OneKE / examples /config /NER.yaml
ShawnRu's picture
update
e6e7506
model:
category: LLaMA # model category, chosen from ChatGPT, DeepSeek, LLaMA, Qwen, ChatGLM, MiniCPM, OneKE.
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct # model name to download from huggingface or use the local model path.
vllm_serve: false # whether to use the vllm. Default set to false.
extraction:
task: NER # task type, chosen from Base, NER, RE, EE.
text: Finally , every other year , ELRA organizes a major conference LREC , the International Language Resources and Evaluation Conference . # input text for the extraction task. No need if use_file is set to true.
constraint: ["algorithm", "conference", "else", "product", "task", "field", "metrics", "organization", "researcher", "program language", "country", "location", "person", "university"] # Specified entity types for the named entity recognition task. Default set to empty.
use_file: false # whether to use a file for the input text.
mode: quick # extraction mode, chosen from quick, detailed, customized. Default set to quick. See src/config.yaml for more details.
update_case: false # whether to update the case repository. Default set to false.
show_trajectory: false # whether to display the extracted intermediate steps