File size: 14,443 Bytes
80a598c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
import json
import logging
import os
from dataclasses import dataclass, field
from typing import Union, Literal, Optional
import dspy
from interface import Engine, LMConfigs
from lm import OpenAIModel
class LMConfigs():
"""Configurations for LLM used in different parts of STORM.
Given that different parts in STORM framework have different complexity, we use different LLM configurations
to achieve a balance between quality and efficiency. If no specific configuration is provided, we use the default
setup in the paper.
"""
def __init__(self):
self.conv_simulator_lm = None # LLM used in conversation simulator except for question asking.
self.question_asker_lm = None # LLM used in question asking.
self.outline_gen_lm = None # LLM used in outline generation.
self.article_gen_lm = None # LLM used in article generation.
self.article_polish_lm = None # LLM used in article polishing.
def set_lm(self, model: Union[dspy.dsp.LM, dspy.dsp.HFModel]):
self.lm = model
def set_conv_simulator_lm(self, model: Union[dspy.dsp.LM, dspy.dsp.HFModel]):
self.conv_simulator_lm = model
def set_question_asker_lm(self, model: Union[dspy.dsp.LM, dspy.dsp.HFModel]):
self.question_asker_lm = model
def set_outline_gen_lm(self, model: Union[dspy.dsp.LM, dspy.dsp.HFModel]):
self.outline_gen_lm = model
def set_article_gen_lm(self, model: Union[dspy.dsp.LM, dspy.dsp.HFModel]):
self.article_gen_lm = model
def set_article_polish_lm(self, model: Union[dspy.dsp.LM, dspy.dsp.HFModel]):
self.article_polish_lm = model
@dataclass
class RunnerArguments:
"""Arguments for controlling the STORM Wiki pipeline."""
output_dir: str = field(
metadata={"help": "Output directory for the results."},
)
max_conv_turn: int = field(
default=3,
metadata={"help": "Maximum number of questions in conversational question asking."},
)
max_perspective: int = field(
default=3,
metadata={"help": "Maximum number of perspectives to consider in perspective-guided question asking."},
)
max_search_queries_per_turn: int = field(
default=3,
metadata={"help": "Maximum number of search queries to consider in each turn."},
)
disable_perspective: bool = field(
default=False,
metadata={"help": "If True, disable perspective-guided question asking."},
)
search_top_k: int = field(
default=3,
metadata={"help": "Top k search results to consider for each search query."},
)
retrieve_top_k: int = field(
default=3,
metadata={"help": "Top k collected references for each section title."},
)
max_thread_num: int = field(
default=10,
metadata={"help": "Maximum number of threads to use. "
"Consider reducing it if keep getting 'Exceed rate limit' error when calling LM API."},
)
class Runner():
"""STORM Wiki pipeline runner."""
def __init__(self,
args: RunnerArguments,
lm_configs: LMConfigs,
rm):
super().__init__(lm_configs=lm_configs)
self.args = args
self.lm_configs = lm_configs
self.retriever = StormRetriever(rm=rm, k=self.args.retrieve_top_k)
storm_persona_generator = StormPersonaGenerator(self.lm_configs.question_asker_lm)
self.storm_knowledge_curation_module = StormKnowledgeCurationModule(
retriever=self.retriever,
persona_generator=storm_persona_generator,
conv_simulator_lm=self.lm_configs.conv_simulator_lm,
question_asker_lm=self.lm_configs.question_asker_lm,
max_search_queries_per_turn=self.args.max_search_queries_per_turn,
search_top_k=self.args.search_top_k,
max_conv_turn=self.args.max_conv_turn,
max_thread_num=self.args.max_thread_num
)
self.storm_outline_generation_module = StormOutlineGenerationModule(
outline_gen_lm=self.lm_configs.outline_gen_lm
)
self.storm_article_generation = StormArticleGenerationModule(
article_gen_lm=self.lm_configs.article_gen_lm,
retrieve_top_k=self.args.retrieve_top_k,
max_thread_num=self.args.max_thread_num,
retriever =self.retriever
)
self.storm_article_polishing_module = StormArticlePolishingModule(
article_gen_lm=self.lm_configs.article_gen_lm,
article_polish_lm=self.lm_configs.article_polish_lm
)
self.lm_configs.init_check()
self.apply_decorators()
def run_knowledge_curation_module(self,
ground_truth_url: str = "None",
) -> StormInformationTable:
#第一次进入的地方,此处还是原topic,information_table既有所有的conversation对话又有所有的url和snippet的对应dict
information_table, conversation_log = self.storm_knowledge_curation_module.research(
topic=self.topic,
ground_truth_url=ground_truth_url,
callback_handler=callback_handler,
max_perspective=self.args.max_perspective,
disable_perspective=False,
return_conversation_log=True
)
FileIOHelper.dump_json(conversation_log, os.path.join(self.article_output_dir, 'conversation_log.json'))
information_table.dump_url_to_info(os.path.join(self.article_output_dir, 'raw_search_results.json'))
return information_table
def run_outline_generation_module(self,
information_table: StormInformationTable,
callback_handler: BaseCallbackHandler = None) -> StormArticle:
outline, draft_outline = self.storm_outline_generation_module.generate_outline(
topic=self.topic,
information_table=information_table,
return_draft_outline=True,
callback_handler=callback_handler
)
outline.dump_outline_to_file(os.path.join(self.article_output_dir, 'storm_gen_outline.txt'))
draft_outline.dump_outline_to_file(os.path.join(self.article_output_dir, "direct_gen_outline.txt"))
return outline
def run_article_generation_module(self,
outline: StormArticle,
information_table=StormInformationTable,
callback_handler: BaseCallbackHandler = None) -> StormArticle:
draft_article = self.storm_article_generation.generate_article(
topic=self.topic,
information_table=information_table,
article_with_outline=outline,
callback_handler=callback_handler
)
draft_article.dump_article_as_plain_text(os.path.join(self.article_output_dir, 'storm_gen_article.txt'))
draft_article.dump_reference_to_file(os.path.join(self.article_output_dir, 'url_to_info.json'))
return draft_article
def run_article_polishing_module(self,
draft_article: StormArticle,
remove_duplicate: bool = False) -> StormArticle:
polished_article = self.storm_article_polishing_module.polish_article(
topic=self.topic,
draft_article=draft_article,
remove_duplicate=remove_duplicate
)
FileIOHelper.write_str(polished_article.to_string(),
os.path.join(self.article_output_dir, 'storm_gen_article_polished.txt'))
return polished_article
def post_run(self):
"""
Post-run operations, including:
1. Dumping the run configuration.
2. Dumping the LLM call history.
"""
config_log = self.lm_configs.log()
FileIOHelper.dump_json(config_log, os.path.join(self.article_output_dir, 'run_config.json'))
llm_call_history = self.lm_configs.collect_and_reset_lm_history()
with open(os.path.join(self.article_output_dir, 'llm_call_history.jsonl'), 'w') as f:
for call in llm_call_history:
if 'kwargs' in call:
call.pop('kwargs') # All kwargs are dumped together to run_config.json.
f.write(json.dumps(call) + '\n')
def _load_information_table_from_local_fs(self, information_table_local_path):
assert os.path.exists(information_table_local_path), makeStringRed(f"{information_table_local_path} not exists. Please set --do-research argument to prepare the conversation_log.json for this topic.")
return StormInformationTable.from_conversation_log_file(information_table_local_path)
def _load_outline_from_local_fs(self, topic, outline_local_path):
assert os.path.exists(outline_local_path), makeStringRed(f"{outline_local_path} not exists. Please set --do-generate-outline argument to prepare the storm_gen_outline.txt for this topic.")
return StormArticle.from_outline_file(topic=topic, file_path=outline_local_path)
def _load_draft_article_from_local_fs(self, topic, draft_article_path, url_to_info_path):
assert os.path.exists(draft_article_path), makeStringRed(f"{draft_article_path} not exists. Please set --do-generate-article argument to prepare the storm_gen_article.txt for this topic.")
assert os.path.exists(url_to_info_path), makeStringRed(f"{url_to_info_path} not exists. Please set --do-generate-article argument to prepare the url_to_info.json for this topic.")
article_text = FileIOHelper.load_str(draft_article_path)
references = FileIOHelper.load_json(url_to_info_path)
return StormArticle.from_string(topic_name=topic, article_text=article_text, references=references)
def run(self,
topic: str,
ground_truth_url: str = '',
do_research: bool = True,
do_generate_outline: bool = True,
do_generate_article: bool = True,
do_polish_article: bool = True,
remove_duplicate: bool = False,
callback_handler: BaseCallbackHandler = BaseCallbackHandler()):
"""
Run the STORM pipeline.
Args:
topic: The topic to research.
ground_truth_url: A ground truth URL including a curated article about the topic. The URL will be excluded.
do_research: If True, research the topic through information-seeking conversation;
if False, expect conversation_log.json and raw_search_results.json to exist in the output directory.
do_generate_outline: If True, generate an outline for the topic;
if False, expect storm_gen_outline.txt to exist in the output directory.
do_generate_article: If True, generate a curated article for the topic;
if False, expect storm_gen_article.txt to exist in the output directory.
do_polish_article: If True, polish the article by adding a summarization section and (optionally) removing
duplicated content.
remove_duplicate: If True, remove duplicated content.
callback_handler: A callback handler to handle the intermediate results.
"""
assert do_research or do_generate_outline or do_generate_article or do_polish_article, \
makeStringRed("No action is specified. Please set at least one of --do-research, --do-generate-outline, --do-generate-article, --do-polish-article")
self.topic = topic
self.article_dir_name = topic.replace(' ', '_').replace('/', '_')
self.article_output_dir = os.path.join(self.args.output_dir, self.article_dir_name)
os.makedirs(self.article_output_dir, exist_ok=True)
# research module,先自己生成一些链接得到一些url,然后读取url生成一些不同的人格,然后对不同的人格进行对话得到有用信息
information_table: StormInformationTable = None
if do_research:
information_table = self.run_knowledge_curation_module(ground_truth_url=ground_truth_url,
callback_handler=callback_handler)
# outline generation module,这地方就是生成一些outline,可以选择根据前面的conversation进行生成outline会更详细一些
outline: StormArticle = None
if do_generate_outline:
# load information table if it's not initialized
if information_table is None:
information_table = self._load_information_table_from_local_fs(os.path.join(self.article_output_dir, '.json'))
outline = self.run_outline_generation_module(information_table=information_table,
callback_handler=callback_handler)
# article generation module
draft_article: StormArticle = None
if do_generate_article:
if information_table is None:
information_table = self._load_information_table_from_local_fs(os.path.join(self.article_output_dir, 'conversation_log.json'))
if outline is None:
outline = self._load_outline_from_local_fs(topic=topic, outline_local_path=os.path.join(self.article_output_dir, 'storm_gen_outline.txt'))
draft_article = self.run_article_generation_module(outline=outline,
information_table=information_table,
callback_handler=callback_handler)
# article polishing module
if do_polish_article:
if draft_article is None:
draft_article_path = os.path.join(self.article_output_dir, 'storm_gen_article.txt')
url_to_info_path = os.path.join(self.article_output_dir, 'url_to_info.json')
draft_article = self._load_draft_article_from_local_fs(topic=topic, draft_article_path=draft_article_path, url_to_info_path=url_to_info_path)
self.run_article_polishing_module(draft_article=draft_article, remove_duplicate=remove_duplicate)
post_polish(self.article_output_dir)
|