|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import ipdb |
|
import torch |
|
from torch import nn |
|
from torch.nn import functional as F |
|
|
|
from .triton_lite_mla_kernels.linear_relu_fwd import linear_relu_fwd |
|
from .triton_lite_mla_kernels.pad_vk_mm_fwd import pad_vk_mm_fwd |
|
from .triton_lite_mla_kernels.vk_q_mm_divide_fwd import vk_q_mm_divide_fwd |
|
|
|
|
|
class TritonLiteMLAFwdFunction(torch.autograd.Function): |
|
@staticmethod |
|
def forward( |
|
ctx, |
|
x: torch.Tensor, |
|
qkv_weight: torch.Tensor, |
|
proj_weight: torch.Tensor, |
|
proj_bias: torch.Tensor, |
|
num_heads: int, |
|
head_dim: int, |
|
eps: float, |
|
) -> torch.Tensor: |
|
|
|
B, N, C = x.shape |
|
qkv, relu_mask = linear_relu_fwd(x, qkv_weight) |
|
qkv, relu_mask = qkv.view(B, N, 3, C), relu_mask.view(B, N, 3, C) |
|
q, k, v = qkv.unbind(2) |
|
k = k.reshape(B, N, num_heads, head_dim) |
|
v = v.reshape(B, N, num_heads, head_dim) |
|
q = q.reshape(B, N, num_heads, head_dim) |
|
vk = pad_vk_mm_fwd(v, k, torch.float, torch.float) |
|
proj_input, vk_q = vk_q_mm_divide_fwd(vk, q, eps, torch.float, x.dtype) |
|
proj_input = proj_input.view(B, N, C) |
|
y = F.linear(proj_input, proj_weight, proj_bias) |
|
ctx.save_for_backward(x, qkv_weight, relu_mask, v, k, vk, q, vk_q, proj_input, proj_weight) |
|
ctx.eps = eps |
|
return y |
|
|
|
@staticmethod |
|
def backward(ctx, grad_y: torch.Tensor): |
|
x, qkv_weight, relu_mask, v, k, vk, q, vk_q, proj_input, proj_weight = ctx.saved_tensors |
|
B, N, H, C1 = vk_q.shape |
|
C = C1 - 1 |
|
|
|
grad_proj_weight = grad_y.reshape(-1, H * C).T @ proj_input.view(-1, H * C) |
|
grad_proj_bias = grad_y.sum((0, 1)) |
|
|
|
grad_proj_input = grad_y @ proj_weight |
|
grad_vk_q_numerator = grad_proj_input.view(B, N, H, C) / (vk_q[:, :, :, -1:] + ctx.eps) |
|
grad_vk_q_denominator = ( |
|
-(grad_proj_input.view(B, N, H, C) * vk_q[:, :, :, :-1]).sum(-1, keepdim=True) |
|
/ (vk_q[:, :, :, -1:] + ctx.eps) ** 2 |
|
) |
|
grad_vk_q = torch.cat([grad_vk_q_numerator, grad_vk_q_denominator], dim=-1) |
|
|
|
grad_q = (grad_vk_q.permute(0, 2, 1, 3) @ vk).permute(0, 2, 1, 3) |
|
grad_vk = grad_vk_q.permute(0, 2, 3, 1) @ q.float().permute(0, 2, 1, 3) |
|
grad_q.mul_(relu_mask[:, :, 0].view(B, N, H, C)) |
|
|
|
grad_v = (grad_vk @ k.float().permute(0, 2, 3, 1)).permute(0, 3, 1, 2)[:, :, :, :-1] |
|
grad_k = ((v.float().permute(0, 2, 1, 3) @ grad_vk[:, :, :-1]) + grad_vk[:, :, -1:]).permute(0, 2, 1, 3) |
|
grad_k.mul_(relu_mask[:, :, 1].view(B, N, H, C)) |
|
|
|
grad_qkv = torch.stack([grad_q, grad_k, grad_v], dim=2).view(B, N, 3 * H * C).to(x.dtype) |
|
grad_qkv_weight = grad_qkv.view(B * N, 3 * H * C).T @ x.view(B * N, H * C) |
|
grad_x = grad_qkv @ qkv_weight |
|
|
|
|
|
|
|
return grad_x, grad_qkv_weight, grad_proj_weight, grad_proj_bias, None, None, None |
|
|
|
|
|
class TritonLiteMLAFwd(nn.Module): |
|
def __init__( |
|
self, |
|
dim: int, |
|
num_heads: int, |
|
eps=1e-15, |
|
use_bias=False, |
|
): |
|
super().__init__() |
|
self.dim, self.num_heads, self.head_dim, self.eps = dim, num_heads, dim // num_heads, eps |
|
if use_bias: |
|
raise NotImplementedError(f"use_bias is not supported for TritonLiteMLA") |
|
self.qkv = nn.Linear(dim, dim * 3, bias=use_bias) |
|
self.proj = nn.Linear(dim, dim) |
|
|
|
def forward(self, x: torch.Tensor, mask=None, HW=None, block_id=None) -> torch.Tensor: |
|
return TritonLiteMLAFwdFunction.apply( |
|
x, self.qkv.weight, self.proj.weight, self.proj.bias, self.num_heads, self.head_dim, self.eps |
|
) |
|
|
|
@property |
|
def module_str(self) -> str: |
|
_str = type(self).__name__ + "(" |
|
eps = f"{self.eps:.1E}" |
|
_str += f"i={self.in_dim},o={self.out_dim},h={self.heads},d={self.dim},eps={eps}" |
|
return _str |
|
|
|
def __repr__(self): |
|
return f"EPS{self.eps}-" + super().__repr__() |
|
|