import os import re import shutil import cv2 import imageio import matplotlib.pyplot as plt import numpy as np import torch from matplotlib import cm from matplotlib.colors import LinearSegmentedColormap from PIL import Image, ImageDraw import tgs from tgs.utils.typing import * class SaverMixin: _save_dir: Optional[str] = None def set_save_dir(self, save_dir: str): self._save_dir = save_dir def get_save_dir(self): if self._save_dir is None: raise ValueError("Save dir is not set") return self._save_dir def convert_data(self, data): if data is None: return None elif isinstance(data, np.ndarray): return data elif isinstance(data, torch.Tensor): return data.detach().cpu().numpy() elif isinstance(data, list): return [self.convert_data(d) for d in data] elif isinstance(data, dict): return {k: self.convert_data(v) for k, v in data.items()} else: raise TypeError( "Data must be in type numpy.ndarray, torch.Tensor, list or dict, getting", type(data), ) def get_save_path(self, filename): save_path = os.path.join(self.get_save_dir(), filename) os.makedirs(os.path.dirname(save_path), exist_ok=True) return save_path DEFAULT_RGB_KWARGS = {"data_format": "HWC", "data_range": (0, 1)} DEFAULT_UV_KWARGS = { "data_format": "HWC", "data_range": (0, 1), "cmap": "checkerboard", } DEFAULT_GRAYSCALE_KWARGS = {"data_range": None, "cmap": "jet"} DEFAULT_GRID_KWARGS = {"align": "max"} def get_rgb_image_(self, img, data_format, data_range, rgba=False): img = self.convert_data(img) assert data_format in ["CHW", "HWC"] if data_format == "CHW": img = img.transpose(1, 2, 0) if img.dtype != np.uint8: img = img.clip(min=data_range[0], max=data_range[1]) img = ( (img - data_range[0]) / (data_range[1] - data_range[0]) * 255.0 ).astype(np.uint8) nc = 4 if rgba else 3 imgs = [img[..., start : start + nc] for start in range(0, img.shape[-1], nc)] imgs = [ img_ if img_.shape[-1] == nc else np.concatenate( [ img_, np.zeros( (img_.shape[0], img_.shape[1], nc - img_.shape[2]), dtype=img_.dtype, ), ], axis=-1, ) for img_ in imgs ] img = np.concatenate(imgs, axis=1) if rgba: img = cv2.cvtColor(img, cv2.COLOR_RGBA2BGRA) else: img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) return img def _save_rgb_image( self, filename, img, data_format, data_range ): img = self.get_rgb_image_(img, data_format, data_range) cv2.imwrite(filename, img) def save_rgb_image( self, filename, img, data_format=DEFAULT_RGB_KWARGS["data_format"], data_range=DEFAULT_RGB_KWARGS["data_range"], ) -> str: save_path = self.get_save_path(filename) self._save_rgb_image(save_path, img, data_format, data_range) return save_path def get_grayscale_image_(self, img, data_range, cmap): img = self.convert_data(img) img = np.nan_to_num(img) if data_range is None: img = (img - img.min()) / (img.max() - img.min()) else: img = img.clip(data_range[0], data_range[1]) img = (img - data_range[0]) / (data_range[1] - data_range[0]) assert cmap in [None, "jet", "magma", "spectral"] if cmap == None: img = (img * 255.0).astype(np.uint8) img = np.repeat(img[..., None], 3, axis=2) elif cmap == "jet": img = (img * 255.0).astype(np.uint8) img = cv2.applyColorMap(img, cv2.COLORMAP_JET) elif cmap == "magma": img = 1.0 - img base = cm.get_cmap("magma") num_bins = 256 colormap = LinearSegmentedColormap.from_list( f"{base.name}{num_bins}", base(np.linspace(0, 1, num_bins)), num_bins )(np.linspace(0, 1, num_bins))[:, :3] a = np.floor(img * 255.0) b = (a + 1).clip(max=255.0) f = img * 255.0 - a a = a.astype(np.uint16).clip(0, 255) b = b.astype(np.uint16).clip(0, 255) img = colormap[a] + (colormap[b] - colormap[a]) * f[..., None] img = (img * 255.0).astype(np.uint8) elif cmap == "spectral": colormap = plt.get_cmap("Spectral") def blend_rgba(image): image = image[..., :3] * image[..., -1:] + ( 1.0 - image[..., -1:] ) # blend A to RGB return image img = colormap(img) img = blend_rgba(img) img = (img * 255).astype(np.uint8) img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) return img def _save_grayscale_image( self, filename, img, data_range, cmap, ): img = self.get_grayscale_image_(img, data_range, cmap) cv2.imwrite(filename, img) def save_grayscale_image( self, filename, img, data_range=DEFAULT_GRAYSCALE_KWARGS["data_range"], cmap=DEFAULT_GRAYSCALE_KWARGS["cmap"], ) -> str: save_path = self.get_save_path(filename) self._save_grayscale_image(save_path, img, data_range, cmap) return save_path def get_image_grid_(self, imgs, align): if isinstance(imgs[0], list): return np.concatenate( [self.get_image_grid_(row, align) for row in imgs], axis=0 ) cols = [] for col in imgs: assert col["type"] in ["rgb", "uv", "grayscale"] if col["type"] == "rgb": rgb_kwargs = self.DEFAULT_RGB_KWARGS.copy() rgb_kwargs.update(col["kwargs"]) cols.append(self.get_rgb_image_(col["img"], **rgb_kwargs)) elif col["type"] == "uv": uv_kwargs = self.DEFAULT_UV_KWARGS.copy() uv_kwargs.update(col["kwargs"]) cols.append(self.get_uv_image_(col["img"], **uv_kwargs)) elif col["type"] == "grayscale": grayscale_kwargs = self.DEFAULT_GRAYSCALE_KWARGS.copy() grayscale_kwargs.update(col["kwargs"]) cols.append(self.get_grayscale_image_(col["img"], **grayscale_kwargs)) if align == "max": h = max([col.shape[0] for col in cols]) w = max([col.shape[1] for col in cols]) elif align == "min": h = min([col.shape[0] for col in cols]) w = min([col.shape[1] for col in cols]) elif isinstance(align, int): h = align w = align elif ( isinstance(align, tuple) and isinstance(align[0], int) and isinstance(align[1], int) ): h, w = align else: raise ValueError( f"Unsupported image grid align: {align}, should be min, max, int or (int, int)" ) for i in range(len(cols)): if cols[i].shape[0] != h or cols[i].shape[1] != w: cols[i] = cv2.resize(cols[i], (w, h), interpolation=cv2.INTER_LINEAR) return np.concatenate(cols, axis=1) def save_image_grid( self, filename, imgs, align=DEFAULT_GRID_KWARGS["align"], texts: Optional[List[float]] = None, ): save_path = self.get_save_path(filename) img = self.get_image_grid_(imgs, align=align) if texts is not None: img = Image.fromarray(img) draw = ImageDraw.Draw(img) black, white = (0, 0, 0), (255, 255, 255) for i, text in enumerate(texts): draw.text((2, (img.size[1] // len(texts)) * i + 1), f"{text}", white) draw.text((0, (img.size[1] // len(texts)) * i + 1), f"{text}", white) draw.text((2, (img.size[1] // len(texts)) * i - 1), f"{text}", white) draw.text((0, (img.size[1] // len(texts)) * i - 1), f"{text}", white) draw.text((1, (img.size[1] // len(texts)) * i), f"{text}", black) img = np.asarray(img) cv2.imwrite(save_path, img) return save_path def save_image(self, filename, img) -> str: save_path = self.get_save_path(filename) img = self.convert_data(img) assert img.dtype == np.uint8 or img.dtype == np.uint16 if img.ndim == 3 and img.shape[-1] == 3: img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR) elif img.ndim == 3 and img.shape[-1] == 4: img = cv2.cvtColor(img, cv2.COLOR_RGBA2BGRA) cv2.imwrite(save_path, img) return save_path def save_img_sequence( self, filename, img_dir, matcher, save_format="mp4", fps=30, ) -> str: assert save_format in ["gif", "mp4"] if not filename.endswith(save_format): filename += f".{save_format}" save_path = self.get_save_path(filename) matcher = re.compile(matcher) img_dir = os.path.join(self.get_save_dir(), img_dir) imgs = [] for f in os.listdir(img_dir): if matcher.search(f): imgs.append(f) imgs = sorted(imgs, key=lambda f: int(matcher.search(f).groups()[0])) imgs = [cv2.imread(os.path.join(img_dir, f)) for f in imgs] if save_format == "gif": imgs = [cv2.cvtColor(i, cv2.COLOR_BGR2RGB) for i in imgs] imageio.mimsave(save_path, imgs, fps=fps, palettesize=256) elif save_format == "mp4": imgs = [cv2.cvtColor(i, cv2.COLOR_BGR2RGB) for i in imgs] imageio.mimsave(save_path, imgs, fps=fps) return save_path def save_img_sequences( self, seq_dir, matcher, save_format="mp4", fps=30, delete=True ): seq_dir_ = os.path.join(self.get_save_dir(), seq_dir) for f in os.listdir(seq_dir_): img_dir_ = os.path.join(seq_dir_, f) if not os.path.isdir(img_dir_): continue try: self.save_img_sequence( os.path.join(seq_dir, f), os.path.join(seq_dir, f), matcher, save_format=save_format, fps=fps ) except: tgs.warn(f"Video saving for directory {seq_dir_} failed!") if delete: shutil.rmtree(img_dir_)