File size: 5,940 Bytes
80a598c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import time
import json

import pandas as pd
import streamlit as st
from dotenv import load_dotenv
from http import HTTPStatus

from src.lm import  QwenModel
from src.rm import GoogleSearchAli_new
import sys
sys.path.append('./src/DeepThink/modules')
from mindmap import MindMap
from storm_dataclass import Article

from article_generation import ArticleGenerationModule
from article_polish import ArticlePolishingModule
from outline_generation import OutlineGenerationModule

import os

import subprocess
bash_command = "pip install --upgrade pip"
process = subprocess.Popen(bash_command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)

# Load environment variables and API keys
# load_dotenv()

openai_kwargs = {
    'api_key': os.getenv("OPENAI_API_KEY"),
    'api_provider': os.getenv('OPENAI_API_TYPE'),
    'temperature': 1.0,
    'top_p': 0.9,
    'api_base': os.getenv('AZURE_API_BASE'),
    'api_version': os.getenv('AZURE_API_VERSION'),
}


lm = QwenModel(model='qwen-plus', max_tokens=1000, **openai_kwargs)
lm4outline = QwenModel(model='qwen-plus', max_tokens=1000, **openai_kwargs)
lm4gensection = QwenModel(model='qwen-plus', max_tokens=2000, **openai_kwargs)
lm4polish = QwenModel(model='qwen-plus', max_tokens=4000, **openai_kwargs)


rm = GoogleSearchAli_new(k=5)




st.set_page_config(page_title='OmniThink', layout="wide")






st.warning("Announcement: Due to the recent high volume of visitors, search API quota limitations, you may encounter an error: "
           "'ValueError: Expected 2D array, got 1D array instead: array=[]. "
           "Reshape your data either using array.reshape(-1, 1) if your data has a single feature "
           "or array.reshape(1, -1) if it contains a single sample.' "
           "If this error occurs, please try again in a few hours.")

st.title('🤔 OmniThink')
st.markdown('_OmniThink is a tool that helps you think deeply about a topic, generate an outline, and write an article._')





# Sidebar for configuration and examples
with st.sidebar:
    st.header('Configuration')
    MAX_ROUNDS = st.number_input('Retrieval Depth', min_value=0, max_value=10, value=2, step=1)
    models = ['Qwen-Plus', 'Coming Soon']
    selected_example = st.selectbox('LLM:', models)
    searchers = ['GoogleSearch', 'Coming Soon']
    selected_example = st.selectbox('Search engine', searchers)

    n_max_doc = st.number_input('Number of web pages retrievad in single search', min_value=1, max_value=50, value=10, step=5)
    st.header('Examples')
    examples = ['AlphaFold', '2024 Hualien City Earthquake', 'Taylor Swift', 'Yoon Seok-youl']
    selected_example = st.selectbox('case', examples)
    status_placeholder = st.empty()

mind_map = MindMap(
    retriever=rm,
    gen_concept_lm = lm4outline,
    gen_concept_lm2 = lm4outline,
    search_top_k = n_max_doc,
    depth= MAX_ROUNDS
)

def Think(input_topic):

    generator = mind_map.build_map(input_topic)   

    st.markdown(f'Performing an in-depth search on the content related to {input_topic}...')

    for idx, layer in enumerate(generator):
        print(layer)
        print('layer!!!')
        st.markdown(f'Deep Thinking Retrieval at Level {idx + 1}...')
        status_placeholder.text(f"Currently conducting the {idx + 1}th level deep thinking retrieval, estimated to take {(idx+1)*3} minutes.")
        for node in layer:
            category = node.category

            print(f'category: {category}')
            with st.expander(f'{category}'):
                st.markdown(f'### The concept of {node.category}')
                print(node.concept)
                for concept in node.concept:
                    st.markdown(f'* {concept}')
                st.markdown(f'### The web of {node.category}')
                for idx, info in enumerate(node.info):
                    st.markdown(f'{idx + 1}. {info["title"]} \n {info["snippets"]}')

    st.markdown(f'Constructing an index table for the {mind_map.get_web_number()} retrieved web pages...')
    mind_map.prepare_table_for_retrieval()
    return '__finish__', '__finish__'

def GenOutline(input_topic):
    status_placeholder.text("The outline writing is in progress and is expected to take 1 minute.")
    ogm = OutlineGenerationModule(lm)
    outline = ogm.generate_outline(topic= input_topic, mindmap = mind_map)

    return outline

def GenArticle(input_topic, outline):
    status_placeholder.text("The article writing is in progress and is expected to take 3 minutes.")

    article_with_outline = Article.from_outline_str(topic=input_topic, outline_str=outline)
    ag = ArticleGenerationModule(retriever = rm, article_gen_lm = lm, retrieve_top_k = 3, max_thread_num = 10)
    article = ag.generate_article(topic = topic, mindmap = mind_map, article_with_outline = article_with_outline)
    ap = ArticlePolishingModule(article_gen_lm = lm, article_polish_lm = lm)
    article = ap.polish_article(topic = topic, draft_article = article)
    return article.to_string()

with st.form('my_form'):
    topic = st.text_input('Please enter the topic you are interested in.', value=selected_example, placeholder='Please enter the topic you are interested in.')
    submit_button = st.form_submit_button('Generate!')

    if submit_button:
        if topic:
            st.markdown('### Thought process')
            summary, news_timeline = Think(topic)
            st.session_state.summary = summary
            st.session_state.news_timeline = news_timeline

            st.markdown('### Outline generation')
            with st.expander("Outline generation", expanded=True):
                outline = GenOutline(topic)
                st.text(outline)

            st.markdown('### article generation')
            with st.expander("article generation", expanded=True):
                article = GenArticle(topic, outline)
                st.markdown(article)
        else:
            st.error('Please enter the subject.')