File size: 20,265 Bytes
e6e7506
64fd7bf
e6e7506
 
009d93e
e6e7506
 
5b218f0
009d93e
 
e6e7506
 
009d93e
 
 
 
efd51ba
009d93e
 
 
5b218f0
009d93e
efd51ba
639429d
009d93e
e7eb4f8
 
 
 
 
 
 
 
 
 
434eb0f
009d93e
 
efd51ba
009d93e
 
 
 
 
7d6cc28
 
009d93e
efd51ba
009d93e
7d6cc28
009d93e
 
 
 
 
efd51ba
639429d
efd51ba
5b218f0
 
 
 
 
 
 
 
 
 
 
efd51ba
 
 
 
e6e7506
efd51ba
 
 
 
639429d
efd51ba
009d93e
99dd437
009d93e
 
 
7d6cc28
009d93e
 
 
5b218f0
 
009d93e
 
 
 
e6e7506
009d93e
5b218f0
e6e7506
009d93e
 
 
 
 
 
 
 
2a03b34
 
5b218f0
 
 
2a03b34
 
 
 
64fd7bf
baa93c3
2a03b34
 
 
64fd7bf
2a03b34
009d93e
2a03b34
 
e6e7506
2a03b34
 
 
 
 
 
 
48d0863
5b218f0
 
efd51ba
639429d
009d93e
64fd7bf
 
14c39ae
009d93e
639429d
5b218f0
283ac11
5b218f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
639429d
efd51ba
 
 
2a03b34
5b218f0
efd51ba
009d93e
2a03b34
14c39ae
64fd7bf
009d93e
14c39ae
 
009d93e
14c39ae
 
009d93e
14c39ae
 
e6e7506
14c39ae
 
009d93e
 
 
 
 
 
 
639429d
 
 
 
 
 
5b218f0
 
 
 
 
 
009d93e
99dd437
 
 
 
 
5b218f0
009d93e
 
efd51ba
009d93e
 
 
 
e6e7506
efd51ba
5b218f0
 
 
 
009d93e
 
639429d
009d93e
5b218f0
 
 
 
 
 
132649c
5b218f0
 
 
 
132649c
009d93e
 
 
 
 
 
 
 
 
 
 
 
639429d
 
009d93e
efd51ba
 
5b218f0
efd51ba
5b218f0
efd51ba
5b218f0
efd51ba
 
e6e7506
009d93e
 
efd51ba
009d93e
 
efd51ba
 
 
 
 
 
639429d
efd51ba
4754e33
009d93e
 
 
 
 
 
 
 
 
 
 
 
5b218f0
 
 
51d91b9
 
009d93e
 
 
 
 
efd51ba
5b218f0
 
 
009d93e
 
 
 
 
 
 
 
 
 
 
 
 
5b218f0
009d93e
 
 
 
 
 
 
efd51ba
009d93e
639429d
5b218f0
009d93e
 
 
 
 
 
efd51ba
009d93e
 
 
 
 
efd51ba
5b218f0
efd51ba
 
 
009d93e
 
 
 
 
 
 
132649c
009d93e
efd51ba
009d93e
 
 
 
 
efd51ba
5b218f0
efd51ba
 
 
009d93e
 
 
 
 
 
 
efd51ba
 
 
009d93e
efd51ba
009d93e
 
 
 
 
efd51ba
5b218f0
009d93e
 
 
 
 
 
 
 
e6e7506
 
2a03b34
 
64fd7bf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
"""
For HuggingFace Space.
"""

import gradio as gr
import json
import random
import re

from models import *
from pipeline import Pipeline


examples = [
    {
        "task": "NER",
        "mode": "quick",
        "use_file": False,
        "text": "Finally, every other year , ELRA organizes a major conference LREC , the International Language Resources and Evaluation Conference .",
        "instruction": "",
        "constraint": """["algorithm", "conference", "else", "product", "task", "field", "metrics", "organization", "researcher", "program language", "country", "location", "person", "university"]""",
        "file_path": None,
        "update_case": False,
        "truth": "",
    },
    {
        "task": "Base",
        "mode": "quick",
        "use_file": True,
        "file_path": "data/input_files/Tulsi_Gabbard_News.html",
        "instruction": "Extract key information from the given text.",
        "constraint": "",
        "text": "",
        "update_case": False,
        "truth": "",
    },
    {
        "task": "RE",
        "mode": "quick",
        "use_file": False,
        "text": "The aid group Doctors Without Borders said that since Saturday , more than 275 wounded people had been admitted and treated at Donka Hospital in the capital of Guinea , Conakry .",
        "instruction": "",
        "constraint": """["nationality", "country capital", "place of death", "children", "location contains", "place of birth", "place lived", "administrative division of country", "country of administrative divisions", "company", "neighborhood of", "company founders"]""",
        "file_path": None,
        "update_case": True,
        "truth": """{"relation_list": [{"head": "Guinea", "tail": "Conakry", "relation": "country capital"}]}""",
    },
    {
        "task": "EE",
        "mode": "standard",
        "use_file": False,
        "text": "The file suggested to the user contains no software related to video streaming and simply carries the malicious payload that later compromises victim \u2019s account and sends out the deceptive messages to all victim \u2019s contacts .",
        "instruction": "",
        "constraint": """{"phishing": ["damage amount", "attack pattern", "tool", "victim", "place", "attacker", "purpose", "trusted entity", "time"], "data breach": ["damage amount", "attack pattern", "number of data", "number of victim", "tool", "compromised data", "victim", "place", "attacker", "purpose", "time"], "ransom": ["damage amount", "attack pattern", "payment method", "tool", "victim", "place", "attacker", "price", "time"], "discover vulnerability": ["vulnerable system", "vulnerability", "vulnerable system owner", "vulnerable system version", "supported platform", "common vulnerabilities and exposures", "capabilities", "time", "discoverer"], "patch vulnerability": ["vulnerable system", "vulnerability", "issues addressed", "vulnerable system version", "releaser", "supported platform", "common vulnerabilities and exposures", "patch number", "time", "patch"]}""",
        "file_path": None,
        "update_case": False,
        "truth": "",
    },
    {
        "task": "Triple",
        "mode": "quick",
        "use_file": True,
        "file_path": "data/input_files/Artificial_Intelligence_Wikipedia.txt",
        "instruction": "",
        "constraint": """[["Person", "Place", "Event", "property"], ["Interpersonal", "Located", "Ownership", "Action"]]""",
        "text": "",
        "update_case": False,
        "truth": "",
    },
    {
        "task": "Base",
        "mode": "quick",
        "use_file": True,
        "file_path": "data/input_files/Harry_Potter_Chapter1.pdf",
        "instruction": "Extract main characters and the background setting from this chapter.",
        "constraint": "",
        "text": "",
        "update_case": False,
        "truth": "",
    },
]
example_start_index = 0


def create_interface():
    with gr.Blocks(title="OneKE Demo", theme=gr.themes.Glass(text_size="lg")) as demo:
        gr.HTML("""
            <div style="text-align:center;">
                <p align="center">
                    <a>
                        <img src="https://raw.githubusercontent.com/zjunlp/OneKE/refs/heads/main/figs/logo.png" width="240"/>
                    </a>
                </p>
                <h1>OneKE: A Dockerized Schema-Guided LLM Agent-based Knowledge Extraction System</h1>
                <p>
                🌐[<a href="https://oneke.openkg.cn/" target="_blank">Home</a>]
                πŸ“Ή[<a href="http://oneke.openkg.cn/demo.mp4" target="_blank">Video</a>]
                πŸ“[<a href="https://arxiv.org/abs/2412.20005v2" target="_blank">Paper</a>]
                πŸ’»[<a href="https://github.com/zjunlp/OneKE" target="_blank">Code</a>]
                </p>
            </div>
        """)

        example_button_gr = gr.Button("🎲 Quick Start with an Example 🎲")

        with gr.Row():
            with gr.Column():
                model_gr = gr.Dropdown(
                    label="πŸͺ„ Select your Model",
                    choices=["deepseek-chat", "deepseek-reasoner",
                             "gpt-3.5-turbo", "gpt-4o-mini", "gpt-4o",
                    ],
                    value="deepseek-chat",
                )
                api_key_gr = gr.Textbox(
                    label="πŸ”‘ Enter your API-Key",
                    placeholder="Please enter your API-Key from ChatGPT or DeepSeek.",
                    type="password",
                )
                base_url_gr = gr.Textbox(
                    label="πŸ”— Enter your Base-URL",
                    placeholder="Please leave this field empty if using the default Base-URL.",
                )
            with gr.Column():
                task_gr = gr.Dropdown(
                    label="🎯 Select your Task",
                    choices=["Base", "NER", "RE", "EE", "Triple"],
                    value="Base",
                )
                mode_gr = gr.Dropdown(
                    label="🧭 Select your Mode",
                    choices=["quick", "standard", "customized"],
                    value="quick",
                )
                schema_agent_gr = gr.Dropdown(choices=["Not Required", "get_default_schema", "get_deduced_schema"], value="Not Required", label="πŸ€– Select your Schema-Agent", visible=False)
                extraction_Agent_gr = gr.Dropdown(choices=["Not Required", "extract_information_direct", "extract_information_with_case"], value="Not Required", label="πŸ€– Select your Extraction-Agent", visible=False)
                reflection_agent_gr = gr.Dropdown(choices=["Not Required", "reflect_with_case"], value="Not Required", label="πŸ€– Select your Reflection-Agent", visible=False)

        use_file_gr = gr.Checkbox(label="πŸ“‚ Use File", value=True)
        file_path_gr = gr.File(label="πŸ“– Upload a File", visible=True)
        text_gr = gr.Textbox(label="πŸ“– Text", lines=5, placeholder="Please enter the text to be processed.", visible=False)
        instruction_gr = gr.Textbox(label="πŸ•ΉοΈ Instruction", lines=3, placeholder="Please enter any type of information you want to extract here, for example: Help me extract all the place names.", visible=True)
        constraint_gr = gr.Textbox(label="πŸ•ΉοΈ Constraint", lines=3, placeholder="Please specify the types of entities, relations, events, or other relevant attributes in list format as per the task requirements.", visible=False)

        update_case_gr = gr.Checkbox(label="πŸ’° Update Case", value=False)
        # update_schema_gr = gr.Checkbox(label="πŸ“Ÿ Update Schema", value=False)
        truth_gr = gr.Textbox(label="πŸͺ™ Truth", lines=2, placeholder="""Please enter the truth you want LLM know, for example: {"relation_list": [{"head": "Guinea", "tail": "Conakry", "relation": "country capital"}]}""", visible=False)
        # selfschema_gr = gr.Textbox(label="πŸ“Ÿ Schema", lines=5, placeholder="Enter your New Schema", visible=False,  interactive=True)

        def get_model_category(model_name_or_path):
            if model_name_or_path in ["gpt-3.5-turbo", "gpt-4o-mini", "gpt-4o", "o3-mini"]:
                return ChatGPT
            elif model_name_or_path in ["deepseek-chat", "deepseek-reasoner"]:
                return DeepSeek
            elif re.search(r'(?i)llama', model_name_or_path):
                return LLaMA
            elif re.search(r'(?i)qwen', model_name_or_path):
                return Qwen
            elif re.search(r'(?i)minicpm', model_name_or_path):
                return MiniCPM
            elif re.search(r'(?i)chatglm', model_name_or_path):
                return ChatGLM
            else:
                return BaseEngine

        def customized_mode(mode):
            if mode == "customized":
                return gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
            else:
                return gr.update(visible=False, value="Not Required"), gr.update(visible=False, value="Not Required"), gr.update(visible=False, value="Not Required")

        def update_fields(task):
            if task == "Base" or task == "":
                return gr.update(visible=True, label="πŸ•ΉοΈ Instruction", lines=3,
                                 placeholder="Please enter any type of information you want to extract here, for example: Help me extract all the place names."), gr.update(visible=False)
            elif task == "NER":
                return gr.update(visible=False), gr.update(visible=True, label="πŸ•ΉοΈ Constraint", lines=3,
                                                           placeholder="Please specify the entity types to extract in list format, and all types will be extracted by default if not specified.")
            elif task == "RE":
                return gr.update(visible=False), gr.update(visible=True, label="πŸ•ΉοΈ Constraint", lines=3,
                                                           placeholder="Please specify the relation types to extract in list format, and all types will be extracted by default if not specified.")
            elif task == "EE":
                return gr.update(visible=False), gr.update(visible=True, label="πŸ•ΉοΈ Constraint", lines=3,
                                                           placeholder="Please specify the event types and their corresponding extraction attributes in dictionary format, and all types and attributes will be extracted by default if not specified.")
            elif task == "Triple":
                return gr.update(visible=False), gr.update(visible=True, label="πŸ•ΉοΈ Constraint", lines=3,
                                                           placeholder="Please read the documentation and specify the types of triples in list format.")

        def update_input_fields(use_file):
            if use_file:
                return gr.update(visible=False), gr.update(visible=True)
            else:
                return gr.update(visible=True), gr.update(visible=False)

        def update_case(update_case):
            if update_case:
                return gr.update(visible=True)
            else:
                return gr.update(visible=False)

        # def update_schema(update_schema):
        #     if update_schema:
        #         return gr.update(visible=True)
        #     else:
        #         return gr.update(visible=False)

        def start_with_example():
            global example_start_index
            example = examples[example_start_index]
            example_start_index += 1
            if example_start_index >= len(examples):
                example_start_index = 0

            return (
                gr.update(value=example["task"]),
                gr.update(value=example["mode"]),
                gr.update(value=example["use_file"]),
                gr.update(value=example["file_path"], visible=example["use_file"]),
                gr.update(value=example["text"], visible=not example["use_file"]),
                gr.update(value=example["instruction"], visible=example["task"] == "Base"),
                gr.update(value=example["constraint"], visible=example["task"] in ["NER", "RE", "EE", "Triple"]),
                gr.update(value=example["update_case"]),
                gr.update(value=example["truth"]), # gr.update(value=example["update_schema"]), gr.update(value=example["selfschema"]),
                gr.update(value="Not Required", visible=False),
                gr.update(value="Not Required", visible=False),
                gr.update(value="Not Required", visible=False),
            )

        def submit(model, api_key, base_url, task, mode, instruction, constraint, text, use_file, file_path, update_case, truth, schema_agent, extraction_Agent, reflection_agent):
            try:
                ModelClass = get_model_category(model)
                if base_url == "Default" or base_url == "":
                    if api_key == "":
                        pipeline = Pipeline(ModelClass(model_name_or_path=model))
                    else:
                        pipeline = Pipeline(ModelClass(model_name_or_path=model, api_key=api_key))
                else:
                    if api_key == "":
                        pipeline = Pipeline(ModelClass(model_name_or_path=model, base_url=base_url))
                    else:
                        pipeline = Pipeline(ModelClass(model_name_or_path=model, api_key=api_key, base_url=base_url))

                if task == "Base":
                    instruction = instruction
                    constraint = ""
                else:
                    instruction = ""
                    constraint = constraint
                if use_file:
                    text = ""
                    file_path = file_path
                else:
                    text = text
                    file_path = None
                if not update_case:
                    truth = ""

                agent3 = {}
                if mode == "customized":
                    if schema_agent not in ["", "Not Required"]:
                        agent3["schema_agent"] = schema_agent
                    if extraction_Agent not in ["", "Not Required"]:
                        agent3["extraction_agent"] = extraction_Agent
                    if reflection_agent not in ["", "Not Required"]:
                        agent3["reflection_agent"] = reflection_agent

                # use 'Pipeline'
                _, _, ger_frontend_schema, ger_frontend_res = pipeline.get_extract_result(
                    task=task,
                    text=text,
                    use_file=use_file,
                    file_path=file_path,
                    instruction=instruction,
                    constraint=constraint,
                    mode=mode,
                    three_agents=agent3,
                    isgui=True,
                    update_case=update_case,
                    truth=truth,
                    output_schema="",
                    show_trajectory=False,
                )

                ger_frontend_schema = str(ger_frontend_schema)
                ger_frontend_res = json.dumps(ger_frontend_res, ensure_ascii=False, indent=4) if isinstance(ger_frontend_res, dict) else str(ger_frontend_res)
                return ger_frontend_schema, ger_frontend_res, gr.update(value="", visible=False)

            except Exception as e:
                error_message = f"⚠️ Error:\n {str(e)}"
                return "", "", gr.update(value=error_message, visible=True)

        def clear_all():
            return (
                gr.update(value="Not Required", visible=False),  # sechema_agent
                gr.update(value="Not Required", visible=False),  # extraction_Agent
                gr.update(value="Not Required", visible=False),  # reflection_agent
                gr.update(value="Base"),  # task
                gr.update(value="quick"),  # mode
                gr.update(value="", visible=False),  # instruction
                gr.update(value="", visible=False),  # constraint
                gr.update(value=True),  # use_file
                gr.update(value="", visible=False),  # text
                gr.update(value=None, visible=True),  # file_path
                gr.update(value=False),  # update_case
                gr.update(value="", visible=False), # truth # gr.update(value=False),  # update_schema gr.update(value="", visible=False),  # selfschema
                gr.update(value=""), # py_output_gr
                gr.update(value=""), # json_output_gr
                gr.update(value="", visible=False),  # error_output
            )

        with gr.Row():
            submit_button_gr = gr.Button("Submit", variant="primary", scale=8)
            clear_button = gr.Button("Clear", scale=5)
        gr.HTML("""
		    <div style="width: 100%; text-align: center; font-size: 16px; font-weight: bold; position: relative; margin: 20px 0;">
    			<span style="position: absolute; left: 0; top: 50%; transform: translateY(-50%); width: 45%; border-top: 1px solid #ccc;"></span>
	    		<span style="position: relative; z-index: 1; background-color: white; padding: 0 10px;">Output:</span>
			    <span style="position: absolute; right: 0; top: 50%; transform: translateY(-50%); width: 45%; border-top: 1px solid #ccc;"></span>
		    </div>
        """)
        error_output_gr = gr.Textbox(label="πŸ˜΅β€πŸ’« Ops, an Error Occurred", visible=False, interactive=False)
        with gr.Row():
            with gr.Column(scale=1):
                py_output_gr = gr.Code(label="πŸ€” Generated Schema", language="python", lines=10, interactive=False)
            with gr.Column(scale=1):
                json_output_gr = gr.Code(label="πŸ˜‰ Final Answer", language="json", lines=10, interactive=False)

        task_gr.change(fn=update_fields, inputs=task_gr, outputs=[instruction_gr, constraint_gr])
        mode_gr.change(fn=customized_mode, inputs=mode_gr, outputs=[schema_agent_gr, extraction_Agent_gr, reflection_agent_gr])
        use_file_gr.change(fn=update_input_fields, inputs=use_file_gr, outputs=[text_gr, file_path_gr])
        update_case_gr.change(fn=update_case, inputs=update_case_gr, outputs=[truth_gr])
        # update_schema_gr.change(fn=update_schema, inputs=update_schema_gr, outputs=[selfschema_gr])

        example_button_gr.click(
            fn=start_with_example,
            inputs=[],
            outputs=[
                task_gr,
                mode_gr,
                use_file_gr,
                file_path_gr,
                text_gr,
                instruction_gr,
                constraint_gr,
                update_case_gr,
                truth_gr, # update_schema_gr, selfschema_gr,
                schema_agent_gr,
                extraction_Agent_gr,
                reflection_agent_gr,
            ],
        )
        submit_button_gr.click(
            fn=submit,
            inputs=[
                model_gr,
                api_key_gr,
                base_url_gr,
                task_gr,
                mode_gr,
                instruction_gr,
                constraint_gr,
                text_gr,
                use_file_gr,
                file_path_gr,
                update_case_gr,
                truth_gr, # update_schema_gr, selfschema_gr,
                schema_agent_gr,
                extraction_Agent_gr,
                reflection_agent_gr,
            ],
            outputs=[py_output_gr, json_output_gr, error_output_gr],
            show_progress=True,
        )
        clear_button.click(
            fn=clear_all,
            outputs=[
                schema_agent_gr,
                extraction_Agent_gr,
                reflection_agent_gr,
                task_gr,
                mode_gr,
                instruction_gr,
                constraint_gr,
                use_file_gr,
                text_gr,
                file_path_gr,
                update_case_gr,
                truth_gr, # update_schema_gr, selfschema_gr,
                py_output_gr,
                json_output_gr,
                error_output_gr,
            ],
        )

    return demo


# Launch the front-end interface
if __name__ == "__main__":
    interface = create_interface()
    interface.launch()