File size: 12,142 Bytes
327743d
717b269
 
 
 
 
 
 
 
 
 
 
 
 
b32d972
717b269
 
 
9757ba7
717b269
 
 
 
 
 
 
 
 
 
 
 
53ccf28
 
671c0b1
53ccf28
462d3d7
 
 
 
 
 
 
 
53ccf28
f5aa67c
b8146e7
 
9757ba7
 
 
717b269
9757ba7
717b269
 
 
 
 
 
9757ba7
717b269
 
 
 
 
 
 
 
 
2a7450b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
717b269
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a7450b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
717b269
2a7450b
 
 
 
 
 
 
 
 
 
 
 
 
 
717b269
2a7450b
 
717b269
2a7450b
 
 
 
 
 
 
 
 
 
 
 
 
 
717b269
2a7450b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
717b269
b32d972
 
 
 
 
 
717b269
b32d972
717b269
 
b32d972
717b269
2a7450b
 
717b269
2a7450b
 
 
717b269
b32d972
717b269
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b32d972
 
 
 
 
 
717b269
 
 
 
 
 
 
542ae60
 
 
 
f5aefe5
542ae60
f5aefe5
 
 
542ae60
 
717b269
 
 
0a79c9b
717b269
 
0a79c9b
717b269
5d50546
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import spaces
import os 
import sys 
os.environ["PYOPENGL_PLATFORM"] = "egl"
os.environ["MESA_GL_VERSION_OVERRIDE"] = "4.1"

import gradio as gr
import cv2 
import numpy as np 
import torch 
from ultralytics import YOLO
from pathlib import Path
import argparse
import json
import trimesh
from torchvision import transforms
from typing import Dict, Optional
from PIL import Image, ImageDraw
from huggingface_hub import hf_hub_download
from lang_sam import LangSAM

from wilor.models import load_wilor
from wilor.utils import recursive_to
from wilor.datasets.vitdet_dataset import ViTDetDataset
from hort.models import load_hort
from hort.utils.renderer import Renderer, cam_crop_to_new
from hort.utils.img_utils import process_bbox, generate_patch_image, PerspectiveCamera
from ultralytics import YOLO
LIGHT_PURPLE=(0.25098039,  0.274117647,  0.65882353)
STEEL_BLUE=(0.2745098, 0.5098039, 0.7058824)


def install_cuda_toolkit():
    CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.1.0/local_installers/cuda_12.1.0_530.30.02_linux.run"
    CUDA_TOOLKIT_FILE = "/tmp/%s" % os.path.basename(CUDA_TOOLKIT_URL)
    if not os.path.exists(CUDA_TOOLKIT_FILE):
        os.system("pip install gradio==5.0.2")
        print("start to download cuda toolkit")
        os.system(f"wget -q {CUDA_TOOLKIT_URL} -O {CUDA_TOOLKIT_FILE}")
        os.system(f"chmod +x {CUDA_TOOLKIT_FILE}")
        print("start to install cuda toolkit")
        os.system(f"{CUDA_TOOLKIT_FILE} --silent --toolkit")
        os.environ["CUDA_HOME"] = "/usr/local/cuda"

# install_cuda_toolkit()
# print("start to install pointnet++")
# os.system("cd /home/user/app/hort/models/tgs/models/snowflake/pointnet2_ops_lib && python setup.py install && cd /home/user/app")
wilor_checkpoint_path = hf_hub_download(repo_id="zerchen/hort_models", filename="wilor_final.ckpt")
hort_checkpoint_path = hf_hub_download(repo_id="zerchen/hort_models", filename="hort_final.pth.tar")

# Download and load checkpoints
wilor_model, wilor_model_cfg = load_wilor(checkpoint_path = wilor_checkpoint_path, cfg_path= './pretrained_models/model_config.yaml')
hand_detector = YOLO('./pretrained_models/detector.pt')
# Setup the renderer
renderer = Renderer(wilor_model_cfg, faces=wilor_model.mano.faces)
# Setup the SAM model
sam_model = LangSAM(sam_type="sam2.1_hiera_large")
# Setup the HORT model
hort_model = load_hort(hort_checkpoint_path)

device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
wilor_model = wilor_model.to(device)
hand_detector = hand_detector.to(device)
hort_model = hort_model.to(device)
wilor_model.eval()
hort_model.eval()
image_transform = transforms.Compose([transforms.ToPILImage(), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])


def calculate_iou(box1, box2):
    x1_inter = max(box1[0], box2[0])
    y1_inter = max(box1[1], box2[1])
    x2_inter = min(box1[2], box2[2])
    y2_inter = min(box1[3], box2[3])
    # Compute intersection area
    inter_width = max(0, x2_inter - x1_inter)
    inter_height = max(0, y2_inter - y1_inter)
    intersection = inter_width * inter_height
    # Compute areas of each box
    area_box1 = (box1[2] - box1[0]) * (box1[3] - box1[1])
    area_box2 = (box2[2] - box2[0]) * (box2[3] - box2[1])
    # Compute union
    union = area_box1 + area_box2 - intersection
    # Compute IoU
    return intersection / union if union > 0 else 0.0


@spaces.GPU()
def run_model(image, conf, IoU_threshold=0.5):
    img_cv2 = image[..., ::-1]
    img_pil = Image.fromarray(image)

    pred_obj = sam_model.predict([img_pil], ["manipulated object"])
    bbox_obj = pred_obj[0]["boxes"][0].reshape((-1, 2))

    detections = hand_detector(img_cv2, conf=conf, verbose=False, iou=IoU_threshold)[0]
    
    bboxes = []
    is_right = []
    for det in detections: 
        Bbox = det.boxes.data.cpu().detach().squeeze().numpy()
        is_right.append(det.boxes.cls.cpu().detach().squeeze().item())
        bboxes.append(Bbox[:4].tolist())

    if len(bboxes) == 0:
        print("no hands in this image")
    elif len(bboxes) == 1:
        bbox_hand = np.array(bboxes[0]).reshape((-1, 2))
    elif len(bboxes) > 1:
        hand_idx = None
        max_iou = -10.
        for cur_idx, cur_bbox in enumerate(bboxes):
            cur_iou = calculate_iou(cur_bbox, bbox_obj.reshape(-1).tolist())
            if cur_iou >= max_iou:
                hand_idx = cur_idx
                max_iou = cur_iou
        bbox_hand = np.array(bboxes[hand_idx]).reshape((-1, 2))
        bboxes = [bboxes[hand_idx]]
        is_right = [is_right[hand_idx]]

    tl = np.min(np.concatenate([bbox_obj, bbox_hand], axis=0), axis=0)
    br = np.max(np.concatenate([bbox_obj, bbox_hand], axis=0), axis=0)
    box_size = br - tl
    bbox = np.concatenate([tl - 10, box_size + 20], axis=0)
    ho_bbox = process_bbox(bbox)
          
    boxes = np.stack(bboxes)
    right = np.stack(is_right)
    if not right:
        new_x1 = img_cv2.shape[1] - boxes[0][2]
        new_x2 = img_cv2.shape[1] - boxes[0][0]
        boxes[0][0] = new_x1
        boxes[0][2] = new_x2
        ho_bbox[0] = img_cv2.shape[1] - (ho_bbox[0] + ho_bbox[2])
        img_cv2 = cv2.flip(img_cv2, 1)
        right[0] = 1.
    crop_img_cv2, _ = generate_patch_image(img_cv2, ho_bbox, (224, 224), 0, 1.0, 0)
        
    dataset = ViTDetDataset(wilor_model_cfg, img_cv2, boxes, right, rescale_factor=2.0)
    dataloader = torch.utils.data.DataLoader(dataset, batch_size=16, shuffle=False, num_workers=0)
    
    for batch in dataloader: 
        batch = recursive_to(batch, device)
    
        with torch.no_grad():
            out = wilor_model(batch) 
            
        pred_cam      = out['pred_cam']
        box_center    = batch["box_center"].float()
        box_size      = batch["box_size"].float()
        img_size      = batch["img_size"].float()
        scaled_focal_length = wilor_model_cfg.EXTRA.FOCAL_LENGTH / wilor_model_cfg.MODEL.IMAGE_SIZE * 224
        pred_cam_t_full = cam_crop_to_new(pred_cam, box_center, box_size, img_size, torch.from_numpy(np.array(ho_bbox, dtype=np.float32))[None, :].to(img_size.device), scaled_focal_length).detach().cpu().numpy()
        
        batch_size = batch['img'].shape[0]
        for n in range(batch_size):
            verts  = out['pred_vertices'][n].detach().cpu().numpy()
            joints = out['pred_keypoints_3d'][n].detach().cpu().numpy()
            
            is_right = batch['right'][n].cpu().numpy()
            palm = (verts[95] + verts[22]) / 2
            cam_t = pred_cam_t_full[n]

            img_input = image_transform(crop_img_cv2[:, :, ::-1]).unsqueeze(0).cuda()
            camera = PerspectiveCamera(5000 / 256 * 224, 5000 / 256 * 224, 112, 112)
            cam_intr = camera.intrinsics

            metas = dict()
            metas["right_hand_verts_3d"] = torch.from_numpy((verts + cam_t)[None]).cuda()
            metas["right_hand_joints_3d"] = torch.from_numpy((joints + cam_t)[None]).cuda()
            metas["right_hand_palm"] = torch.from_numpy((palm + cam_t)[None]).cuda()
            metas["cam_intr"] = torch.from_numpy(cam_intr[None]).cuda()
            with torch.amp.autocast(device_type='cuda', dtype=torch.float16):
                pc_results = hort_model(img_input, metas)
            objtrans = pc_results["objtrans"][0].detach().cpu().numpy()
            pointclouds_up = pc_results["pointclouds_up"][0].detach().cpu().numpy() * 0.3
            
            reconstructions = {'verts': verts, 'palm': palm, 'objtrans': objtrans, 'objpcs': pointclouds_up, 'cam_t': cam_t, 'right': is_right, 'img_size': 224, 'focal': scaled_focal_length}

            camera_translation = cam_t.copy()
            hand_mesh = renderer.mesh(verts, camera_translation, LIGHT_PURPLE, is_right=is_right)
            obj_pcd = trimesh.PointCloud(reconstructions['objpcs'] + reconstructions['palm'] + reconstructions['objtrans'] + camera_translation, colors=[70, 130, 180, 255])
            scene = trimesh.Scene([hand_mesh, obj_pcd])
            scene_path = "/tmp/test.glb"
            scene.export(scene_path)

        return crop_img_cv2[..., ::-1].astype(np.float32) / 255.0, len(detections), reconstructions, scene_path

def render_reconstruction(image, conf, IoU_threshold=0.3): 
    input_img, num_dets, reconstructions, scene_path = run_model(image, conf, IoU_threshold=0.5)
    # Render front view
    misc_args = dict(mesh_base_color=LIGHT_PURPLE, point_base_color=STEEL_BLUE, scene_bg_color=(1, 1, 1), focal_length=reconstructions['focal'])
    cam_view = renderer.render_rgba(reconstructions['verts'], reconstructions['objpcs'] + reconstructions['palm'] + reconstructions['objtrans'], cam_t=reconstructions['cam_t'], render_res=(224, 224), is_right=True, **misc_args)

    # Overlay image
    input_img = np.concatenate([input_img, np.ones_like(input_img[:,:,:1])], axis=2) # Add alpha channel
    input_img_overlay = input_img[:,:,:3] * (1-cam_view[:,:,3:]) + cam_view[:,:,:3] * cam_view[:,:,3:]

    return input_img_overlay, f'{num_dets} hands detected', scene_path  


header = ('''
<div class="embed_hidden" style="text-align: center;">
    <h1> <b>HORT</b>: Monocular Hand-held Objects Reconstruction with Transformers</h1>
    <h3>
        <a href="https://zerchen.github.io/" target="_blank" rel="noopener noreferrer">Zerui Chen</a><sup>1</sup>,
        <a href="https://rolpotamias.github.io" target="_blank" rel="noopener noreferrer">Rolandos Alexandros Potamias</a><sup>2</sup>,
        <br>
        <a href="https://cshizhe.github.io/" target="_blank" rel="noopener noreferrer">Shizhe Chen</a><sup>1</sup>,
        <a href="https://cordeliaschmid.github.io/" target="_blank" rel="noopener noreferrer">Cordelia Schmid</a><sup>1</sup>
    </h3>
    <h3>
        <sup>1</sup>Inria, Ecole normale supérieure, CNRS, PSL Research University;
        <sup>2</sup>Imperial College London
    </h3>
</div>
<div style="display:flex; gap: 0.3rem; justify-content: center; align-items: center;" align="center">
<a href='https://arxiv.org/abs/2503.21313'><img src='https://img.shields.io/badge/Arxiv-2503.21313-A42C25?style=flat&logo=arXiv&logoColor=A42C25'></a> 
<a href='https://arxiv.org/pdf/2503.21313'><img src='https://img.shields.io/badge/Paper-PDF-yellow?style=flat&logo=arXiv&logoColor=yellow'></a> 
<a href='https://zerchen.github.io/projects/hort.html'><img src='https://img.shields.io/badge/Project-Page-%23df5b46?style=flat&logo=Google%20chrome&logoColor=%23df5b46'></a> 
<a href='https://github.com/zerchen/hort'><img src='https://img.shields.io/badge/GitHub-Code-black?style=flat&logo=github&logoColor=white'></a> 
''')

theme = gr.themes.Ocean()
theme.set(
    checkbox_label_background_fill_selected="*button_primary_background_fill",
    checkbox_label_text_color_selected="*button_primary_text_color",
)
with gr.Blocks(theme=theme, title="HORT: Monocular Hand-held Objects Reconstruction with Transformers", css=".gradio-container") as demo:

    gr.Markdown(header)

    with gr.Row():
        with gr.Column():
            input_image = gr.Image(label="Input image", type="numpy")
            submit = gr.Button("Submit", variant="primary")
            example_images = gr.Examples([
                ['/home/user/app/assets/test1.png'], 
                ['/home/user/app/assets/test2.png'], 
                ['/home/user/app/assets/test3.jpg'], 
                ['/home/user/app/assets/test4.jpg'],
                ['/home/user/app/assets/test5.jpeg'],
                ['/home/user/app/assets/test6.jpg'],
                ['/home/user/app/assets/test7.jpg'],
                ['/home/user/app/assets/test8.jpeg']
                ], 
                inputs=input_image)
        
        with gr.Column():
            reconstruction = gr.Image(label="Reconstructions", type="numpy")
            output_meshes = gr.Model3D(label="3D Models", height=300, zoom_speed=0.5, pan_speed=0.5)
            hands_detected = gr.Textbox(label="Hands Detected")
    
        submit.click(fn=render_reconstruction, inputs=[input_image], outputs=[reconstruction, hands_detected, output_meshes])

demo.launch(share=True)