Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import pipeline | |
# Load the sentiment analysis pipeline | |
sentiment_pipeline = pipeline("sentiment-analysis") | |
# Function to process input text | |
def analyze_sentiment(text): | |
if not text.strip(): | |
return "β οΈ Please enter some text." | |
result = sentiment_pipeline(text)[0] | |
label_emoji = "π" if result["label"] == "POSITIVE" else "π" | |
return f"{label_emoji} **{result['label']}** (confidence: `{round(result['score'], 3)}`)" | |
# Create a more styled interface using Gradio Blocks | |
with gr.Blocks(title="Sentiment Analyzer") as demo: | |
gr.Markdown( | |
""" | |
# π§ Sentiment Analysis App | |
_Enter a sentence to discover its emotional tone!_ | |
Uses `distilbert-base-uncased-finetuned-sst-2-english` from Hugging Face π€ | |
--- | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(): | |
input_text = gr.Textbox( | |
placeholder="Type something like 'I love this app!'", | |
label="Your Text", | |
lines=3 | |
) | |
submit_btn = gr.Button("π Analyze") | |
with gr.Column(): | |
output = gr.Markdown(label="Sentiment Result") | |
submit_btn.click(fn=analyze_sentiment, inputs=input_text, outputs=output) | |
gr.Markdown("---") | |
gr.Markdown("Made with β€οΈ using [Gradio](https://gradio.app) and [Hugging Face Transformers](https://huggingface.co./transformers/)") | |
# For local testing; not required for Spaces | |
if __name__ == "__main__": | |
demo.launch() | |