{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/home/timo/rep/TextClassifier/venv/lib/python3.12/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", " from .autonotebook import tqdm as notebook_tqdm\n" ] } ], "source": [ "import os\n", "os.chdir('..')\n", "\n", "from src.classifier import Classifier\n", "from src.bert import Bert\n", "import torch\n", "import yaml" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n", "\n", "config = yaml.safe_load(open('config.yaml'))\n", "\n", "bert = Bert(config['model']['bert_name'])\n", "model = Classifier(bert).to(device)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "model.load_state_dict(torch.load('models/model_5.pth', map_location=device, weights_only=True))" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "tensor([0.0007], device='cuda:0')" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "text = 'привет мир'\n", "\n", "with torch.no_grad():\n", " predict = model([text])\n", " \n", "predict" ] } ], "metadata": { "kernelspec": { "display_name": "venv", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.3" } }, "nbformat": 4, "nbformat_minor": 2 }