream=False, temperature=self.temperature, max_tokens=self.max_tokens, stop=None ) return response.choices[0].message.content except ConnectionError: print("Error: Unable to connect to the server. Please check if the vllm service is running and the port is 8080.") except Exception as e: print(f"Error: {e}")