File size: 10,478 Bytes
717b269
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import json
import math
from dataclasses import dataclass, field

import os
import imageio
import numpy as np
import torch
import torch.nn.functional as F
from PIL import Image
from torch.utils.data import Dataset

from tgs.utils.config import parse_structured
from tgs.utils.ops import get_intrinsic_from_fov, get_ray_directions, get_rays
from tgs.utils.typing import *


def _parse_scene_list_single(scene_list_path: str):
    if scene_list_path.endswith(".json"):
        with open(scene_list_path) as f:
            all_scenes = json.loads(f.read())
    elif scene_list_path.endswith(".txt"):
        with open(scene_list_path) as f:
            all_scenes = [p.strip() for p in f.readlines()]
    else:
        all_scenes = [scene_list_path]

    return all_scenes


def _parse_scene_list(scene_list_path: Union[str, List[str]]):
    all_scenes = []
    if isinstance(scene_list_path, str):
        scene_list_path = [scene_list_path]
    for scene_list_path_ in scene_list_path:
        all_scenes += _parse_scene_list_single(scene_list_path_)
    return all_scenes

@dataclass
class CustomImageDataModuleConfig:
    image_list: Any = ""
    background_color: Tuple[float, float, float] = field(
        default_factory=lambda: (1.0, 1.0, 1.0)
    )

    relative_pose: bool = False
    cond_height: int = 512
    cond_width: int = 512
    cond_camera_distance: float = 1.6
    cond_fovy_deg: float = 40.0
    cond_elevation_deg: float = 0.0
    cond_azimuth_deg: float = 0.0
    num_workers: int = 16

    eval_height: int = 512
    eval_width: int = 512
    eval_batch_size: int = 1
    eval_elevation_deg: float = 0.0
    eval_camera_distance: float = 1.6
    eval_fovy_deg: float = 40.0
    n_test_views: int = 120
    num_views_output: int = 120
    only_3dgs: bool = False

class CustomImageOrbitDataset(Dataset):
    def __init__(self, cfg: Any) -> None:
        super().__init__()
        self.cfg: CustomImageDataModuleConfig = parse_structured(CustomImageDataModuleConfig, cfg)

        self.n_views = self.cfg.n_test_views
        assert self.n_views % self.cfg.num_views_output == 0

        self.all_scenes = _parse_scene_list(self.cfg.image_list)

        azimuth_deg: Float[Tensor, "B"] = torch.linspace(0, 360.0, self.n_views + 1)[
            : self.n_views
        ]
        elevation_deg: Float[Tensor, "B"] = torch.full_like(
            azimuth_deg, self.cfg.eval_elevation_deg
        )
        camera_distances: Float[Tensor, "B"] = torch.full_like(
            elevation_deg, self.cfg.eval_camera_distance
        )

        elevation = elevation_deg * math.pi / 180
        azimuth = azimuth_deg * math.pi / 180

        # convert spherical coordinates to cartesian coordinates
        # right hand coordinate system, x back, y right, z up
        # elevation in (-90, 90), azimuth from +x to +y in (-180, 180)
        camera_positions: Float[Tensor, "B 3"] = torch.stack(
            [
                camera_distances * torch.cos(elevation) * torch.cos(azimuth),
                camera_distances * torch.cos(elevation) * torch.sin(azimuth),
                camera_distances * torch.sin(elevation),
            ],
            dim=-1,
        )

        # default scene center at origin
        center: Float[Tensor, "B 3"] = torch.zeros_like(camera_positions)
        # default camera up direction as +z
        up: Float[Tensor, "B 3"] = torch.as_tensor([0, 0, 1], dtype=torch.float32)[
            None, :
        ].repeat(self.n_views, 1)

        fovy_deg: Float[Tensor, "B"] = torch.full_like(
            elevation_deg, self.cfg.eval_fovy_deg
        )
        fovy = fovy_deg * math.pi / 180

        lookat: Float[Tensor, "B 3"] = F.normalize(center - camera_positions, dim=-1)
        right: Float[Tensor, "B 3"] = F.normalize(torch.cross(lookat, up), dim=-1)
        up = F.normalize(torch.cross(right, lookat), dim=-1)
        c2w3x4: Float[Tensor, "B 3 4"] = torch.cat(
            [torch.stack([right, up, -lookat], dim=-1), camera_positions[:, :, None]],
            dim=-1,
        )
        c2w: Float[Tensor, "B 4 4"] = torch.cat(
            [c2w3x4, torch.zeros_like(c2w3x4[:, :1])], dim=1
        )
        c2w[:, 3, 3] = 1.0

        # get directions by dividing directions_unit_focal by focal length
        focal_length: Float[Tensor, "B"] = (
            0.5 * self.cfg.eval_height / torch.tan(0.5 * fovy)
        )
        directions_unit_focal = get_ray_directions(
            H=self.cfg.eval_height,
            W=self.cfg.eval_width,
            focal=1.0,
        )
        directions: Float[Tensor, "B H W 3"] = directions_unit_focal[
            None, :, :, :
        ].repeat(self.n_views, 1, 1, 1)
        directions[:, :, :, :2] = (
            directions[:, :, :, :2] / focal_length[:, None, None, None]
        )
        # must use normalize=True to normalize directions here
        rays_o, rays_d = get_rays(directions, c2w, keepdim=True)

        intrinsic: Float[Tensor, "B 3 3"] = get_intrinsic_from_fov(
            self.cfg.eval_fovy_deg * math.pi / 180,
            H=self.cfg.eval_height,
            W=self.cfg.eval_width,
            bs=self.n_views,
        )
        intrinsic_normed: Float[Tensor, "B 3 3"] = intrinsic.clone()
        intrinsic_normed[..., 0, 2] /= self.cfg.eval_width
        intrinsic_normed[..., 1, 2] /= self.cfg.eval_height
        intrinsic_normed[..., 0, 0] /= self.cfg.eval_width
        intrinsic_normed[..., 1, 1] /= self.cfg.eval_height

        self.rays_o, self.rays_d = rays_o, rays_d
        self.intrinsic = intrinsic
        self.intrinsic_normed = intrinsic_normed
        self.c2w = c2w
        self.camera_positions = camera_positions

        self.background_color = torch.as_tensor(self.cfg.background_color)

        # condition
        self.intrinsic_cond = get_intrinsic_from_fov(
            np.deg2rad(self.cfg.cond_fovy_deg),
            H=self.cfg.cond_height,
            W=self.cfg.cond_width,
        )
        self.intrinsic_normed_cond = self.intrinsic_cond.clone()
        self.intrinsic_normed_cond[..., 0, 2] /= self.cfg.cond_width
        self.intrinsic_normed_cond[..., 1, 2] /= self.cfg.cond_height
        self.intrinsic_normed_cond[..., 0, 0] /= self.cfg.cond_width
        self.intrinsic_normed_cond[..., 1, 1] /= self.cfg.cond_height


        if self.cfg.relative_pose:
            self.c2w_cond = torch.as_tensor(
                [
                    [0, 0, 1, self.cfg.cond_camera_distance],
                    [1, 0, 0, 0],
                    [0, 1, 0, 0],
                    [0, 0, 0, 1],
                ]
            ).float()
        else:
            cond_elevation = self.cfg.cond_elevation_deg * math.pi / 180
            cond_azimuth = self.cfg.cond_azimuth_deg * math.pi / 180
            cond_camera_position: Float[Tensor, "3"] = torch.as_tensor(
                    [
                        self.cfg.cond_camera_distance * np.cos(cond_elevation) * np.cos(cond_azimuth),
                        self.cfg.cond_camera_distance * np.cos(cond_elevation) * np.sin(cond_azimuth),
                        self.cfg.cond_camera_distance * np.sin(cond_elevation),
                    ], dtype=torch.float32
            )

            cond_center: Float[Tensor, "3"] = torch.zeros_like(cond_camera_position)
            cond_up: Float[Tensor, "3"] = torch.as_tensor([0, 0, 1], dtype=torch.float32)
            cond_lookat: Float[Tensor, "3"] = F.normalize(cond_center - cond_camera_position, dim=-1)
            cond_right: Float[Tensor, "3"] = F.normalize(torch.cross(cond_lookat, cond_up), dim=-1)
            cond_up = F.normalize(torch.cross(cond_right, cond_lookat), dim=-1)
            cond_c2w3x4: Float[Tensor, "3 4"] = torch.cat(
                [torch.stack([cond_right, cond_up, -cond_lookat], dim=-1), cond_camera_position[:, None]],
                dim=-1,
            )
            cond_c2w: Float[Tensor, "4 4"] = torch.cat(
                [cond_c2w3x4, torch.zeros_like(cond_c2w3x4[:1])], dim=0
            )
            cond_c2w[3, 3] = 1.0
            self.c2w_cond = cond_c2w

    def __len__(self):
        if self.cfg.only_3dgs:
            return len(self.all_scenes)
        else:
            return len(self.all_scenes) * self.n_views // self.cfg.num_views_output

    def __getitem__(self, index):
        if self.cfg.only_3dgs:
            scene_index = index
            view_index = [0]
        else:
            scene_index = index * self.cfg.num_views_output // self.n_views
            view_start = index % (self.n_views // self.cfg.num_views_output)
            view_index = list(range(self.n_views))[view_start * self.cfg.num_views_output : 
                                                (view_start + 1) * self.cfg.num_views_output]

        img_path = self.all_scenes[scene_index]
        img_cond = torch.from_numpy(
            np.asarray(
                Image.fromarray(imageio.v2.imread(img_path))
                .convert("RGBA")
                .resize((self.cfg.cond_width, self.cfg.cond_height))
            )
            / 255.0
        ).float()
        mask_cond: Float[Tensor, "Hc Wc 1"] = img_cond[:, :, -1:]
        rgb_cond: Float[Tensor, "Hc Wc 3"] = img_cond[
            :, :, :3
        ] * mask_cond + self.background_color[None, None, :] * (1 - mask_cond)        

        out = {
            "rgb_cond": rgb_cond.unsqueeze(0),
            "c2w_cond": self.c2w_cond.unsqueeze(0),
            "mask_cond": mask_cond.unsqueeze(0),
            "intrinsic_cond": self.intrinsic_cond.unsqueeze(0),
            "intrinsic_normed_cond": self.intrinsic_normed_cond.unsqueeze(0),
            "view_index": torch.as_tensor(view_index),
            "rays_o": self.rays_o[view_index],
            "rays_d": self.rays_d[view_index],
            "intrinsic": self.intrinsic[view_index],
            "intrinsic_normed": self.intrinsic_normed[view_index],
            "c2w": self.c2w[view_index],
            "camera_positions": self.camera_positions[view_index],
        }
        out["c2w"][..., :3, 1:3] *= -1
        out["c2w_cond"][..., :3, 1:3] *= -1
        instance_id = os.path.split(img_path)[-1].split('.')[0]
        out["index"] = torch.as_tensor(scene_index)
        out["background_color"] = self.background_color
        out["instance_id"] = instance_id
        return out

    def collate(self, batch):
        batch = torch.utils.data.default_collate(batch)
        batch.update({"height": self.cfg.eval_height, "width": self.cfg.eval_width})
        return batch