gen6scp's picture
Patched codes for ZeroGPU
d643072
import io
import os
from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser
import clip
import numpy as np
import torch
import webdataset as wds
from PIL import Image
from torch.utils.data import DataLoader, Dataset, IterableDataset
from diffusion.data.transforms import get_transform
from tools.metrics.utils import tracker
try:
from tqdm import tqdm
except ImportError:
# If tqdm is not available, provide a mock version of it
def tqdm(x):
return x
import json
IMAGE_EXTENSIONS = {"bmp", "jpg", "jpeg", "pgm", "png", "ppm", "tif", "tiff", "webp"}
TEXT_EXTENSIONS = {"txt"}
class DummyDataset(Dataset):
FLAGS = ["img", "txt", "json"]
def __init__(
self,
real_path,
fake_path,
real_flag: str = "img",
fake_flag: str = "img",
gen_img_path="",
transform=None,
tokenizer=None,
) -> None:
super().__init__()
assert (
real_flag in self.FLAGS and fake_flag in self.FLAGS
), f"CLIP Score only support modality of {self.FLAGS}. However, get {real_flag} and {fake_flag}"
self.gen_img_path = gen_img_path
print(f"images are from {gen_img_path}")
self.real_folder = self._load_img_from_path(real_path)
self.real_flag = real_flag
self.fake_data = self._load_txt_from_path(fake_path)
self.transform = transform
self.tokenizer = tokenizer
self.data_dict = {}
def __len__(self):
return len(self.real_folder)
def __getitem__(self, index):
if index >= len(self):
raise IndexError
real_path = self.real_folder[index]
real_data = self._load_modality(real_path, self.real_flag)
fake_data = self._load_txt(self.fake_data[index])
sample = dict(real=real_data, fake=fake_data, prompt=self.fake_data[index])
return sample
def _load_modality(self, path, modality):
if modality == "img":
data = self._load_img(path)
else:
raise TypeError(f"Got unexpected modality: {modality}")
return data
def _load_txt(self, data):
if self.tokenizer is not None:
data = self.tokenizer(data, context_length=77, truncate=True).squeeze()
return data
def _load_img(self, path):
img = Image.open(path)
if self.transform is not None:
img = self.transform(img)
return img
def _load_img_from_path(self, path):
image_list = []
if path.endswith(".json"):
with open(path) as file:
data_dict = json.load(file)
all_lines = list(data_dict.keys())[:sample_nums]
if isinstance(all_lines, list):
for k in all_lines:
img_path = os.path.join(self.gen_img_path, f"{k}.jpg")
image_list.append(img_path)
elif isinstance(all_lines, dict):
assert sample_nums >= 30_000, ValueError(f"{sample_nums} is not supported for json files")
for k, v in all_lines.items():
img_path = os.path.join(self.gen_img_path, f"{k}.jpg")
image_list.append(img_path)
else:
raise ValueError(f"Only JSON file type is supported now. Wrong with: {path}")
return image_list
def _load_txt_from_path(self, path):
txt_list = []
if path.endswith(".json"):
with open(path) as file:
data_dict = json.load(file)
all_lines = list(data_dict.keys())[:sample_nums]
if isinstance(all_lines, list):
for k in all_lines:
v = data_dict[k]
txt_list.append(v["prompt"])
elif isinstance(all_lines, dict):
assert sample_nums >= 30_000, ValueError(f"{sample_nums} is not supported for json files")
for k, v in all_lines.items():
txt_list.append(v["prompt"])
else:
raise ValueError(f"Only JSON file type is supported now. Wrong with: {path}")
return txt_list
class DummyTarDataset(IterableDataset):
def __init__(
self, tar_path, transform=None, external_json_path=None, prompt_key="prompt", tokenizer=None, **kwargs
):
assert ".tar" in tar_path
self.sample_nums = args.sample_nums
self.dataset = (
wds.WebDataset(tar_path)
.map(self.safe_decode)
.to_tuple("png;jpg", "json", "__key__")
.map(self.process_sample)
.slice(0, self.sample_nums)
)
if external_json_path is not None and os.path.exists(external_json_path):
print(f"Loading {external_json_path}, wait...")
self.json_file = json.load(open(external_json_path))
else:
self.json_file = {}
assert prompt_key == "prompt"
self.prompt_key = prompt_key
self.transform = transform
self.tokenizer = tokenizer
def __iter__(self):
return self._generator()
def _generator(self):
for i, (ori_img, info, key) in enumerate(self.dataset):
if self.transform is not None:
img = self.transform(ori_img)
if key in self.json_file:
info.update(self.json_file[key])
prompt = info.get(self.prompt_key, "")
if not prompt:
prompt = ""
print(f"{self.prompt_key} not exist in {key}.json")
txt_feat = self._load_txt(prompt)
yield dict(
real=img, fake=txt_feat, prompt=prompt, ori_img=np.array(img), key=key, prompt_key=self.prompt_key
)
def __len__(self):
return self.sample_nums
def _load_txt(self, data):
if self.tokenizer is not None:
data = self.tokenizer(data, context_length=77, truncate=True).squeeze()
return data
@staticmethod
def process_sample(sample):
try:
image_bytes, json_bytes, key = sample
image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
json_dict = json.loads(json_bytes)
return image, json_dict, key
except (ValueError, TypeError, OSError) as e:
print(f"Skipping sample due to error: {e}")
return None
@staticmethod
def safe_decode(sample):
def custom_decode(sample):
result = {}
for k, v in sample.items():
result[k] = v
return result
try:
return custom_decode(sample)
except Exception as e:
print(f"skipping sample due to decode error: {e}")
return None
@torch.no_grad()
def calculate_clip_score(dataloader, model, real_flag, fake_flag, save_json_path=None):
score_acc = 0.0
sample_num = 0.0
json_dict = {} if save_json_path is not None else None
logit_scale = model.logit_scale.exp()
for batch_data in tqdm(dataloader, desc=f"CLIP-Score: {args.exp_name}", position=args.gpu_id, leave=True):
real_features = forward_modality(model, batch_data["real"], real_flag)
fake_features = forward_modality(model, batch_data["fake"], fake_flag)
# normalize features
real_features = real_features / real_features.norm(dim=1, keepdim=True).to(torch.float32)
fake_features = fake_features / fake_features.norm(dim=1, keepdim=True).to(torch.float32)
score = logit_scale * (fake_features * real_features).sum()
if save_json_path is not None:
json_dict[batch_data["key"][0]] = {f"{batch_data['prompt_key'][0]}": f"{score:.04f}"}
score_acc += score
sample_num += batch_data["real"].shape[0]
if save_json_path is not None:
json.dump(json_dict, open(save_json_path, "w"))
return score_acc / sample_num
@torch.no_grad()
def calculate_clip_score_official(dataloader):
import numpy as np
from torchmetrics.multimodal.clip_score import CLIPScore
clip_score_fn = CLIPScore(model_name_or_path="openai/clip-vit-large-patch14").to(device)
# clip_score_fn = CLIPScore(model_name_or_path="openai/clip-vit-base-patch16").to(device)
all_clip_scores = []
for batch_data in tqdm(dataloader, desc=args.exp_name, position=args.gpu_id, leave=True):
imgs = batch_data["real"].add_(1.0).mul_(0.5)
imgs = (imgs * 255).to(dtype=torch.uint8, device=device)
prompts = batch_data["prompt"]
clip_scores = clip_score_fn(imgs, prompts).detach().cpu()
all_clip_scores.append(float(clip_scores))
clip_scores = float(np.mean(all_clip_scores))
return clip_scores
def forward_modality(model, data, flag):
device = next(model.parameters()).device
if flag == "img":
features = model.encode_image(data.to(device))
elif flag == "txt":
features = model.encode_text(data.to(device))
else:
raise TypeError
return features
def main():
txt_path = args.txt_path if args.txt_path is not None else args.img_path
gen_img_path = str(os.path.join(args.img_path, args.exp_name))
if ".tar" in gen_img_path:
save_txt_path = os.path.join(txt_path, f"{args.exp_name}_{args.tar_prompt_key}_clip_score.txt").replace(
".tar", ""
)
save_json_path = save_txt_path.replace(".tar", "").replace(".txt", ".json")
if os.path.exists(save_json_path):
print(f"{save_json_path} exists. Finished.")
return None
else:
save_txt_path = os.path.join(txt_path, f"{args.exp_name}_sample{sample_nums}_clip_score.txt")
save_json_path = None
if os.path.exists(save_txt_path):
with open(save_txt_path) as f:
clip_score = f.readlines()[0].strip()
print(f"CLIP Score: {clip_score}: {args.exp_name}")
return {args.exp_name: float(clip_score)}
print(f"Loading CLIP model: {args.clip_model}")
if args.clipscore_type == "diffusers":
preprocess = get_transform("default_train", 512)
else:
model, preprocess = clip.load(args.clip_model, device=device)
if ".tar" in gen_img_path:
dataset = DummyTarDataset(
gen_img_path,
transform=preprocess,
external_json_path=args.external_json_file,
prompt_key=args.tar_prompt_key,
tokenizer=clip.tokenize,
)
else:
dataset = DummyDataset(
args.real_path,
args.fake_path,
args.real_flag,
args.fake_flag,
transform=preprocess,
tokenizer=clip.tokenize,
gen_img_path=gen_img_path,
)
dataloader = DataLoader(dataset, args.batch_size, num_workers=num_workers, pin_memory=True)
print("Calculating CLIP Score:")
if args.clipscore_type == "diffusers":
clip_score = calculate_clip_score_official(dataloader)
else:
clip_score = calculate_clip_score(
dataloader, model, args.real_flag, args.fake_flag, save_json_path=save_json_path
)
clip_score = clip_score.cpu().item()
print("CLIP Score: ", clip_score)
with open(save_txt_path, "w") as file:
file.write(str(clip_score))
print(f"Result saved at: {save_txt_path}")
return {args.exp_name: clip_score}
def parse_args():
parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter)
parser.add_argument("--batch-size", type=int, default=50, help="Batch size to use")
parser.add_argument("--clip-model", type=str, default="ViT-L/14", help="CLIP model to use")
# parser.add_argument('--clip-model', type=str, default='ViT-B/16', help='CLIP model to use')
parser.add_argument("--img_path", type=str, default=None)
parser.add_argument("--txt_path", type=str, default=None)
parser.add_argument("--sample_nums", type=int, default=30_000)
parser.add_argument("--exp_name", type=str, default="Sana")
parser.add_argument(
"--num-workers", type=int, help="Number of processes to use for data loading. Defaults to `min(8, num_cpus)`"
)
parser.add_argument("--device", type=str, default=None, help="Device to use. Like cuda, cuda:0 or cpu")
parser.add_argument("--real_flag", type=str, default="img", help="The modality of real path. Default to img")
parser.add_argument("--fake_flag", type=str, default="txt", help="The modality of real path. Default to txt")
parser.add_argument("--real_path", type=str, help="Paths to the generated images")
parser.add_argument("--fake_path", type=str, help="Paths to the generated images")
parser.add_argument("--external_json_file", type=str, default=None, help="external meta json file for tar_file")
parser.add_argument("--tar_prompt_key", type=str, default="prompt", help="key name of prompt in json")
# online logging setting
parser.add_argument("--clipscore_type", type=str, default="self", choices=["diffusers", "self"])
parser.add_argument("--log_metric", type=str, default="metric")
parser.add_argument("--gpu_id", type=int, default=0)
parser.add_argument("--log_clip_score", action="store_true")
parser.add_argument("--suffix_label", type=str, default="", help="used for clip_score online log")
parser.add_argument("--tracker_pattern", type=str, default="epoch_step", help="used for fid online log")
parser.add_argument(
"--report_to",
type=str,
default=None,
help=(
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
),
)
parser.add_argument(
"--tracker_project_name",
type=str,
default="t2i-evit-baseline",
help=(
"The `project_name` argument passed to Accelerator.init_trackers for"
" more information see https://huggingface.co./docs/accelerate/v0.17.0/en/package_reference/accelerator#accelerate.Accelerator"
),
)
parser.add_argument(
"--name",
type=str,
default="baseline",
help=("Wandb Project Name"),
)
args = parser.parse_args()
return args
if __name__ == "__main__":
args = parse_args()
sample_nums = args.sample_nums
if args.device is None:
device = torch.device("cuda" if (torch.cuda.is_available()) else "cpu")
else:
device = torch.device(args.device)
if args.num_workers is None:
try:
num_cpus = len(os.sched_getaffinity(0))
except AttributeError:
num_cpus = os.cpu_count()
num_workers = min(num_cpus, 8) if num_cpus is not None else 0
else:
num_workers = args.num_workers
args.exp_name = os.path.basename(args.exp_name) or os.path.dirname(args.exp_name)
clip_score_result = main()
if args.log_clip_score:
tracker(args, clip_score_result, args.suffix_label, pattern=args.tracker_pattern, metric="CLIP-Score")