OneKE / src /models /prompt_example.py
ShawnRu's picture
update
e6e7506
json_schema_examples = """
**Task**: Please extract all economic policies affecting the stock market between 2015 and 2023 and the exact dates of their implementation.
**Text**: This text is from the field of Economics and represents the genre of Article.
...(example text)...
**Output Schema**:
{
"economic_policies": [
{
"name": null,
"implementation_date": null
}
]
}
Example2:
**Task**: Tell me the main content of papers related to NLP between 2022 and 2023.
**Text**: This text is from the field of AI and represents the genre of Research Paper.
...(example text)...
**Output Schema**:
{
"papers": [
{
"title": null,
"content": null
}
]
}
Example3:
**Task**: Extract all the information in the given text.
**Text**: This text is from the field of Political and represents the genre of News Report.
...(example text)...
**Output Schema**:
Answer:
{
"news_report":
{
"title": null,
"summary": null,
"publication_date": null,
"keywords": [],
"events": [
{
"name": null,
"time": null,
"people_involved": [],
"cause": null,
"process": null,
"result": null
}
],
quotes: [],
viewpoints: []
}
}
"""
code_schema_examples = """
Example1:
**Task**: Extract all the entities in the given text.
**Text**:
...(example text)...
**Output Schema**:
```python
from typing import List, Optional
from pydantic import BaseModel, Field
class Entity(BaseModel):
label : str = Field(description="The type or category of the entity, such as 'Process', 'Technique', 'Data Structure', 'Methodology', 'Person', etc. ")
name : str = Field(description="The specific name of the entity. It should represent a single, distinct concept and must not be an empty string. For example, if the entity is a 'Technique', the name could be 'Neural Networks'.")
class ExtractionTarget(BaseModel):
entity_list : List[Entity] = Field(description="All the entities presented in the context. The entities should encode ONE concept.")
```
Example2:
**Task**: Extract all the information in the given text.
**Text**: This text is from the field of Political and represents the genre of News Article.
...(example text)...
**Output Schema**:
```python
from typing import List, Optional
from pydantic import BaseModel, Field
class Person(BaseModel):
name: str = Field(description="The name of the person")
identity: Optional[str] = Field(description="The occupation, status or characteristics of the person.")
role: Optional[str] = Field(description="The role or function the person plays in an event.")
class Event(BaseModel):
name: str = Field(description="Name of the event")
time: Optional[str] = Field(description="Time when the event took place")
people_involved: Optional[List[Person]] = Field(description="People involved in the event")
cause: Optional[str] = Field(default=None, description="Reason for the event, if applicable")
process: Optional[str] = Field(description="Details of the event process")
result: Optional[str] = Field(default=None, description="Result or outcome of the event")
class NewsReport(BaseModel):
title: str = Field(description="The title or headline of the news report")
summary: str = Field(description="A brief summary of the news report")
publication_date: Optional[str] = Field(description="The publication date of the report")
keywords: Optional[List[str]] = Field(description="List of keywords or topics covered in the news report")
events: List[Event] = Field(description="Events covered in the news report")
quotes: Optional[dict] = Field(default=None, description="Quotes related to the news, with keys as the citation sources and values as the quoted content. ")
viewpoints: Optional[List[str]] = Field(default=None, description="Different viewpoints regarding the news")
```
Example3:
**Task**: Extract the key information in the given text.
**Text**: This text is from the field of AI and represents the genre of Research Paper.
...(example text)...
```python
from typing import List, Optional
from pydantic import BaseModel, Field
class MetaData(BaseModel):
title : str = Field(description="The title of the article")
authors : List[str] = Field(description="The list of the article's authors")
abstract: str = Field(description="The article's abstract")
key_words: List[str] = Field(description="The key words associated with the article")
class Baseline(BaseModel):
method_name : str = Field(description="The name of the baseline method")
proposed_solution : str = Field(description="the proposed solution in details")
performance_metrics : str = Field(description="The performance metrics of the method and comparative analysis")
class ExtractionTarget(BaseModel):
key_contributions: List[str] = Field(description="The key contributions of the article")
limitation_of_sota : str=Field(description="the summary limitation of the existing work")
proposed_solution : str = Field(description="the proposed solution in details")
baselines : List[Baseline] = Field(description="The list of baseline methods and their details")
performance_metrics : str = Field(description="The performance metrics of the method and comparative analysis")
paper_limitations : str=Field(description="The limitations of the proposed solution of the paper")
```
"""