File size: 10,156 Bytes
009d93e 4754e33 009d93e 4754e33 e6e7506 4754e33 009d93e 4754e33 e6e7506 009d93e 4754e33 e6e7506 009d93e 4754e33 e6e7506 009d93e 4754e33 e6e7506 4754e33 e6e7506 4754e33 e6e7506 009d93e 4754e33 e6e7506 009d93e 4754e33 009d93e 4754e33 e6e7506 4754e33 e6e7506 009d93e 4754e33 e6e7506 009d93e 4754e33 e6e7506 4754e33 e6e7506 4754e33 e6e7506 4754e33 e6e7506 009d93e 4754e33 e6e7506 009d93e 4754e33 e6e7506 009d93e 4754e33 e6e7506 4754e33 e6e7506 009d93e 4754e33 e6e7506 4754e33 e6e7506 009d93e 4754e33 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
import json
import os
import torch
import numpy as np
from utils import *
from sentence_transformers import SentenceTransformer
from rapidfuzz import process
from models import *
import copy
import warnings
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
docker_model_path = "/app/model/all-MiniLM-L6-v2"
warnings.filterwarnings("ignore", category=FutureWarning, message=r".*clean_up_tokenization_spaces*")
class CaseRepository:
def __init__(self):
try:
self.embedder = SentenceTransformer(docker_model_path)
except:
self.embedder = SentenceTransformer(config['model']['embedding_model'])
self.embedder.to(device)
self.corpus = self.load_corpus()
self.embedded_corpus = self.embed_corpus()
def load_corpus(self):
with open(os.path.join(os.path.dirname(__file__), "case_repository.json")) as file:
corpus = json.load(file)
return corpus
def update_corpus(self):
try:
with open(os.path.join(os.path.dirname(__file__), "case_repository.json"), "w") as file:
json.dump(self.corpus, file, indent=2)
except Exception as e:
print(f"Error when updating corpus: {e}")
def embed_corpus(self):
embedded_corpus = {}
for key, content in self.corpus.items():
good_index = [item['index']['embed_index'] for item in content['good']]
encoded_good_index = self.embedder.encode(good_index, convert_to_tensor=True).to(device)
bad_index = [item['index']['embed_index'] for item in content['bad']]
encoded_bad_index = self.embedder.encode(bad_index, convert_to_tensor=True).to(device)
embedded_corpus[key] = {"good": encoded_good_index, "bad": encoded_bad_index}
return embedded_corpus
def get_similarity_scores(self, task: TaskType, embed_index="", str_index="", case_type="", top_k=2):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Embedding similarity match
encoded_embed_query = self.embedder.encode(embed_index, convert_to_tensor=True).to(device)
embedding_similarity_matrix = self.embedder.similarity(encoded_embed_query, self.embedded_corpus[task][case_type])
embedding_similarity_scores = embedding_similarity_matrix[0].to(device)
# String similarity match
str_match_corpus = [item['index']['str_index'] for item in self.corpus[task][case_type]]
str_similarity_results = process.extract(str_index, str_match_corpus, limit=len(str_match_corpus))
scores_dict = {match[0]: match[1] for match in str_similarity_results}
scores_in_order = [scores_dict[candidate] for candidate in str_match_corpus]
str_similarity_scores = torch.tensor(scores_in_order, dtype=torch.float32).to(device)
# Normalize scores
embedding_score_range = embedding_similarity_scores.max() - embedding_similarity_scores.min()
str_score_range = str_similarity_scores.max() - str_similarity_scores.min()
if embedding_score_range > 0:
embed_norm_scores = (embedding_similarity_scores - embedding_similarity_scores.min()) / embedding_score_range
else:
embed_norm_scores = embedding_similarity_scores
if str_score_range > 0:
str_norm_scores = (str_similarity_scores - str_similarity_scores.min()) / str_score_range
else:
str_norm_scores = str_similarity_scores / 100
# Combine the scores with weights
combined_scores = 0.5 * embed_norm_scores + 0.5 * str_norm_scores
original_combined_scores = 0.5 * embedding_similarity_scores + 0.5 * str_similarity_scores / 100
scores, indices = torch.topk(combined_scores, k=min(top_k, combined_scores.size(0)))
original_scores, original_indices = torch.topk(original_combined_scores, k=min(top_k, original_combined_scores.size(0)))
return scores, indices, original_scores, original_indices
def query_case(self, task: TaskType, embed_index="", str_index="", case_type="", top_k=2) -> list:
_, indices, _, _ = self.get_similarity_scores(task, embed_index, str_index, case_type, top_k)
top_matches = [self.corpus[task][case_type][idx]["content"] for idx in indices]
return top_matches
def update_case(self, task: TaskType, embed_index="", str_index="", content="" ,case_type=""):
self.corpus[task][case_type].append({"index": {"embed_index": embed_index, "str_index": str_index}, "content": content})
self.embedded_corpus[task][case_type] = torch.cat([self.embedded_corpus[task][case_type], self.embedder.encode([embed_index], convert_to_tensor=True).to(device)], dim=0)
print(f"A {case_type} case updated for {task} task.")
class CaseRepositoryHandler:
def __init__(self, llm: BaseEngine):
self.repository = CaseRepository()
self.llm = llm
def __get_good_case_analysis(self, instruction="", text="", result="", additional_info=""):
prompt = good_case_analysis_instruction.format(
instruction=instruction, text=text, result=result, additional_info=additional_info
)
for _ in range(3):
response = self.llm.get_chat_response(prompt)
response = extract_json_dict(response)
if not isinstance(response, dict):
return response
return None
def __get_bad_case_reflection(self, instruction="", text="", original_answer="", correct_answer="", additional_info=""):
prompt = bad_case_reflection_instruction.format(
instruction=instruction, text=text, original_answer=original_answer, correct_answer=correct_answer, additional_info=additional_info
)
for _ in range(3):
response = self.llm.get_chat_response(prompt)
response = extract_json_dict(response)
if not isinstance(response, dict):
return response
return None
def __get_index(self, data: DataPoint, case_type: str):
# set embed_index
embed_index = f"**Text**: {data.distilled_text}\n{data.chunk_text_list[0]}"
# set str_index
if data.task == "Base":
str_index = f"**Task**: {data.instruction}"
else:
str_index = f"{data.constraint}"
if case_type == "bad":
str_index += f"\n\n**Original Result**: {json.dumps(data.pred)}"
return embed_index, str_index
def query_good_case(self, data: DataPoint):
embed_index, str_index = self.__get_index(data, "good")
return self.repository.query_case(task=data.task, embed_index=embed_index, str_index=str_index, case_type="good")
def query_bad_case(self, data: DataPoint):
embed_index, str_index = self.__get_index(data, "bad")
return self.repository.query_case(task=data.task, embed_index=embed_index, str_index=str_index, case_type="bad")
def update_good_case(self, data: DataPoint):
if data.truth == "" :
print("No truth value provided.")
return
embed_index, str_index = self.__get_index(data, "good")
_, _, original_scores, _ = self.repository.get_similarity_scores(data.task, embed_index, str_index, "good", 1)
original_scores = original_scores.tolist()
if original_scores[0] >= 0.9:
print("The similar good case is already in the corpus. Similarity Score: ", original_scores[0])
return
good_case_alaysis = self.__get_good_case_analysis(instruction=data.instruction, text=data.distilled_text, result=data.truth, additional_info=data.constraint)
wrapped_good_case_analysis = f"**Analysis**: {good_case_alaysis}"
wrapped_instruction = f"**Task**: {data.instruction}"
wrapped_text = f"**Text**: {data.distilled_text}\n{data.chunk_text_list[0]}"
wrapped_answer = f"**Correct Answer**: {json.dumps(data.truth)}"
if data.task == "Base":
content = f"{wrapped_instruction}\n\n{wrapped_text}\n\n{wrapped_good_case_analysis}\n\n{wrapped_answer}"
else:
content = f"{wrapped_text}\n\n{data.constraint}\n\n{wrapped_good_case_analysis}\n\n{wrapped_answer}"
self.repository.update_case(data.task, embed_index, str_index, content, "good")
def update_bad_case(self, data: DataPoint):
if data.truth == "" :
print("No truth value provided.")
return
if normalize_obj(data.pred) == normalize_obj(data.truth):
return
embed_index, str_index = self.__get_index(data, "bad")
_, _, original_scores, _ = self.repository.get_similarity_scores(data.task, embed_index, str_index, "bad", 1)
original_scores = original_scores.tolist()
if original_scores[0] >= 0.9:
print("The similar bad case is already in the corpus. Similarity Score: ", original_scores[0])
return
bad_case_reflection = self.__get_bad_case_reflection(instruction=data.instruction, text=data.distilled_text, original_answer=data.pred, correct_answer=data.truth, additional_info=data.constraint)
wrapped_bad_case_reflection = f"**Reflection**: {bad_case_reflection}"
wrapper_original_answer = f"**Original Answer**: {json.dumps(data.pred)}"
wrapper_correct_answer = f"**Correct Answer**: {json.dumps(data.truth)}"
wrapped_instruction = f"**Task**: {data.instruction}"
wrapped_text = f"**Text**: {data.distilled_text}\n{data.chunk_text_list[0]}"
if data.task == "Base":
content = f"{wrapped_instruction}\n\n{wrapped_text}\n\n{wrapper_original_answer}\n\n{wrapped_bad_case_reflection}\n\n{wrapper_correct_answer}"
else:
content = f"{wrapped_text}\n\n{data.constraint}\n\n{wrapper_original_answer}\n\n{wrapped_bad_case_reflection}\n\n{wrapper_correct_answer}"
self.repository.update_case(data.task, embed_index, str_index, content, "bad")
def update_case(self, data: DataPoint):
self.update_good_case(data)
self.update_bad_case(data)
self.repository.update_corpus() |