{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Демонстрация работы API" ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "text = \"Привет мир\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Способ 1" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "/home/timo/rep/TextClassifier/venv/lib/python3.12/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n", " from .autonotebook import tqdm as notebook_tqdm\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Loaded as API: http://0.0.0.0:7860/ ✔\n", "Текст: Привет мир\n", "Статус: Positive\n" ] } ], "source": [ "from gradio_client import Client\n", "\n", "def classify_text(text: str) -> str:\n", " # Создаем клиент для общения с сервером\n", " client = Client(\"http://0.0.0.0:7860/\")\n", "\n", " # Отправляем текст для классификации\n", " result = client.predict(\n", " text=text,\n", " api_name=\"/predict\"\n", " )\n", "\n", " # Обрабатываем результат\n", " if result:\n", " status = result[0]\n", " return status\n", "\n", " return \"Ошибка классификации\"\n", "\n", "# Пример использования функции\n", "status = classify_text(text)\n", "\n", "print(f\"Текст: {text}\")\n", "print(f\"Статус: {status}\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Способ 2" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Текст: Привет мир\n", "Статус: Positive\n" ] } ], "source": [ "import requests\n", "\n", "def classify_text(text: str) -> str:\n", " # URL и заголовки для POST-запроса\n", " url = 'http://0.0.0.0:7860/gradio_api/call/predict'\n", " headers = {'Content-Type': 'application/json'}\n", " data = {\"data\": [text]}\n", "\n", " # Отправляем POST-запрос для классификации\n", " response = requests.post(url, json=data, headers=headers)\n", "\n", " # Проверяем успешность ответа\n", " if response.status_code == 200:\n", " # Извлекаем EVENT_ID из ответа\n", " event_id = response.json().get('event_id')\n", "\n", " # Проверяем, что event_id присутствует\n", " if event_id:\n", " # Второй запрос с EVENT_ID для получения классификации\n", " event_url = f'http://0.0.0.0:7860/gradio_api/call/predict/{event_id}'\n", " event_response = requests.get(event_url)\n", "\n", " # Если второй запрос успешен\n", " if event_response.status_code == 200:\n", " for line in event_response.iter_lines():\n", " if line:\n", " decoded_line = line.decode('utf-8')\n", "\n", " if 'data: ' in decoded_line:\n", " parsed_data = decoded_line.split('data: ')[1]\n", " parsed_data = parsed_data.strip('[]').split(', ')\n", "\n", " # Извлекаем статус\n", " status = parsed_data[0].strip('\"')\n", " return status\n", "\n", " return \"Ошибка классификации\"\n", "\n", "# Пример использования функции\n", "status = classify_text(text)\n", "\n", "print(f\"Текст: {text}\")\n", "print(f\"Статус: {status}\")" ] } ], "metadata": { "kernelspec": { "display_name": "venv", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.3" } }, "nbformat": 4, "nbformat_minor": 2 }