|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
import os |
|
from typing import Optional |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from einops import rearrange |
|
from timm.models.vision_transformer import Attention as Attention_ |
|
from timm.models.vision_transformer import Mlp |
|
from transformers import AutoModelForCausalLM |
|
|
|
from diffusion.model.norms import RMSNorm |
|
from diffusion.model.utils import get_same_padding, to_2tuple |
|
from diffusion.utils.import_utils import is_xformers_available |
|
|
|
_xformers_available = False |
|
if is_xformers_available(): |
|
import xformers.ops |
|
|
|
_xformers_available = True |
|
|
|
|
|
def modulate(x, shift, scale): |
|
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) |
|
|
|
|
|
def t2i_modulate(x, shift, scale): |
|
return x * (1 + scale) + shift |
|
|
|
|
|
class MultiHeadCrossAttention(nn.Module): |
|
def __init__(self, d_model, num_heads, attn_drop=0.0, proj_drop=0.0, qk_norm=False, **block_kwargs): |
|
super().__init__() |
|
assert d_model % num_heads == 0, "d_model must be divisible by num_heads" |
|
|
|
self.d_model = d_model |
|
self.num_heads = num_heads |
|
self.head_dim = d_model // num_heads |
|
|
|
self.q_linear = nn.Linear(d_model, d_model) |
|
self.kv_linear = nn.Linear(d_model, d_model * 2) |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(d_model, d_model) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
if qk_norm: |
|
|
|
self.q_norm = RMSNorm(d_model, scale_factor=1.0, eps=1e-6) |
|
self.k_norm = RMSNorm(d_model, scale_factor=1.0, eps=1e-6) |
|
else: |
|
self.q_norm = nn.Identity() |
|
self.k_norm = nn.Identity() |
|
|
|
def forward(self, x, cond, mask=None): |
|
|
|
B, N, C = x.shape |
|
first_dim = 1 if _xformers_available else B |
|
|
|
q = self.q_linear(x) |
|
kv = self.kv_linear(cond).view(first_dim, -1, 2, C) |
|
k, v = kv.unbind(2) |
|
q = self.q_norm(q).view(first_dim, -1, self.num_heads, self.head_dim) |
|
k = self.k_norm(k).view(first_dim, -1, self.num_heads, self.head_dim) |
|
v = v.view(first_dim, -1, self.num_heads, self.head_dim) |
|
|
|
if _xformers_available: |
|
attn_bias = None |
|
if mask is not None: |
|
attn_bias = xformers.ops.fmha.BlockDiagonalMask.from_seqlens([N] * B, mask) |
|
x = xformers.ops.memory_efficient_attention(q, k, v, p=self.attn_drop.p, attn_bias=attn_bias) |
|
else: |
|
q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2) |
|
if mask is not None and mask.ndim == 2: |
|
mask = (1 - mask.to(x.dtype)) * -10000.0 |
|
mask = mask[:, None, None].repeat(1, self.num_heads, 1, 1) |
|
x = F.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False) |
|
x = x.transpose(1, 2) |
|
|
|
x = x.view(B, -1, C) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
|
|
return x |
|
|
|
|
|
class LiteLA(Attention_): |
|
r"""Lightweight linear attention""" |
|
|
|
PAD_VAL = 1 |
|
|
|
def __init__( |
|
self, |
|
in_dim: int, |
|
out_dim: int, |
|
heads: Optional[int] = None, |
|
heads_ratio: float = 1.0, |
|
dim=32, |
|
eps=1e-15, |
|
use_bias=False, |
|
qk_norm=False, |
|
norm_eps=1e-5, |
|
): |
|
heads = heads or int(out_dim // dim * heads_ratio) |
|
super().__init__(in_dim, num_heads=heads, qkv_bias=use_bias) |
|
|
|
self.in_dim = in_dim |
|
self.out_dim = out_dim |
|
self.heads = heads |
|
self.dim = out_dim // heads |
|
self.eps = eps |
|
|
|
self.kernel_func = nn.ReLU(inplace=False) |
|
if qk_norm: |
|
self.q_norm = RMSNorm(in_dim, scale_factor=1.0, eps=norm_eps) |
|
self.k_norm = RMSNorm(in_dim, scale_factor=1.0, eps=norm_eps) |
|
else: |
|
self.q_norm = nn.Identity() |
|
self.k_norm = nn.Identity() |
|
|
|
@torch.amp.autocast("cuda", enabled=os.environ.get("AUTOCAST_LINEAR_ATTN", False) == "true") |
|
def attn_matmul(self, q, k, v: torch.Tensor) -> torch.Tensor: |
|
|
|
q = self.kernel_func(q) |
|
k = self.kernel_func(k) |
|
|
|
use_fp32_attention = getattr(self, "fp32_attention", False) |
|
if use_fp32_attention: |
|
q, k, v = q.float(), k.float(), v.float() |
|
|
|
v = F.pad(v, (0, 0, 0, 1), mode="constant", value=LiteLA.PAD_VAL) |
|
vk = torch.matmul(v, k) |
|
out = torch.matmul(vk, q) |
|
|
|
if out.dtype in [torch.float16, torch.bfloat16]: |
|
out = out.float() |
|
out = out[:, :, :-1] / (out[:, :, -1:] + self.eps) |
|
|
|
return out |
|
|
|
def forward(self, x: torch.Tensor, mask=None, HW=None, block_id=None) -> torch.Tensor: |
|
B, N, C = x.shape |
|
|
|
qkv = self.qkv(x).reshape(B, N, 3, C) |
|
q, k, v = qkv.unbind(2) |
|
dtype = q.dtype |
|
|
|
q = self.q_norm(q).transpose(-1, -2) |
|
k = self.k_norm(k).transpose(-1, -2) |
|
v = v.transpose(-1, -2) |
|
|
|
q = q.reshape(B, C // self.dim, self.dim, N) |
|
k = k.reshape(B, C // self.dim, self.dim, N).transpose(-1, -2) |
|
v = v.reshape(B, C // self.dim, self.dim, N) |
|
|
|
out = self.attn_matmul(q, k, v).to(dtype) |
|
|
|
out = out.view(B, C, N).permute(0, 2, 1) |
|
out = self.proj(out) |
|
|
|
if torch.get_autocast_gpu_dtype() == torch.float16: |
|
out = out.clip(-65504, 65504) |
|
|
|
return out |
|
|
|
@property |
|
def module_str(self) -> str: |
|
_str = type(self).__name__ + "(" |
|
eps = f"{self.eps:.1E}" |
|
_str += f"i={self.in_dim},o={self.out_dim},h={self.heads},d={self.dim},eps={eps}" |
|
return _str |
|
|
|
def __repr__(self): |
|
return f"EPS{self.eps}-" + super().__repr__() |
|
|
|
|
|
class PAGCFGIdentitySelfAttnProcessorLiteLA: |
|
r"""Self Attention with Perturbed Attention & CFG Guidance""" |
|
|
|
def __init__(self, attn): |
|
self.attn = attn |
|
|
|
def __call__(self, x: torch.Tensor, mask=None, HW=None, block_id=None) -> torch.Tensor: |
|
x_uncond, x_org, x_ptb = x.chunk(3) |
|
x_org = torch.cat([x_uncond, x_org]) |
|
B, N, C = x_org.shape |
|
|
|
qkv = self.attn.qkv(x_org).reshape(B, N, 3, C) |
|
|
|
q, k, v = qkv.unbind(2) |
|
dtype = q.dtype |
|
q = self.attn.q_norm(q).transpose(-1, -2) |
|
k = self.attn.k_norm(k).transpose(-1, -2) |
|
v = v.transpose(-1, -2) |
|
|
|
q = q.reshape(B, C // self.attn.dim, self.attn.dim, N) |
|
k = k.reshape(B, C // self.attn.dim, self.attn.dim, N).transpose(-1, -2) |
|
v = v.reshape(B, C // self.attn.dim, self.attn.dim, N) |
|
|
|
out = self.attn.attn_matmul(q, k, v).to(dtype) |
|
|
|
out = out.view(B, C, N).permute(0, 2, 1) |
|
out = self.attn.proj(out) |
|
|
|
|
|
v_weight = self.attn.qkv.weight[C * 2 : C * 3, :] |
|
if self.attn.qkv.bias: |
|
v_bias = self.attn.qkv.bias[C * 2 : C * 3] |
|
x_ptb = (torch.matmul(x_ptb, v_weight.t()) + v_bias).to(dtype) |
|
else: |
|
x_ptb = torch.matmul(x_ptb, v_weight.t()).to(dtype) |
|
x_ptb = self.attn.proj(x_ptb) |
|
|
|
out = torch.cat([out, x_ptb]) |
|
|
|
if torch.get_autocast_gpu_dtype() == torch.float16: |
|
out = out.clip(-65504, 65504) |
|
|
|
return out |
|
|
|
|
|
class PAGIdentitySelfAttnProcessorLiteLA: |
|
r"""Self Attention with Perturbed Attention Guidance""" |
|
|
|
def __init__(self, attn): |
|
self.attn = attn |
|
|
|
def __call__(self, x: torch.Tensor, mask=None, HW=None, block_id=None) -> torch.Tensor: |
|
x_org, x_ptb = x.chunk(2) |
|
B, N, C = x_org.shape |
|
|
|
qkv = self.attn.qkv(x_org).reshape(B, N, 3, C) |
|
|
|
q, k, v = qkv.unbind(2) |
|
dtype = q.dtype |
|
q = self.attn.q_norm(q).transpose(-1, -2) |
|
k = self.attn.k_norm(k).transpose(-1, -2) |
|
v = v.transpose(-1, -2) |
|
|
|
q = q.reshape(B, C // self.attn.dim, self.attn.dim, N) |
|
k = k.reshape(B, C // self.attn.dim, self.attn.dim, N).transpose(-1, -2) |
|
v = v.reshape(B, C // self.attn.dim, self.attn.dim, N) |
|
|
|
out = self.attn.attn_matmul(q, k, v).to(dtype) |
|
|
|
out = out.view(B, C, N).permute(0, 2, 1) |
|
out = self.attn.proj(out) |
|
|
|
|
|
v_weight = self.attn.qkv.weight[C * 2 : C * 3, :] |
|
if self.attn.qkv.bias: |
|
v_bias = self.attn.qkv.bias[C * 2 : C * 3] |
|
x_ptb = (torch.matmul(x_ptb, v_weight.t()) + v_bias).to(dtype) |
|
else: |
|
x_ptb = torch.matmul(x_ptb, v_weight.t()).to(dtype) |
|
x_ptb = self.attn.proj(x_ptb) |
|
|
|
out = torch.cat([out, x_ptb]) |
|
|
|
if torch.get_autocast_gpu_dtype() == torch.float16: |
|
out = out.clip(-65504, 65504) |
|
|
|
return out |
|
|
|
|
|
class SelfAttnProcessorLiteLA: |
|
r"""Self Attention with Lite Linear Attention""" |
|
|
|
def __init__(self, attn): |
|
self.attn = attn |
|
|
|
def __call__(self, x: torch.Tensor, mask=None, HW=None, block_id=None) -> torch.Tensor: |
|
B, N, C = x.shape |
|
if HW is None: |
|
H = W = int(N**0.5) |
|
else: |
|
H, W = HW |
|
qkv = self.attn.qkv(x).reshape(B, N, 3, C) |
|
|
|
q, k, v = qkv.unbind(2) |
|
dtype = q.dtype |
|
q = self.attn.q_norm(q).transpose(-1, -2) |
|
k = self.attn.k_norm(k).transpose(-1, -2) |
|
v = v.transpose(-1, -2) |
|
|
|
q = q.reshape(B, C // self.attn.dim, self.attn.dim, N) |
|
k = k.reshape(B, C // self.attn.dim, self.attn.dim, N).transpose(-1, -2) |
|
v = v.reshape(B, C // self.attn.dim, self.attn.dim, N) |
|
|
|
out = self.attn.attn_matmul(q, k, v).to(dtype) |
|
|
|
out = out.view(B, C, N).permute(0, 2, 1) |
|
out = self.attn.proj(out) |
|
|
|
if torch.get_autocast_gpu_dtype() == torch.float16: |
|
out = out.clip(-65504, 65504) |
|
|
|
return out |
|
|
|
|
|
class FlashAttention(Attention_): |
|
"""Multi-head Flash Attention block with qk norm.""" |
|
|
|
def __init__( |
|
self, |
|
dim, |
|
num_heads=8, |
|
qkv_bias=True, |
|
qk_norm=False, |
|
**block_kwargs, |
|
): |
|
""" |
|
Args: |
|
dim (int): Number of input channels. |
|
num_heads (int): Number of attention heads. |
|
qkv_bias (bool: If True, add a learnable bias to query, key, value. |
|
""" |
|
super().__init__(dim, num_heads=num_heads, qkv_bias=qkv_bias, **block_kwargs) |
|
|
|
if qk_norm: |
|
self.q_norm = nn.LayerNorm(dim) |
|
self.k_norm = nn.LayerNorm(dim) |
|
else: |
|
self.q_norm = nn.Identity() |
|
self.k_norm = nn.Identity() |
|
|
|
def forward(self, x, mask=None, HW=None, block_id=None): |
|
B, N, C = x.shape |
|
|
|
qkv = self.qkv(x).reshape(B, N, 3, C) |
|
q, k, v = qkv.unbind(2) |
|
dtype = q.dtype |
|
|
|
q = self.q_norm(q) |
|
k = self.k_norm(k) |
|
|
|
q = q.reshape(B, N, self.num_heads, C // self.num_heads).to(dtype) |
|
k = k.reshape(B, N, self.num_heads, C // self.num_heads).to(dtype) |
|
v = v.reshape(B, N, self.num_heads, C // self.num_heads).to(dtype) |
|
|
|
use_fp32_attention = getattr(self, "fp32_attention", False) |
|
if use_fp32_attention: |
|
q, k, v = q.float(), k.float(), v.float() |
|
|
|
attn_bias = None |
|
if mask is not None: |
|
attn_bias = torch.zeros([B * self.num_heads, q.shape[1], k.shape[1]], dtype=q.dtype, device=q.device) |
|
attn_bias.masked_fill_(mask.squeeze(1).repeat(self.num_heads, 1, 1) == 0, float("-inf")) |
|
|
|
if _xformers_available: |
|
x = xformers.ops.memory_efficient_attention(q, k, v, p=self.attn_drop.p, attn_bias=attn_bias) |
|
else: |
|
q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2) |
|
if mask is not None and mask.ndim == 2: |
|
mask = (1 - mask.to(x.dtype)) * -10000.0 |
|
mask = mask[:, None, None].repeat(1, self.num_heads, 1, 1) |
|
x = F.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False) |
|
x = x.transpose(1, 2) |
|
|
|
x = x.view(B, N, C) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
|
|
if torch.get_autocast_gpu_dtype() == torch.float16: |
|
x = x.clip(-65504, 65504) |
|
|
|
return x |
|
|
|
|
|
|
|
|
|
|
|
class Attention(Attention_): |
|
def forward(self, x, HW=None): |
|
B, N, C = x.shape |
|
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) |
|
|
|
q, k, v = qkv.unbind(0) |
|
use_fp32_attention = getattr(self, "fp32_attention", False) |
|
if use_fp32_attention: |
|
q, k = q.float(), k.float() |
|
|
|
with torch.cuda.amp.autocast(enabled=not use_fp32_attention): |
|
attn = (q @ k.transpose(-2, -1)) * self.scale |
|
attn = attn.softmax(dim=-1) |
|
|
|
attn = self.attn_drop(attn) |
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B, N, C) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
|
|
class FinalLayer(nn.Module): |
|
""" |
|
The final layer of Sana. |
|
""" |
|
|
|
def __init__(self, hidden_size, patch_size, out_channels): |
|
super().__init__() |
|
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) |
|
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True) |
|
self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True)) |
|
|
|
def forward(self, x, c): |
|
shift, scale = self.adaLN_modulation(c).chunk(2, dim=1) |
|
x = modulate(self.norm_final(x), shift, scale) |
|
x = self.linear(x) |
|
return x |
|
|
|
|
|
class T2IFinalLayer(nn.Module): |
|
""" |
|
The final layer of Sana. |
|
""" |
|
|
|
def __init__(self, hidden_size, patch_size, out_channels): |
|
super().__init__() |
|
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) |
|
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True) |
|
self.scale_shift_table = nn.Parameter(torch.randn(2, hidden_size) / hidden_size**0.5) |
|
self.out_channels = out_channels |
|
|
|
def forward(self, x, t): |
|
shift, scale = (self.scale_shift_table[None] + t[:, None]).chunk(2, dim=1) |
|
x = t2i_modulate(self.norm_final(x), shift, scale) |
|
x = self.linear(x) |
|
return x |
|
|
|
|
|
class MaskFinalLayer(nn.Module): |
|
""" |
|
The final layer of Sana. |
|
""" |
|
|
|
def __init__(self, final_hidden_size, c_emb_size, patch_size, out_channels): |
|
super().__init__() |
|
self.norm_final = nn.LayerNorm(final_hidden_size, elementwise_affine=False, eps=1e-6) |
|
self.linear = nn.Linear(final_hidden_size, patch_size * patch_size * out_channels, bias=True) |
|
self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(c_emb_size, 2 * final_hidden_size, bias=True)) |
|
|
|
def forward(self, x, t): |
|
shift, scale = self.adaLN_modulation(t).chunk(2, dim=1) |
|
x = modulate(self.norm_final(x), shift, scale) |
|
x = self.linear(x) |
|
return x |
|
|
|
|
|
class DecoderLayer(nn.Module): |
|
""" |
|
The final layer of Sana. |
|
""" |
|
|
|
def __init__(self, hidden_size, decoder_hidden_size): |
|
super().__init__() |
|
self.norm_decoder = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) |
|
self.linear = nn.Linear(hidden_size, decoder_hidden_size, bias=True) |
|
self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True)) |
|
|
|
def forward(self, x, t): |
|
shift, scale = self.adaLN_modulation(t).chunk(2, dim=1) |
|
x = modulate(self.norm_decoder(x), shift, scale) |
|
x = self.linear(x) |
|
return x |
|
|
|
|
|
|
|
|
|
|
|
class TimestepEmbedder(nn.Module): |
|
""" |
|
Embeds scalar timesteps into vector representations. |
|
""" |
|
|
|
def __init__(self, hidden_size, frequency_embedding_size=256): |
|
super().__init__() |
|
self.mlp = nn.Sequential( |
|
nn.Linear(frequency_embedding_size, hidden_size, bias=True), |
|
nn.SiLU(), |
|
nn.Linear(hidden_size, hidden_size, bias=True), |
|
) |
|
self.frequency_embedding_size = frequency_embedding_size |
|
|
|
@staticmethod |
|
def timestep_embedding(t, dim, max_period=10000): |
|
""" |
|
Create sinusoidal timestep embeddings. |
|
:param t: a 1-D Tensor of N indices, one per batch element. |
|
These may be fractional. |
|
:param dim: the dimension of the output. |
|
:param max_period: controls the minimum frequency of the embeddings. |
|
:return: an (N, D) Tensor of positional embeddings. |
|
""" |
|
|
|
half = dim // 2 |
|
freqs = torch.exp( |
|
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32, device=t.device) / half |
|
) |
|
args = t[:, None].float() * freqs[None] |
|
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) |
|
if dim % 2: |
|
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) |
|
return embedding |
|
|
|
def forward(self, t): |
|
t_freq = self.timestep_embedding(t, self.frequency_embedding_size).to(self.dtype) |
|
t_emb = self.mlp(t_freq) |
|
return t_emb |
|
|
|
@property |
|
def dtype(self): |
|
try: |
|
return next(self.parameters()).dtype |
|
except StopIteration: |
|
return torch.float32 |
|
|
|
|
|
class SizeEmbedder(TimestepEmbedder): |
|
""" |
|
Embeds scalar timesteps into vector representations. |
|
""" |
|
|
|
def __init__(self, hidden_size, frequency_embedding_size=256): |
|
super().__init__(hidden_size=hidden_size, frequency_embedding_size=frequency_embedding_size) |
|
self.mlp = nn.Sequential( |
|
nn.Linear(frequency_embedding_size, hidden_size, bias=True), |
|
nn.SiLU(), |
|
nn.Linear(hidden_size, hidden_size, bias=True), |
|
) |
|
self.frequency_embedding_size = frequency_embedding_size |
|
self.outdim = hidden_size |
|
|
|
def forward(self, s, bs): |
|
if s.ndim == 1: |
|
s = s[:, None] |
|
assert s.ndim == 2 |
|
if s.shape[0] != bs: |
|
s = s.repeat(bs // s.shape[0], 1) |
|
assert s.shape[0] == bs |
|
b, dims = s.shape[0], s.shape[1] |
|
s = rearrange(s, "b d -> (b d)") |
|
s_freq = self.timestep_embedding(s, self.frequency_embedding_size).to(self.dtype) |
|
s_emb = self.mlp(s_freq) |
|
s_emb = rearrange(s_emb, "(b d) d2 -> b (d d2)", b=b, d=dims, d2=self.outdim) |
|
return s_emb |
|
|
|
@property |
|
def dtype(self): |
|
try: |
|
return next(self.parameters()).dtype |
|
except StopIteration: |
|
return torch.float32 |
|
|
|
|
|
class LabelEmbedder(nn.Module): |
|
""" |
|
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance. |
|
""" |
|
|
|
def __init__(self, num_classes, hidden_size, dropout_prob): |
|
super().__init__() |
|
use_cfg_embedding = dropout_prob > 0 |
|
self.embedding_table = nn.Embedding(num_classes + use_cfg_embedding, hidden_size) |
|
self.num_classes = num_classes |
|
self.dropout_prob = dropout_prob |
|
|
|
def token_drop(self, labels, force_drop_ids=None): |
|
""" |
|
Drops labels to enable classifier-free guidance. |
|
""" |
|
if force_drop_ids is None: |
|
drop_ids = torch.rand(labels.shape[0]).cuda() < self.dropout_prob |
|
else: |
|
drop_ids = force_drop_ids == 1 |
|
labels = torch.where(drop_ids, self.num_classes, labels) |
|
return labels |
|
|
|
def forward(self, labels, train, force_drop_ids=None): |
|
use_dropout = self.dropout_prob > 0 |
|
if (train and use_dropout) or (force_drop_ids is not None): |
|
labels = self.token_drop(labels, force_drop_ids) |
|
embeddings = self.embedding_table(labels) |
|
return embeddings |
|
|
|
|
|
class CaptionEmbedder(nn.Module): |
|
""" |
|
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_channels, |
|
hidden_size, |
|
uncond_prob, |
|
act_layer=nn.GELU(approximate="tanh"), |
|
token_num=120, |
|
): |
|
super().__init__() |
|
self.y_proj = Mlp( |
|
in_features=in_channels, hidden_features=hidden_size, out_features=hidden_size, act_layer=act_layer, drop=0 |
|
) |
|
self.register_buffer("y_embedding", nn.Parameter(torch.randn(token_num, in_channels) / in_channels**0.5)) |
|
self.uncond_prob = uncond_prob |
|
|
|
def initialize_gemma_params(self, model_name="google/gemma-2b-it"): |
|
num_layers = len(self.custom_gemma_layers) |
|
text_encoder = AutoModelForCausalLM.from_pretrained(model_name).get_decoder() |
|
pretrained_layers = text_encoder.layers[-num_layers:] |
|
for custom_layer, pretrained_layer in zip(self.custom_gemma_layers, pretrained_layers): |
|
info = custom_layer.load_state_dict(pretrained_layer.state_dict(), strict=False) |
|
print(f"**** {info} ****") |
|
print(f"**** Initialized {num_layers} Gemma layers from pretrained model: {model_name} ****") |
|
|
|
def token_drop(self, caption, force_drop_ids=None): |
|
""" |
|
Drops labels to enable classifier-free guidance. |
|
""" |
|
if force_drop_ids is None: |
|
drop_ids = torch.rand(caption.shape[0]).cuda() < self.uncond_prob |
|
else: |
|
drop_ids = force_drop_ids == 1 |
|
caption = torch.where(drop_ids[:, None, None, None], self.y_embedding, caption) |
|
return caption |
|
|
|
def forward(self, caption, train, force_drop_ids=None, mask=None): |
|
if train: |
|
assert caption.shape[2:] == self.y_embedding.shape |
|
use_dropout = self.uncond_prob > 0 |
|
if (train and use_dropout) or (force_drop_ids is not None): |
|
caption = self.token_drop(caption, force_drop_ids) |
|
|
|
caption = self.y_proj(caption) |
|
|
|
return caption |
|
|
|
|
|
class CaptionEmbedderDoubleBr(nn.Module): |
|
""" |
|
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance. |
|
""" |
|
|
|
def __init__(self, in_channels, hidden_size, uncond_prob, act_layer=nn.GELU(approximate="tanh"), token_num=120): |
|
super().__init__() |
|
self.proj = Mlp( |
|
in_features=in_channels, hidden_features=hidden_size, out_features=hidden_size, act_layer=act_layer, drop=0 |
|
) |
|
self.embedding = nn.Parameter(torch.randn(1, in_channels) / 10**0.5) |
|
self.y_embedding = nn.Parameter(torch.randn(token_num, in_channels) / 10**0.5) |
|
self.uncond_prob = uncond_prob |
|
|
|
def token_drop(self, global_caption, caption, force_drop_ids=None): |
|
""" |
|
Drops labels to enable classifier-free guidance. |
|
""" |
|
if force_drop_ids is None: |
|
drop_ids = torch.rand(global_caption.shape[0]).cuda() < self.uncond_prob |
|
else: |
|
drop_ids = force_drop_ids == 1 |
|
global_caption = torch.where(drop_ids[:, None], self.embedding, global_caption) |
|
caption = torch.where(drop_ids[:, None, None, None], self.y_embedding, caption) |
|
return global_caption, caption |
|
|
|
def forward(self, caption, train, force_drop_ids=None): |
|
assert caption.shape[2:] == self.y_embedding.shape |
|
global_caption = caption.mean(dim=2).squeeze() |
|
use_dropout = self.uncond_prob > 0 |
|
if (train and use_dropout) or (force_drop_ids is not None): |
|
global_caption, caption = self.token_drop(global_caption, caption, force_drop_ids) |
|
y_embed = self.proj(global_caption) |
|
return y_embed, caption |
|
|
|
|
|
class PatchEmbed(nn.Module): |
|
"""2D Image to Patch Embedding""" |
|
|
|
def __init__( |
|
self, |
|
img_size=224, |
|
patch_size=16, |
|
in_chans=3, |
|
embed_dim=768, |
|
kernel_size=None, |
|
padding=0, |
|
norm_layer=None, |
|
flatten=True, |
|
bias=True, |
|
): |
|
super().__init__() |
|
kernel_size = kernel_size or patch_size |
|
img_size = to_2tuple(img_size) |
|
patch_size = to_2tuple(patch_size) |
|
self.img_size = img_size |
|
self.patch_size = patch_size |
|
self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) |
|
self.num_patches = self.grid_size[0] * self.grid_size[1] |
|
self.flatten = flatten |
|
if not padding and kernel_size % 2 > 0: |
|
padding = get_same_padding(kernel_size) |
|
self.proj = nn.Conv2d( |
|
in_chans, embed_dim, kernel_size=kernel_size, stride=patch_size, padding=padding, bias=bias |
|
) |
|
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() |
|
|
|
def forward(self, x): |
|
B, C, H, W = x.shape |
|
assert (H == self.img_size[0], f"Input image height ({H}) doesn't match model ({self.img_size[0]}).") |
|
assert (W == self.img_size[1], f"Input image width ({W}) doesn't match model ({self.img_size[1]}).") |
|
x = self.proj(x) |
|
if self.flatten: |
|
x = x.flatten(2).transpose(1, 2) |
|
x = self.norm(x) |
|
return x |
|
|
|
|
|
class PatchEmbedMS(nn.Module): |
|
"""2D Image to Patch Embedding""" |
|
|
|
def __init__( |
|
self, |
|
patch_size=16, |
|
in_chans=3, |
|
embed_dim=768, |
|
kernel_size=None, |
|
padding=0, |
|
norm_layer=None, |
|
flatten=True, |
|
bias=True, |
|
): |
|
super().__init__() |
|
kernel_size = kernel_size or patch_size |
|
patch_size = to_2tuple(patch_size) |
|
self.patch_size = patch_size |
|
self.flatten = flatten |
|
if not padding and kernel_size % 2 > 0: |
|
padding = get_same_padding(kernel_size) |
|
self.proj = nn.Conv2d( |
|
in_chans, embed_dim, kernel_size=kernel_size, stride=patch_size, padding=padding, bias=bias |
|
) |
|
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() |
|
|
|
def forward(self, x): |
|
x = self.proj(x) |
|
if self.flatten: |
|
x = x.flatten(2).transpose(1, 2) |
|
x = self.norm(x) |
|
return x |
|
|