Spaces:
Sleeping
Sleeping
File size: 65,906 Bytes
b83e315 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"os.chdir(\"..\")\n",
"\n",
"import pandas as pd\n",
"import matplotlib.pyplot as plt"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/timo/rep/TextClassifier/venv/lib/python3.12/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
" from .autonotebook import tqdm as notebook_tqdm\n"
]
}
],
"source": [
"splits = {'train': 'train.jsonl', 'test': 'test.jsonl'}\n",
"train = pd.read_json(\"hf://datasets/AlexSham/Toxic_Russian_Comments/\" + splits[\"train\"], lines=True)\n",
"test = pd.read_json(\"hf://datasets/AlexSham/Toxic_Russian_Comments/\" + splits[\"test\"], lines=True)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>text</th>\n",
" <th>label</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>видимо в разных регионах называют по разному ,...</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>понятно что это нарушение правил, писать капсл...</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>какие классные, жизненные стихи....</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>а и правда-когда его запретили?...</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>в соленой воде вирусы живут .ученые изучали со...</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>223456</th>\n",
" <td>вова - дима когда же вы подавитесь деньгами???...</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>223457</th>\n",
" <td>какая красота, просто нет слов выразить чувств...</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>223458</th>\n",
" <td>вы пост гаи выставити на перекрестке возле 21 ...</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>223459</th>\n",
" <td>как -то на лебедей непохожи</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>223460</th>\n",
" <td>интересно чей это самолет!</td>\n",
" <td>0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>223461 rows × 2 columns</p>\n",
"</div>"
],
"text/plain": [
" text label\n",
"0 видимо в разных регионах называют по разному ,... 0\n",
"1 понятно что это нарушение правил, писать капсл... 1\n",
"2 какие классные, жизненные стихи.... 0\n",
"3 а и правда-когда его запретили?... 0\n",
"4 в соленой воде вирусы живут .ученые изучали со... 0\n",
"... ... ...\n",
"223456 вова - дима когда же вы подавитесь деньгами???... 0\n",
"223457 какая красота, просто нет слов выразить чувств... 0\n",
"223458 вы пост гаи выставити на перекрестке возле 21 ... 0\n",
"223459 как -то на лебедей непохожи 0\n",
"223460 интересно чей это самолет! 0\n",
"\n",
"[223461 rows x 2 columns]"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"train"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>text</th>\n",
" <th>label</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>хорошо пошло!</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>посмотрела, как будто дома побывала. как река ...</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>отдам котят 1,5 месяца в добрые руки.</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>0,5литровая баночка 200р стоит в таганроге. та...</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>речь шла о радужных зонтиках над верандой.</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>24824</th>\n",
" <td>и ты будь здоров</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>24825</th>\n",
" <td>не дорога а прям стекло но правда битое (h)</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>24826</th>\n",
" <td>спасибо большое. буду ждать хороших новостей. ...</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>24827</th>\n",
" <td>активирую установку 🌈🌈🌈👍😎🔥🔥🔥</td>\n",
" <td>0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>24828</th>\n",
" <td>а вы курс российского рубля видели, кошмар!!!</td>\n",
" <td>0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>24829 rows × 2 columns</p>\n",
"</div>"
],
"text/plain": [
" text label\n",
"0 хорошо пошло! 0\n",
"1 посмотрела, как будто дома побывала. как река ... 0\n",
"2 отдам котят 1,5 месяца в добрые руки. 0\n",
"3 0,5литровая баночка 200р стоит в таганроге. та... 0\n",
"4 речь шла о радужных зонтиках над верандой. 0\n",
"... ... ...\n",
"24824 и ты будь здоров 0\n",
"24825 не дорога а прям стекло но правда битое (h) 0\n",
"24826 спасибо большое. буду ждать хороших новостей. ... 0\n",
"24827 активирую установку 🌈🌈🌈👍😎🔥🔥🔥 0\n",
"24828 а вы курс российского рубля видели, кошмар!!! 0\n",
"\n",
"[24829 rows x 2 columns]"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"test"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"train['class'] = train['label'].map({0: 'non-toxic', 1: 'toxic'})\n",
"test['class'] = test['label'].map({0: 'non-toxic', 1: 'toxic'})"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAGbCAYAAADnZrZIAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAAR/VJREFUeJzt3Xd4FOXCBfCzu0k2vTdSIIEQQgto6AihI6AIiFyKBbwoFtTPawMR6TaUohQ7RVC6NAHpRUCKEHqHQBJCQnpPtsz3R0jMkgRSJnm3nN/z8Gg2szNnd7N7dmbemVFIkiSBiIhIJkrRAYiIyLywWIiISFYsFiIikhWLhYiIZMViISIiWbFYiIhIViwWIiKSFYuFiIhkxWIhIiJZsViIyOh16dIFXbp0ER2DKsikimXx4sVQKBTF/2xtbREaGoqxY8ciISFBdDwiixIdHW3wfnzQv+joaNFxDZT1WeLn54fevXvj66+/RmZmZpXnfejQIUyePBlpaWnyBa6GBQsWYPHixbW6TKtaXZpMpk6diuDgYOTl5eGvv/7CwoULsWXLFpw9exb29vai4xFZBC8vL/zyyy8Gt3311VeIjY3F7NmzS01bHdu3b6/W/ctT9Fmi0Whw584d7N27F//3f/+HWbNmYePGjQgPD6/0PA8dOoQpU6Zg5MiRcHV1lT90JS1YsACenp4YOXJkrS3TJIulT58+aNWqFQBg9OjR8PDwwKxZs7BhwwYMGzZMcDoiy+Dg4IBnn33W4LYVK1YgNTW11O0lSZKEvLw82NnZVXhZNjY2Vc75ICU/SwBg/Pjx2L17N5544gn0798fFy5cqFROKmRSm8LK061bNwDAjRs3AAApKSl499130bx5czg6OsLZ2Rl9+vTBqVOnSt03Ly8PkydPRmhoKGxtbVGnTh0MGjQI165dA/Dw1f2S23337t0LhUKBlStX4sMPP4Svry8cHBzQv39/xMTElFr2kSNH8Pjjj8PFxQX29vaIjIzEwYMHy3yMXbp0KXP5kydPLjXtsmXLEBERATs7O7i7u2Po0KFlLv9Bj60kvV6POXPmoGnTprC1tYWPjw/GjBmD1NRUg+mCgoLwxBNPlFrO2LFjS82zrOwzZ84s9ZwCQH5+PiZNmoSQkBCo1WoEBgbi/fffR35+fpnPVUllbZufMWMGlEolfv311yo9H19++SU6dOgADw8P2NnZISIiAmvWrClz+cuWLUObNm1gb28PNzc3dO7cudS3761btyIyMhJOTk5wdnZG69atS2VbvXp18Wvq6emJZ599FnFxcQbTjBw50iCzm5sbunTpggMHDjz0earOfR+m6O/izz//RKtWrWBnZ4fvvvsOALBo0SJ069YN3t7eUKvVaNKkCRYuXFhqHve/jkXvtVWrVmHGjBkICAiAra0tunfvjqtXr1Yrb7du3TBx4kTcvHkTy5YtK7799OnTGDlyJOrXrw9bW1v4+vrixRdfRHJycvE0kydPxnvvvQcACA4OLrUpsKKP9/jx4+jduzc8PT1hZ2eH4OBgvPjiiwbTVOR9GRQUhHPnzmHfvn1lfmbVFJNcY7lfUQl4eHgAAK5fv47169fjmWeeQXBwMBISEvDdd98hMjIS58+fh5+fHwBAp9PhiSeewK5duzB06FC89dZbyMzMxI4dO3D27Fk0aNCgeBnDhg1D3759DZY7fvz4MvPMmDEDCoUCH3zwARITEzFnzhz06NEDUVFRxd9+du/ejT59+iAiIgKTJk2CUqks/qM7cOAA2rRpU2q+AQEB+PTTTwEAWVlZePXVV8tc9sSJEzFkyBCMHj0ad+/exTfffIPOnTvj5MmTZa6av/zyy+jUqRMAYN26dfj9998Nfj9mzBgsXrwYo0aNwptvvokbN25g3rx5OHnyJA4ePAhra+syn4fKSEtLK35sJen1evTv3x9//fUXXn75ZTRu3BhnzpzB7NmzcfnyZaxfv75Sy1m0aBE++ugjfPXVVxg+fHiZ0zzs+Zg7dy769++PESNGoKCgACtWrMAzzzyDzZs3o1+/fsXTTZkyBZMnT0aHDh0wdepU2NjY4MiRI9i9ezd69eoFoHBb/4svvoimTZti/PjxcHV1xcmTJ7Ft27bifEXPfevWrfHpp58iISEBc+fOxcGDB0u9pp6ensWboWJjYzF37lz07dsXMTExD90sU537PsylS5cwbNgwjBkzBi+99BIaNWoEAFi4cCGaNm2K/v37w8rKCps2bcJrr70GvV6P119//aHz/eyzz6BUKvHuu+8iPT0dX3zxBUaMGIEjR45UK+9zzz2HDz/8ENu3b8dLL70EANixYweuX7+OUaNGwdfXF+fOncP333+Pc+fO4e+//4ZCocCgQYNw+fJl/Pbbb5g9ezY8PT0B/LspsCKPNzExEb169YKXlxfGjRsHV1dXREdHY926dQYZK/K+nDNnDt544w04OjpiwoQJAAAfH59qPTcVIpmQRYsWSQCknTt3Snfv3pViYmKkFStWSB4eHpKdnZ0UGxsrSZIk5eXlSTqdzuC+N27ckNRqtTR16tTi237++WcJgDRr1qxSy9Lr9cX3AyDNnDmz1DRNmzaVIiMji3/es2ePBEDy9/eXMjIyim9ftWqVBECaO3du8bwbNmwo9e7du3g5kiRJOTk5UnBwsNSzZ89Sy+rQoYPUrFmz4p/v3r0rAZAmTZpUfFt0dLSkUqmkGTNmGNz3zJkzkpWVVanbr1y5IgGQlixZUnzbpEmTpJJ/FgcOHJAASMuXLze477Zt20rdXq9ePalfv36lsr/++uvS/X9q92d///33JW9vbykiIsLgOf3ll18kpVIpHThwwOD+3377rQRAOnjwYKnllRQZGVk8vz/++EOysrKS3nnnnTKnrcjzIUmFr1NJBQUFUrNmzaRu3boZzEupVEoDBw4s9bdY9JqnpaVJTk5OUtu2baXc3NwypykoKJC8vb2lZs2aGUyzefNmCYD08ccfF9/2wgsvSPXq1TOYz/fffy8BkI4ePVrmY5bjviX169ev1Hzq1asnAZC2bdtWavr7n0tJkqTevXtL9evXN7it5OsoSf++1xo3bizl5+cX3z537lwJgHTmzJkH5iz6LDl27Fi507i4uEiPPPLIA7P+9ttvEgBp//79xbfNnDlTAiDduHGj1PQVeby///77Q7NV5n15/+dUbTDJTWE9evSAl5cXAgMDMXToUDg6OuL333+Hv78/AECtVkOpLHxoOp0OycnJcHR0RKNGjXDixIni+axduxaenp544403Si3j/s0flfH888/Dycmp+OfBgwejTp062LJlCwAgKioKV65cwfDhw5GcnIykpCQkJSUhOzsb3bt3x/79+6HX6w3mmZeXB1tb2wcud926ddDr9RgyZEjxPJOSkuDr64uGDRtiz549BtMXFBQAKHy+yrN69Wq4uLigZ8+eBvOMiIiAo6NjqXlqNBqD6ZKSkpCXl/fA3HFxcfjmm28wceJEODo6llp+48aNERYWZjDPos2f9y+/PEePHsWQIUPw9NNPY+bMmWVOU5HnA4DBNvfU1FSkp6ejU6dOBn9b69evh16vx8cff1z8t1ik6G9rx44dyMzMxLhx40q9tkXTHD9+HImJiXjttdcMpunXrx/CwsLwxx9/GNxPr9cXP0dRUVFYunQp6tSpg8aNGz/wMVX3vg8THByM3r17l7q95HOZnp6OpKQkREZG4vr160hPT3/ofEeNGmWw/6VoTfP69evVzuzo6GgwOqxk1ry8PCQlJaFdu3YAYPDaP0hFHm/R2uHmzZuh0WjKnE9l35e1zSQ3hc2fPx+hoaGwsrKCj48PGjVqZPDm1ev1mDt3LhYsWIAbN25Ap9MV/65ocxlQuAmtUaNGsLKS92lo2LChwc8KhQIhISHF21mvXLkCAHjhhRfKnUd6ejrc3NyKf05KSio13/tduXIFkiSVO939m6yKhkPe/2F+/zzT09Ph7e1d5u8TExMNft6+fXulRwBNmjQJfn5+GDNmTKl9FVeuXMGFCxfKnef9yy9LXFwc+vXrh+zsbCQnJ5f7paEizwdQ+IafPn06oqKiDPbzlJzvtWvXoFQq0aRJk3LnU7QJt1mzZuVOc/PmTQAo3nRUUlhYGP766y+D22JiYgyeqzp16mDt2rUPfUzVve/DBAcHl3n7wYMHMWnSJBw+fBg5OTkGv0tPT4eLi8sD51u3bl2Dn4veM/fv/6uKrKwsg7/7lJQUTJkyBStWrCj1d1eREgQq9ngjIyPx9NNPY8qUKZg9eza6dOmCAQMGYPjw4cVfeir7vqxtJlksbdq0MRjJcb9PPvkEEydOxIsvvohp06bB3d0dSqUS//d//1dqTUCEogwzZ85Ey5Yty5ym5Ju5oKAA8fHx6Nmz50Pnq1AosHXrVqhUqgfOEwDu3LkDAPD19X3gPL29vbF8+fIyf3//B37btm0xffp0g9vmzZuHDRs2lHn/CxcuYPHixVi2bFmZ+2r0ej2aN2+OWbNmlXn/wMDAcrMXuXr1Kh599FHMnj0bzz33HJYsWVJmqVfk+Thw4AD69++Pzp07Y8GCBahTpw6sra2xaNGiUjvcRfDx8Sne4Zyeno6ff/4Zjz/+OP766y80b968xu77MGWNrLp27Rq6d++OsLAwzJo1C4GBgbCxscGWLVswe/bsCr1Xy/o7BwpHnlVHbGws0tPTERISUnzbkCFDcOjQIbz33nto2bIlHB0dodfr8fjjj1coa0Ufr0KhwJo1a/D3339j06ZN+PPPP/Hiiy/iq6++wt9//1283Mq8L2ubSRbLw6xZswZdu3bFTz/9ZHB7Wlpa8c40AGjQoAGOHDkCjUYjyw7oIkVrJEUkScLVq1eLx8QXDQpwdnZGjx49Hjq/U6dOQaPRPLBMi+YrSRKCg4MRGhr60PmeP38eCoWizG/DJee5c+dOdOzYsULDLj09PUs9pgftYB8/fjxatmyJ//znP+Uu/9SpU+jevXuVN08WbYb08fHBhg0b8M4776Bv376l3nwVeT7Wrl0LW1tb/PnnnwabzBYtWlQqt16vx/nz58v98lD0d3D27FmDD7CS6tWrB6Bw53fR5r8ily5dKv59EVtbW4Pnv3///nB3d8e8efOKR2KVpzr3rYpNmzYhPz8fGzduNFjzEL0ZB0Dx8TlFm+9SU1Oxa9cuTJkyBR9//HHxdPe/14HyN6NX9vG2a9cO7dq1w4wZM/Drr79ixIgRWLFiBUaPHl2p92V1NutXlUnuY3kYlUpV6hvL6tWrSw3PfPrpp5GUlIR58+aVmkd1vvEsXbrUYNvsmjVrEB8fjz59+gAAIiIi0KBBA3z55ZfIysoqdf+7d++Wyq5SqcocylvSoEGDoFKpMGXKlFL5JUkyGBap1Wqxdu1atGnT5oGbOoYMGQKdTodp06aV+p1Wq63W0cWHDx/Ghg0b8Nlnn5X7xz9kyBDExcXhhx9+KPW73NxcZGdnP3Q5oaGhxSNhvvnmG+j1erz11lsG01T0+VCpVFAoFAabV6Ojo0uV54ABA6BUKjF16tRS32aLXptevXrByckJn376aan9UEXTtGrVCt7e3vj2228NNrtt3boVFy5cMBiFVpaCggJotdoKDc2W874VUbS2UfJvNT09vVRJ17bdu3dj2rRpCA4OxogRIwCUnRUA5syZU+r+Dg4OAFDqvVHRx5uamlpqOUVfTopei8q8Lx0cHGr9LABmucbyxBNPYOrUqRg1ahQ6dOiAM2fOYPny5ahfv77BdM8//zyWLl2K//3vfzh69Cg6deqE7Oxs7Ny5E6+99hqeeuqpKi3f3d0djz32GEaNGoWEhATMmTMHISEhxcMWlUolfvzxR/Tp0wdNmzbFqFGj4O/vj7i4OOzZswfOzs7YtGkTsrOzMX/+fHz99dcIDQ3F3r17i5dRVEinT5/G4cOH0b59ezRo0ADTp0/H+PHjER0djQEDBsDJyQk3btzA77//jpdffhnvvvsudu7ciYkTJ+L06dPYtGnTAx9LZGQkxowZg08//RRRUVHo1asXrK2tceXKFaxevRpz587F4MGDq/Q8bd++HT179nzgWttzzz2HVatW4ZVXXsGePXvQsWNH6HQ6XLx4EatWrSo+NqKifH19MXPmTIwePRrPPvss+vbtW6nno1+/fpg1axYef/xxDB8+HImJiZg/fz5CQkJw+vTp4ulCQkIwYcIETJs2DZ06dcKgQYOgVqtx7Ngx+Pn54dNPP4WzszNmz56N0aNHo3Xr1hg+fDjc3Nxw6tQp5OTkYMmSJbC2tsbnn3+OUaNGITIyEsOGDSsebhwUFIS3337bIF92drbB5qxffvkFeXl5GDhw4EOfm+rctyp69eoFGxsbPPnkkxgzZgyysrLwww8/wNvbG/Hx8TWyzPtt3boVFy9ehFarRUJCAnbv3o0dO3agXr162LhxY/GACWdnZ3Tu3BlffPEFNBoN/P39sX379uJj50qKiIgAAEyYMAFDhw6FtbU1nnzyyQo/3iVLlmDBggUYOHAgGjRogMzMTPzwww9wdnYuPuShMu/LiIgILFy4ENOnT0dISAi8vb1Lrf3KrlbHoFVTRYYISlLhcON33nlHqlOnjmRnZyd17NhROnz4cKkhi5JUOPxvwoQJUnBwsGRtbS35+vpKgwcPlq5duyZJUtWGG//222/S+PHjJW9vb8nOzk7q16+fdPPmzVL3P3nypDRo0CDJw8NDUqvVUr169aQhQ4ZIu3btMlj2w/698MILBvNdu3at9Nhjj0kODg6Sg4ODFBYWJr3++uvSpUuXJEmSpDfeeEPq3LlzmcM/yxpeK0mFQ08jIiIkOzs7ycnJSWrevLn0/vvvS7dv3y6eprLDjRUKhfTPP/8Y3F7Wa1RQUCB9/vnnUtOmTSW1Wi25ublJERER0pQpU6T09PRSy3vY/CRJkrp16ybVrVtXyszMrPTz8dNPP0kNGzaU1Gq1FBYWJi1atKjc5+3nn3+WHnnkkeLckZGR0o4dOwym2bhxo9ShQwfJzs5OcnZ2ltq0aSP99ttvBtOsXLmyeD7u7u7SiBEjiofXF3nhhRcM/i4cHR2lRx99VPrll18e+BxV974llTfcuKy/i6LHHh4eLtna2kpBQUHS559/XnwYQMnhuuUNN169erXB/IreM4sWLXpgzqLPkqJ/NjY2kq+vr9SzZ09p7ty5BocLFImNjZUGDhwoubq6Si4uLtIzzzwj3b59u9TQeUmSpGnTpkn+/v6SUqk0eCwVebwnTpyQhg0bJtWtW1dSq9WSt7e39MQTT0jHjx8vlaki78s7d+5I/fr1k5ycnCQAtTL0WCFJ1dzLRcX27t2Lrl27YvXq1VX+Fl9SdHQ0goODcePGDQQFBZU5zeTJkxEdHV3rJ5kjIiqPWe5jISIiccxyH4u5cHR0xIgRIx64Mzk8PLz4FDVERMaAxWLEPD09DU6CV5ZBgwbVUhoioorhPhYiIpIV97EQEZGsWCxERCQrFgsREcmKxUJERLJisRARkaxYLEREJCsWCxERyYrFQkREsmKxEBGRrFgsREQkKxYLERHJisVCRESyYrEQEZGsWCxERCQrFgsREcmKxUJERLJisRARkaxYLEREJCsWCxERyYrFQkREsmKxEBGRrFgsREQkKxYLERHJisVCRESyYrEQEZGsWCxERCQrFgsREcmKxUJERLJisRARkaxYLEREJCsWCxERyYrFQkREsmKxEBGRrFgsREQkKxYLERHJisVCRESyYrEQEZGsWCxERCQrFgsREcnKSnQAImOUna/F7bRcpGQXICtf+++/PC2y87XI0+pRoNUjX6uHRlf4/xqdHtYqJeysVbCzKfxnX+L/7axV//7OWgUHtRV8XWzh6agW/XCJZMViIYuUkl2AuNRcxKXlIDY1F3Fpufd+LvyXlqOptSy21kr4udrB39UOAW72CHAr/H//e//1dbaFUqmotTxE1aWQJEkSHYKopqTnaHA6Lg2nY9NxJjYdV+9m4XZaLnIKdKKjVZi1SgFfF1vUc3dAU39nhPu7IjzABYHu9qKjEZWJxUJmIzNPgzNxhQVy+t5/b6XkiI5VY9wdbNDM3wXh/i4ID3BBeIArfF1sRcciYrGQ6bqSkIm/ribhVEwaTsel40ZSNiz9r9nbSY3wABc093dF62A3tKrnDhsrjtGh2sViIZORW6DDoWtJ2HMpEXsv3UVsaq7oSEbP3kaFtsHu6NTQC51DvRDi7Sg6ElkAFgsZtVvJOdh9MQF7Lt3F39eTka/Vi45k0vxd7dA1zAs9GvugQwNPrs1QjWCxkFHR6PT4+3oy9ly8i72XEnE9KVt0JLPlqLZCp4ae6N7YB93DvOHmYCM6EpkJFgsZhX9upuL3k7HYfDq+Vof6UiFrlQJdG3njmVaB6NrIC1YqrslQ1bFYSJibydn4/WQc1p+MQ3Sy+Y7eMjWejmoMfMQPz7QKRKiPk+g4ZIJYLFSr8rU6bDt7B78dvYW/r6eIjkMP0SLABYNbBaJ/Cz+42FmLjkMmgsVCteJyQiZ+O3oLv5+M46YuE6S2UqJ3U1880yoAHRt48kwA9EAsFqpRey4lYuHeazh6g2sn5sLf1Q7/fSwYw9rUhZ2NSnQcMkIsFpKdXi9hy9l4LNx7DeduZ4iOQzXEw8EGozoG4bn2QdxMRgZYLCQbjU6PdSdi8d2+6xwmbEGc1FYY0a4e/vtYMLyceKZmYrGQDHILdPj16C38eOA64tPzRMchQdRWSgxpFYgxkfUR4MYTZFoyFgtVWXqOBksOR2PxoWikZBeIjkNGwkqpQP8WfnitawOEeHO4siVisVCl5Wl0+H7/dXy//zqy8rWi45CRUiiAvs3rYNzjYTzFv4VhsVClbDp1G59tvYi4NJ4AkipGbaXES53q47WuDWBvw2sLWgIWC1XI2bh0TN10HkejOWyYqsbHWY0PHg/DwEf8oVDwOBhzxmKhB0rKysfMbZew+p8Y6PmXQjJ4pK4rJj3ZFC0DXUVHoRrCYqEyFWj1WHTwBubtvopM7kchmSkUwMBH/DHu8TB4O/Oql+aGxUKl7DyfgBlbLuAGj0WhGuZgo8JrXUMwulMw1FY8it9csFioWGJmHj5cdwY7LySKjkIWpp6HPT4bFI72DTxERyEZsFgIALD1TDwmrD/L41FIGIUCeL5dPYzr05jnIDNxLBYLl5GnwaQN5/D7yTjRUYgAFK69zBzcAm2C3UVHoSpisViwg1eT8N7qU7jN07CQkVEqgJEdgvH+441ga821F1PDYrFAeRodPtt6EUsOR4OvPhmzRj5OmDusJcJ8nUVHoUpgsViY07FpeHtlFK7d5YgvMg1qKyU+eDwMozoG8cBKE8FisRBanR7f7L6K+XuuQssjHckEdQ71wpfPhMPbice9GDsWiwVIysrH68tP4Aiv4kgmzstJjW+fjUBEPTfRUegBWCxmLiomDa8u+4fXSSGzYaNSYvrAZhjSKlB0FCoHi8WMrTh6Cx9vPIcCrV50FCLZjeoYhI/6NYFKyf0uxobFYoY0Oj0mbTyHX4/cEh2FqEY9FuKJecMfgau9jegoVAKLxcykZhfglWX/cH8KWYx6Hvb48flWaOjDq1UaCxaLGbmamIX/LjmGm8k5oqMQ1SpHtRVm/6clejbxER2FwGIxGweu3MXry08gI4+nuCfLpFAA7/QMxdhuDUVHsXgsFjPw29FbmLj+LI9PIQLwZAs/fPVMC9hYKUVHsVgsFhP344HrmP7HBdExiIxKl0Ze+PbZCJ5nTBAWiwmbt/sKvtx+WXQMIqPUoYEHfnyhFextrERHsTgsFhM188+LmL/nmugYREatVT03LBrVGk621qKjWBQWiwmasukcFh2MFh2DyCSEB7hg6YtteKxLLWKxmBC9XsKE9Wfx21Ee+EhUGWG+Tlg2ui08HdWio1gEFouJ0OklvLf6FNbxSo9EVVLfywG/jm4HXxeeHbmmsVhMgEanx1srTmLLmTuioxCZtLru9vj1pbYIcLMXHcWssViMXIFWj1eX/YNdFxNFRyEyC34utvj1pXYI8nQQHcVs8QgiIyZJEt5bc4qlQiSj2+l5eO7nI7ibmS86itlisRixz7ZdxIao26JjEJmdmJRcvLj4GHIKeAqkmsBiMVJLDkXju33XRccgMltn4tLx2vIT0Op4vSK5sViM0Laz8Ziy6ZzoGERmb++lu/jw9zOiY5gdFouROR6dgrdWRIHnkySqHauOx2L2Dp4aSU4sFiNyNTELo5ceRz4vJUxUq+buuoKVx3jgsVxYLEYiMTMPIxcdRVqORnQUIos04fez2HOJIzDlwGIxAln5WoxadAyxqbmioxBZLK1ewuvLT+B0bJroKCaPxSKYTi/hteUncO52hugoRBYvp0CHFxcfQ0wKL+9dHRZdLAqFAuvXrxeaYc7Oy9h/+a7QDET0r6SsAry6/B/kaXSio5gskyiWoKAgzJkzR/b5xsfHo0+fPrLPt6L2X76L+XuuCls+EZXtbFwGJm3gkP+qMoliqSm+vr5Qq8WcRjshIw9vr+SwYiJjtfJ4DFYdixEdwyRVqli6dOmCN998E++//z7c3d3h6+uLyZMnF//+1q1beOqpp+Do6AhnZ2cMGTIECQkJxb+fPHkyWrZsiV9++QVBQUFwcXHB0KFDkZmZ+cBl3rx5E2+//TYUCgUUCkXx79auXYumTZtCrVYjKCgIX331VfHvpk6dCj8/PyQnJxff1q9fP3Tt2hV6feFw3vs3hcXGxmLYsGFwd3eHg4MDWrVqhSNHjlTmKaoQnV7CG7+dRHJ2gezzJiL5TNxwFudup4uOYXIqvcayZMkSODg44MiRI/jiiy8wdepU7NixA3q9Hk899RRSUlKwb98+7NixA9evX8d//vMfg/tfu3YN69evx+bNm7F582bs27cPn332WbnLW7duHQICAjB16lTEx8cjPj4eAPDPP/9gyJAhGDp0KM6cOYPJkydj4sSJWLx4MQBgwoQJCAoKwujRowEA8+fPx6FDh7BkyRIolaUfdlZWFiIjIxEXF4eNGzfi1KlTeP/994tLSE6zdlzC0Rspss+XiOSVr9Xj1WUnkJnHwwAqw6qydwgPD8ekSZMAAA0bNsS8efOwa9cuAMCZM2dw48YNBAYGAgCWLl2Kpk2b4tixY2jdujUAQK/XY/HixXBycgIAPPfcc9i1axdmzJhR5vLc3d2hUqng5OQEX1/f4ttnzZqF7t27Y+LEiQCA0NBQnD9/HjNnzsTIkSOhUqmwbNkytGzZEuPGjcPXX3+NH3/8EXXr1i1zOb/++ivu3r2LY8eOwd3dHQAQEhJS2afnofZeSsSCvbxWPZGpuJWSgw9/P4tvhj0iOorJqPQaS3h4uMHPderUQWJiIi5cuIDAwMDiUgGAJk2awNXVFRcuXCi+LSgoqLhUSt4fAJYvXw5HR8fifwcOHCg3x4ULF9CxY0eD2zp27IgrV65ApysczVG/fn18+eWX+Pzzz9G/f38MHz683PlFRUXhkUceKS6VmnAnPQ//W3UKvAIOkWnZdOo297dUQqXXWKytrQ1+VigUldpc9KD79+/fH23bti3+nb+/f2XjlbJ//36oVCpER0dDq9XCyqrsh2xnZ1ftZT2IVqfHG7+dQAr3qxCZpEkbz+HRem4I8XYUHcXoyTYqrHHjxoiJiUFMzL+tfv78eaSlpaFJkyYVmoeTkxNCQkKK/xV92NvY2BSvhZRc3sGDBw1uO3jwIEJDQ6FSqQAAK1euxLp167B3717cunUL06ZNK3fZ4eHhiIqKQkpKzez7+HL7ZRyLTq2ReRNRzcvV6PDGbyeRr+XxLQ8jW7H06NEDzZs3x4gRI3DixAkcPXoUzz//PCIjI9GqVatqzTsoKAj79+9HXFwckpKSAADvvPMOdu3ahWnTpuHy5ctYsmQJ5s2bh3fffRdA4QivV199FZ9//jkee+wxLFq0CJ988gn+/vvvMpcxbNgw+Pr6YsCAATh48CCuX7+OtWvX4vDhw9XKDgCHryXju/3cr0Jk6i7EZ+Cr7TwT8sPIViwKhQIbNmyAm5sbOnfujB49eqB+/fpYuXJltec9depUREdHo0GDBvDy8gIAPProo1i1ahVWrFiBZs2a4eOPP8bUqVMxcuRISJKEkSNHok2bNhg7diwAoHfv3nj11Vfx7LPPIisrq9QybGxssH37dnh7e6Nv375o3rw5Pvvss+K1n6rK0+gwbt1p7lchMhM//XUDZ+M4BPlBFJLEj7yaNOOP8/jhwA3RMYhIRs39XbD+9Y5QKRUPn9gCWfSR9zUtKiYNPx+MFh2DiGR2Ji4diw7yC2N5WCw1pECrx/trTkHHc7YQmaVZOy4jNpVnQS4Li6WGfLvvGi4nlN6XQ0TmIadAh4nrz4qOYZRYLDXgZnI2z1pMZAH2XLqLTadui45hdFgsNWDihnO8bj2RhZiy6TzSc3kusZJYLDL743Q8L9xFZEGSsvLx6ZYLD5/QgrBYZJSVr8XUzbw4EJGlWXk8BkeuJz98QgvBYpHRvN1XkZCRLzoGEdUySSq8doueo0ABsFhkk5iRh8WHOK6dyFJdTsjCupNxomMYBRaLTL7efQV5Gu6wJ7Jkc3ZeRgEH7rBY5HArOQcrea0GIosXm5qLFcduiY4hHItFBrN2XIJGx22rRAR8s/sqcgss+9T6LJZqunQnExt5gBQR3XM3Mx+LLHx/K4ulmmb+eQkcCEJEJX237zoy8iz3oEkWSzWcuJWKnRcSRMcgIiOTnqvB9/uui44hDIulGmZuuyQ6AhEZqZ8P3kBSlmUe18ZiqaIDV+7iMI+0JaJy5BToMG+3ZZ6MlsVSRV/yutdE9BC/Hr2FuLRc0TFqHYulCo5cT8apmDTRMYjIyBVo9VhsgVeaZLFUweJD0aIjEJGJWHU81uKOa2GxVNLttFxsP8+RYERUMem5GvxuYecQY7FU0rK/b/I69kRUKUssbCsHi6US8jQ6rOA5wYioki4lZOLQtSTRMWoNi6USNp26jZTsAtExiMgEWdJaC4ulEpYcjhYdgYhM1M4LiRYz9JjFUkHHo1NwNi5DdAwiMlE6vYRfDt8UHaNWsFgqiEOMiai6Vh67hTyN+Q89ZrFUQEJGHradvSM6BhGZuNQcDTZGmf9lNlgsFbD8yC1oOcSYiGRgCVs/rEQHMAUbokzn4CZJr0P6X78i6/xe6LNToXJ0h0Oz7nDpMBQKhQKSTou0A78g99pxaNPvQKl2gG29FnCNHAkrJ48HzjvzxGakH1kHXXYqbLyD4d5jDNR+jYp/n7LrB2Sf3QWFtS1cI1+AY9Ouxb/LvvgXss/ugvfgSTX22IlMwfn4DFyIz0DjOs6io9QYrrE8xNm4dNxMzhEdo8IyjqxFZtRWuPd8BX6jF8I1ciQyjq5D5j+bAACSNh8Fd67BpcNQ1HlhLrwGfAhNShzurpv2wPlmX9iPlN0/wrXjMNQZORc23sFIXPUxdNlpAICcq0eQfWEfvIdMg1uXUUjZ9g10OekAAH1+NtL2L4V7r1dr9LETmQpzv+osi+UhNp+OFx2hUvLjLsAupC3sG7SGlYsPHMIeg13QIyiILzwbs1LtAJ+h0+HQuBOsPQKg9g+De89XUHDnKrQZieXON+PYeji16A3H8J6w8awL996vQ2GtRtaZHQAATXIMbAObQ12nIRyaREJhYw9teuGpb1L3LILTI31h5exd808AkQnYxGKxbFvOmFaxqP0bI+/mKWhSCjffFSReR17sedjWjyj3Pvr8HAAKKNWOZf5e0mlQcOcqbOu1LL5NoVDCNqgl8uMuAgBsvIJRcOcqdHlZyL9zFZI2H1ZufsiLPYeChGtwinhStsdIZOpiU3Pxz81U0TFqDPexPMCZ2HTcSjGdzWAA4NxuMPT5Obj9wyuAUgno9XDt/JzB/o6SJG0B0vYugn2TzlCq7cucRpeTAUh6qBxcDW5X2btCkxwLALCrHwGHpl1wZ8nbUFjZwLPf21Baq5Hy5wJ49HsbmSe3IPPEZqjsnOHeeyxsvOrJ+riJTM2mU7cRUc9NdIwawWJ5gM1nTG91NefCAWSf3wvPJ9+FtVc9FCRcR+quH6By9IBj8+4G00o6Le5u+AwA4NHr9Wov2/WxEXB9bETxz2l//QrboJZQKFVIP7wSfi/OR+7Vo0j+YxbqjJxb7eURmbLNp+Px8RNNoFQqREeRHTeFPYCpbQYDgNS9i+DSbjAcmkTCxisIjs26wan1U0j/e7XBdEWlok1PhPd/ppW7tgIAKntnQKEs3lFfRJeTBpVD2d+4NMkxyD6/B66dnkXerTOwDWgGlb0L7MM6oSDh2r3Nb0SWKykrH8fNdHMYi6Ucp2PTEJNieuf1kTT5gMLwZVUolICk/3eaolJJvQ2foTOgsnvwsEeFyho2viHIu3nq33lIeuRFn4LaP6x0BklC8p/z4dZtNJQ2doCkh6TXFv6y6L8l8hBZqj/PmeeB1yyWcvxhYqPBitiFtEH6oZXIuXYM2vQE5Fw+hIxj62Ef2h7AvVJZ/ykK7lyF55PvAno9dFmp0GWlQtJpiueTsOJDZNwbogwAzq0HIPPUn8g6swuapBik/LkAkiYPjs17lMqQdepPqOycYR/SFkDRgILTyI+7iIxjG2DtURdK27IHChBZEnMtFu5jKccfJrgZDADce4xB2oFlSNm+APqcdKgc3eHYsg9cOw4FAOiykpF79QgAIH7Rmwb39Rn2CWzrhgMANKl3oM7996SbDo07Q5eTjrS/lt07QLI+vIdMLbUpTJedivTDq+D77Mzi29R+jeDcZiAS10yB0t4Fnv3erpHHTmRqYlNzcTYuHc38XURHkZVCkiSeq+Q+p2LS8NT8g6JjEJEFeKNbCN7p1ejhE5oQbgorw66L5R8oSEQkpz2XzO/zhsVShsMWdAlRIhLr/O0MZORpHj6hCWGx3CenQIuomDTRMYjIQuilwgsJmhMWy32O3EiBRsfdTkRUe45cZ7GYtUNXuRmMiGrX3zdYLGbt4NVk0RGIyMKci0tHdr5WdAzZsFhKyMjT4OKdjIdPSEQkI61eMqvTu7BYSjhxMxW8AjERiXDkuvlsLWGxlHA82ny+MRCRaTliRvtZWCwlHDOzIX9EZDpOx6Yht0AnOoYsWCz3aHR6nIpNEx2DiCyURieZzVUlWSz3XIjPQJ6Gp3InInGO3jCP/Swslnsu3skUHYGILJy5fA6xWO65mpglOgIRWThz+RxisdxzJcE8vikQkem6mZKDAq3pb5Jnsdxz9a55fFMgItOl00u4kZQtOka1sVgA5BboEJdqete3JyLzcyXR9LeesFgAXLubxSPuicgomMN+FhYLzOOFJCLzcMUMPo9YLDCPVU8iMg/XWCzm4UqC6b+QRGQeridlQ2fi2+ZZLOCmMCIyHgVaPW6l5IiOUS0WXywFWj1umviLSETmxdSPq7P4YolNzTH51U4iMi+mfiyLxRdLcnaB6AhERAZM/XOJxZJl2i8gEZmfFBaLaTP1F5CIzI+pfy6xWLLzRUcgIjLATWEmztRfQCIyP6km/rlk8cVi6i8gEZkfbgozcVxjISJjk5WvRb5WJzpGlVl8sZj6NwMiMk+m/NnEYjHhF4+IzJcpfzZZfLFwUxgRGSMWi4nKyteaxfWlicj8sFhMVHa+VnQEIqIyZeRqREeoMosuFonnniQiI2XKJ8e16GIhIjJWWhYLERHJSW/Cm1RYLERERkhnwuOKWCxEREZIpzfdZrESHYDIXLRyycRSp3lQmPAmDDIeGvWLABqKjlElFl0sEvgBQPI5nu6EfDdnuN05KDoKmQE7fZroCFXGTWFEMpqv7S86ApkLhUp0gipjsRDJ6MfYQGR7tRQdg8yBksVCRPcsUQ4UHYHMAddYiKjIzFshyHcLFR2DTJ3KWnSCKrPoYlFbme43AjJekqTAWrunRccgU2frKjpBlVl0sTjbWvSgOKpBU6KbQusUIDoGmTI7N9EJqsyii8VKpYSjmuVC8svXK7HNZYjoGGTKWCymy8XOdLdjknGbcLMl9PaeomOQqbJzFZ2gyiy+WJxZLFRD0jVWOODxjOgYZKq4xmK6XOy4KYxqzriYtpDUTqJjkKlRKLnz3pS5O9iIjkBmLD7PBid9OEKMKkntDChN9+PZdJPLxNNRLToCmbkP4jpBsrITHYNMib276ATVYvHF4sVioRp2JdsOl+rwHGJUCSa8fwVgscDLicVCNe/DxG6QlNyfRxXEYjFtLBaqDSfSnXDLr6/oGGQqXEz74FqLLxZvJ1vREchCTE3tBQkK0THIFLjXF52gWiy+WALduVOVaseuZHfc9esmOgaZAvcGohNUi8UXi6u9DUeGUa2ZmdNPdAQyBVxjMX0h3g6iI5CFWH3HF+k+7UTHIKOmANyDRYeoFhYLgBBvR9ERyIIs0A0QHYGMmbMfYG3am+hZLAAaevOUG1R7voutixzPcNExyFiZ+GYwgMUCgGssVPuWqgaJjkDGisViHhqyWKiWfX6rIQpcQ0THIGPEYjEP3s62vJok1SpJUmCdPU+pT2XwMO2hxgCLpRg3h1Ftm3KzCbRO/qJjkLHxChOdoNpYLPewWKi25epU2OHCtRYqwdYF8DD9TaQslns4MoxEGHfzUejtePliusc/AlCY/ml/WCz3hPhwjYVqX7rGCgc9B4uOQcbCv5XoBLJgsdzzaKAblKb/RYFM0LiYtpBs+MWGAASwWMyKi701Gvk6i45BFiguT40oX16+mMA1FnPUNti0LwdKpmv87U6QrHgJB4vmFgQ4eIhOIQsWSwnt6rNYSIyLWfa4XOdJ0TFIpIDWohPIhsVSQptgD3MYkEEmauLd7pAUKtExSBQz2QwGsFgMuDvY8PQuJMzRNGfE+vcRHYNEMZMd9wCLpZS2weaxjZNM07S0x3n5YktkbQ/4NhedQjYslvu05X4WEmh7kjuS/LqKjkG1LagTYGU+V7JlsdyHaywk2le5vHyxxWnYU3QCWbFY7uPlpEZ9L16qmMRZEV8HGT5tRceg2hTaW3QCWbFYysC1FhLtW91ToiNQbfEKA1zrik4hKxZLGTo15EkBSawFsUHI9WwmOgbVBjPbDAawWMrUtZE37Kx5PAGJtcyKp3mxCA17iU4gOxZLGexsVOgW5i06Blm4z242RIGrcVxNcP9NLZ78LQd+X2VCMSUD6y9qDH6fVSBh7JZcBMzKhN2MDDSZn4Vvjxc8dL6rz2kQNi8LttMz0HxhFrZcMZzvl4fy4T0zE94zM/HVoXyD3x2J1SLi+yxo9VL1H6AoamegbnvRKWTHYilH3+Z1REcgC6eTlFjvYByn1M8ukNDCR4n5fcs+n9n//szDtqtaLBtkhwuvO+L/2tlg7JY8bLykKXN6ADgUo8Wwtbn47yPWODnGAQMaWWHAilycTdQBAE4n6PDxnnysGGyH3562w0d78nEmofB3Wr2EV/7Iw7f97GBlyqclr98FUFmLTiE7Fks5uoVxcxiJNym6GXSOfqJjoE9Da0zvZouBjcv+EDwUo8MLLWzQJcgKQa5KvBxhgxa+ShyN05U7z7lHCvB4iBXe66hGYy8VpnWzxaN1VJh3tHBN52KSHuE+KnQLtkL3+lYI91HiYpIeADDzYAE617VCa38Tf4+a4WYwgMVSLjsbFbqGeYmOQRYuV6fCDlfjv3xxh0AVNl7WIC5DD0mSsOeGFpeT9ejVwKrc+xyO0aFHfcNi6N1AhcOxhWXU3FuJy8k63ErX42aaHpeT9WjmrcS1FD0WRWkwvZuJH1CoUJndMOMi5b/qhH7N/bDlzB3RMcjCjb8ZgV6OHlDmJouOUq5v+tji5c15CJidBSsloFQAPzxpi871yv+IuZMlwcfB8Lutj6MSd7IK95k09lLhk+626PlLDgDg0+62aOylQo+l2fiipxp/XtNi8t58WKuAuY8/eFlGqUE3wNE89+Wa2CtRu4o2h+Vqyl+dJ6ppqRorHPYcjI4x34mOUq5vjhbg71gdNg61Qz1XJfbf1OH1LXnwc1KiR/2qf8y80soGr7SyKf55SVQBnNQKtA9QodG8LBx7yQGxGRKGrsnFjbccobYyof0tLYaKTlBjuCnsAbg5jIzFBzHtjPbyxbkaCR/uysesXmo82cga4T4qjG1jg/80tcaX943kKsnXUYGEbL3BbQlZevg6ll0OSTl6TNmXj2/62OJInA6hHko09FCha7AVNHrgcrK+zPsZJbULEPaE6BQ1hsXyEBwdRsYgNk+N074DRccok0Zf+O/+wVkqBfCgkcDtA1XYdcNwa8CO6zq0Dyh7h/zbf+bj7XZqBDgrobu3zCJavQSdKY06btIfsDbfK4ayWB6ie5gPR4eRURh3OxKSSswO66wCCVF3dIi6U1gEN1L1iLpTuGPdWa1AZD0V3tuRj73RWtxI1WNxVAGWntZgYNi/o8ie/z0X43fmFf/8VlsbbLuqxVeH8nExSYfJe/Nw/LYOY9vYlFr+jmtaXE7W4fU2hfNr7a/CxSQ9tl7R4Pt/CqBSKNDIw4Q+zloOF52gRikkSTKlnhfi9V9P4I/T8aJjEGFHw3VoGLOm1pe7N1qLrktySt3+QgtrLB5ghztZeozflY/t17RIyZVQz0WJlyOs8XY7GyjuXZa1y+JsBLkqsXiAXfH9V5/T4KM9+YhO06OhuxJf9FSjb0PDIc25Ggktv8vGysF2aOn775e8H08U4KPd+VBbAQv62qJfqIkcD+IWBLwZBXO+XC2LpQIOXk3CiB+PiI5BhPZu6fg1bywUEgeUmKzID4CuH4pOUaNMaN1RnA4NPFDfk6fSJ/EOp7ogzv9x0TGoOsx4NFgRFksFKBQKDG9rXqe1JtM1I908D6qzCIHtAPf6olPUOBZLBT0TEQi1FZ8uEm/rXU8k+XURHYOqotUo0QlqBT8pK8jF3hpPhIs/ZxMRAMzONd9jIMyWkx/QzDIuhcBiqYSRHYJERyACACyP90OGd2vRMagy2r5slmcyLguLpRKaB7igTZC76BhEAIAfpAGiI1BF2TgCEZaxGQxgsVTai48Fi45ABAD4JiYYuR68fLFJeORZwM5VdIpaw2KppF5NfFDX3V50DCIAwK82g0RHoIdRqIB2r4pOUatYLJWkVCq4r4WMxifRodC4mP/wVZPW+MnCo+0tCIulCoa0DoSLnWXshCPjppOU2OhoHJcvpnJ0eEN0glrHYqkCR7UVxkTyWyIZh4+jw6Fz5Fm4jVJgOyCglegUtY7FUkWjOgTDy8nEL41KZiFbp8RuE7h8sUXq+KboBEKwWKrIzkaFsV1DRMcgAgCMuxUBva2b6BhUkn8rIKyf6BRCsFiqYVibughws3v4hEQ1LLnAGke8uNZiVHpMFp1AGBZLNdhYKfFW94aiYxABAD6IbQfJhmfhNgohPYDgTqJTCMNiqaZBjwYgxNs4r0VOluVWri3OGunliy2KQgn0mCI6hVAslmpSKRX4X89Q0TGIAAAfxkdCUpW+tC/VoubPAL6WfUYEFosM+jTzRXN/F9ExiHAm0wHX/Z4UHcNyqWyArhNEpxCOxSIDhUKBd3s3Eh2DCADwcVIPSArVwyck+bX6L+BWT3QK4VgsMokM9ULbYJ75mMQ7mOqC2369RMewPGpnoPN7olMYBRaLjCY+0QQqpUJ0DCJ8mtFHdATL0+ENwMFDdAqjwGKRUTN/F4ziCSrJCGy+64nkOpGiY1gOt2Cgg2UeZV8WFovM/tcrFP6uPGiSxJubz534tabfl4C1regURoPFIjN7GytMH2jZQw3JOCy97YdMb8s7AWKtazKg8IBIKsZiqQFdG3njiXCebZbE+wkDREcwb2pn4PHPRKcwOiyWGjLpyaZwtrUSHYMs3Jxb9ZHn0UR0DPPVbSLgzC+R92Ox1BAvJzXG920sOgYRfrN5WnQE81S3PdDmJdEpjBKLpQYNbR2INkE8toXE+uRmGDQuQaJjmBcrW6D/PEBhPIcXBAUFYc6cOaJjAGCx1CiFQoFPBjWHjYpPM4mj0SuwyZGn1JdV5PuAZ9Wvx9SlSxf83//9n3x5ABw7dgwvv/yyrPOsKn7i1bAQb0e80qWB6Bhk4SbeDIfOwUd0DPNQpwXQ4S3RKUrx8vKCvb296BgAWCy1YmzXEJ6kkoTK1qqw132I6Bimz8YRGLwIUFV9YM7IkSOxb98+zJ07FwqFAgqFAtHR0di3bx/atGkDtVqNOnXqYNy4cdBqtQCApUuXwtHREVeuXCmez2uvvYawsDDk5OQAKL0pLC0tDWPGjIGPjw9sbW3RrFkzbN68ucq5K4PFUgtsrJSYP/xROHGUGAk07mYr6G1dRccwbf1mAR7V2wIxd+5ctG/fHi+99BLi4+MRHx8Pa2tr9O3bF61bt8apU6ewcOFC/PTTT5g+fToA4Pnnn0ffvn0xYsQIaLVa/PHHH/jxxx+xfPnyMtdS9Ho9+vTpg4MHD2LZsmU4f/48PvvsM6hUtXNyUn7S1ZK6Hvb44ulwvLr8hOgoZKHuFljjWL1n0DbmB9FRTFOL4UCL/1R7Ni4uLrCxsYG9vT18fX0BABMmTEBgYCDmzZsHhUKBsLAw3L59Gx988AE+/vhjKJVKfPfddwgPD8ebb76JdevWYfLkyYiIiChzGTt37sTRo0dx4cIFhIYWXi+qfv361c5eUVxjqUV9mtfBC+15Sm0S54PY9pCsefniSvMMLTxtSw25cOEC2rdvD0WJUWYdO3ZEVlYWYmNjAQBubm746aefsHDhQjRo0ADjxo0rd35RUVEICAgoLpXaxmKpZRP6NeH+FhImOtcW53wHiI5hWqxsC/er2Igv5P3790OlUiE+Ph7Z2dnlTmdnJ/Z8hSyWWsb9LSTahwm8fHGl9J4h+6WGbWxsoNPpin9u3LgxDh8+DEmSim87ePAgnJycEBAQAAA4dOgQPv/8c2zatAmOjo4YO3ZsufMPDw9HbGwsLl++LGvuimKxCFC0v4VIhNMZjrhRp5/oGKahyVNA69GyzzYoKAhHjhxBdHQ0kpKS8NprryEmJgZvvPEGLl68iA0bNmDSpEn43//+B6VSiczMTDz33HN488030adPHyxfvhwrV67EmjVrypx/ZGQkOnfujKeffho7duzAjRs3sHXrVmzbtk32x1IWFosg3N9CIk1O6QlJwbf/A7nWBfp/UyOzfvfdd6FSqdCkSRN4eXlBo9Fgy5YtOHr0KFq0aIFXXnkF//3vf/HRRx8BAN566y04ODjgk08+AQA0b94cn3zyCcaMGYO4uLgyl7F27Vq0bt0aw4YNQ5MmTfD+++8brCXVJIVUct2LalWBVo+nFx7Cmbh00VHIAh1usAR14v4UHcM4WTsAo7YAfi1FJzFJ/MoiUNH+Fhc7a9FRyAJ9ktlXdATjpFACT//AUqkGFotgdT3s8e2zETyfGNW6TYleSKnTSXQM49NzKhDGfVDVwU8zI9C+gQc+HdRcdAyyQF/z8sWGIkYBHd4QncLksViMxNMRAXize0PRMcjCLL4dgCyvR0XHMA71uwJ9a+4gSEvCYjEi/+sZigEt/UTHIAuzSDlQdATxvMKAIUuqdXJJ+heLxch8MbgFOjTwEB2DLMisW/WR795IdAxxHLyA4asAW54RQy4sFiNjY6XE98+3QjN/Z9FRyEJIkgIr1YNFxxDDyhYY+ivgxmPK5MRiMUKOaissHtUGQR7GcdEeMn/TbjaBxtnCPlxVNsAzS4DANqKTmB0Wi5HydFTjl/+2hZeTWnQUsgAavQJbnCzo8sVKq8ITSzZ6XHQSs8RiMWKB7vZYMqoNXO15ACXVvA9vtoDOwVt0jJqntAKe/glo/IToJGaLxWLkmvg547eX2sHDgWejpZqVrVVhn7uZr7UoVMCg74GmA0QnMWssFhPQuI4zVo5pBx9nbhajmjXuVhtIajMdHaVQAgO/BZo9LTqJ2WOxmIgQbyesGtMe/q5iL+BD5i0x3xrHvc3wg1ehBJ6aD4QPEZ3EIrBYTEg9DweseqU96nG0GNWgD+Ieg2RtTn9jCuDJuUDL4aKDWAwWi4nxd7XDqjHtEeLtKDoKmanrOba44PuU6BjyUKgKS+XR50UnsSgsFhPk42yLlS+3Q+M6PIiSasaHCV0hKU18NKK1PTB0ORDxgugkFofFYqI8HNVY8VI7tAgw0x2tJFRUhiOi/Uz41PH2nsALm4FGfUQnsUgsFhPmYm+NZaPbonWQm+goZIammOrli93rA//dDgREiE5isUzwr4ZKcrItLJenHw0QHYXMzN4UNyT4dRcdo3L8I4D/7gA8GohOYtFYLGZAbaXCV0Na4KN+jaFSKkTHITPyRZYJbQ4L7VO4+cvBU3QSi6eQJEkSHYLks//yXYz99QQy8rSio5CZOBk0H253DoqO8WCtXiy8SJdSJToJgWssZqdzqBc2jH0MDbwcREchMzFP0190hPIprYBe04EnZrNUjAjXWMxUZp4Gb62Iwu6LiaKjkBk4F/gFHO5GiY5hyNEXeGYRUK+D6CR0H66xmCknW2v8+HwrvBLJnZhUfYuUg0RHMBTUCXjlAEvFSHGNxQJsiIrDB2tPI0+jFx2FTJRCIeGi71SoUy+JTgI89jbQ7SNu+jJiXGOxAE+19MeaVzqgvif3u1DVSJICa+wEn5zS1hUYtgLoMYmlYuS4xmJBcgt0+HTrBfzy903wVafKUiv1OOc5HlYZMbW/8DotgSFLeW16E8E1FgtiZ6PC1KeaYcmoNry2C1Vavl6Jrc4CTjvfenThkfQsFZPBNRYLlZ6jwUcbzmLTqduio5AJcbLS4pTzO1Dm3K35hbnWBfp/A9TvUvPLIllxjcVCudhb45thj+DrYY/Axc7Ez2JLtSZTa4X9HjV9+WIF0Pol4NXDLBUTxTUWwp30PLy35hQOXEkSHYVMgK+6AIdt34QiP0P+mbsFA0/NA4Iek3/eVGu4xkLwdbHF0hfbYEr/prC15p8EPdidfBuckPvyxQol0O414NVDLBUzwDUWMhCdlI0pm85hz6Va2IZOJquhQy62K8ZCoc2t/sw8QoCnFgB121Z/XmQUWCxUph3nEzB18znEpMjwwUFmaWvDjWgcs6LqM7CyBdqPBTq/B1jbyheMhGOxULnyNDp8u+8aFu69hnwtj9onQ4+6ZGKt5nUo9JU9k7YCaD4Y6D4JcA2skWwkFouFHiomJQefbbuIP07Hi45CRmZfyArUi91Y8TsEtgV6fwIEtKq5UCQci4Uq7J+bqZj+x3mcvJUmOgoZie4eKfgx+w0o8JCPEdd6QI/JQDMjO5kl1QgWC1XaplO38fm2i4hN5f4XAo7U/xk+t3eW/Uu1M9DpHaDdq4AVz/ZgKVgsVCX5Wh3W/BOL7/Zdx62UHNFxSKDBvgn4Mu1twxtVauDR54Eu43ipYAvEYqFq0eklbDp1Gwv3XsOlhEzRcUiQqKB5cL1zCLC2ByJGAR3fBJx8RcciQVgsJAtJkrDzQiLm77mKqJg00XGolr0aFI8PGsQUDh929BIdhwRjsZDsDl1Nwvy9V3HwarLoKFTDfJzVGNkhGCPa1YWzLc85R4VYLFRjomLSsGDPVey4kMDrv5iZUB9HvNSpPp5q6Q8bK54GiAyxWKjGXU3Mwspjt/D7yTgkZRWIjkNVZKNSontjb/yndSAiQ72gUChERyIjxWKhWqPV6bH7YiJW/xOLPRcTodXzT88UNPVzxuCIAAxo6Q83BxvRccgEsFhIiKSsfPx+Ig6r/4nB5YQs0XHoPu4ONniqpR+eiQhEEz9n0XHIxLBYSLhTMWlYdTwGm07dRkZeZc87RXKxUirQpZEXBkcEoHtjH1iruO+EqobFQkYjT6PD9vMJ2H7uDvZfvsuSqQVWSgUereuGnk188NQjfvB24lmGqfpYLGSUdHoJ/9xMxe6Lidh7KREX7/DgS7l4OqoRGeqFrmFe6NTQi5emJtmxWMgk3E7LxZ5LidhzMRGHriUjp0AnOpLJUCqAFoGu6NrIG10beaOZvzNHdFGNYrGQycnX6nDkegp2X0zEoWtJuJKYxeNk7uPjrEa7+h7o2sgbkaFeHM1FtYrFQiYvI0+DUzFpOHkrDSdvpSIqJg2pORrRsWqNp6MNmvm7INzfBc0DXBEe4AIfZ+4rIXFYLGSWYlJycO52Os7dzsC52xk4fzsDdzLyRMeqNld7azT3d0FzfxeEBxQWib+rnehYRAZYLGQxkrPyEZ2cjdjUXMSl5Rb+997/x6XmIldjHPtt7G1UqOtuj0B3e9R1t0c9j8L/D/FyRKC7veh4RA/FYiG6Jzkrv1ThZOVrkVugQ65Gh5yCkv+vQ16J/5Y8iYBCAaitlLCzVsHOWgVbG1Xx/9vZqGB77/8dba3g42QLXxc1fJxtUcfFDr7OtnCx5ygtMm0sFiIZ5Gl0yNfoYWOlhK21kqOuyKKxWIiISFY8ZwMREcmKxUJERLJisRARkaxYLEREJCsWCxERyYrFQkREsmKxEBGRrFgsREQkKxYLERHJisVCRESyYrEQEZGsWCxERCQrFgsREcmKxUJERLJisRARkaxYLEREJCsWCxERyYrFQkREsmKxEBGRrFgsREQkKxYLERHJisVCRESyYrEQEZGsWCxERCQrFgsREcmKxUJERLJisRARkaxYLEREJCsWCxERyYrFQkREsmKxEBGRrFgsREQkKxYLERHJisVCRESyYrEQEZGsWCxERCQrFgsREcmKxUJERLJisRARkaxYLEREJCsWCxERyYrFQkREsmKxEBGRrFgsREQkKxYLERHJ6v8B4Q1Hms5z4NoAAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZYAAAGbCAYAAADnZrZIAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjAsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvlHJYcgAAAAlwSFlzAAAPYQAAD2EBqD+naQAASDJJREFUeJzt3XdcE/fjBvAnCRDC3hsFRcSFA1dduK2j1lprtbZ11Nbu8Wtrtdbdbev41tHtqNZtXXXvWbUqThyoKCCCTNlk3O8PJDUCyji4jOf9evlqSS53TxKSh7v73J1MEAQBREREIpFLHYCIiMwLi4WIiETFYiEiIlGxWIiISFQsFiIiEhWLhYiIRMViISIiUbFYiIhIVCwWIiISFYuFiIhEZbLFsmjRIshkMv0/W1tbhIaG4u2330ZSUpLU8YgsSmxsrMHn8VH/YmNjq7y827dvY8qUKYiKiirX9KV9X/j5+aFXr1743//+h6ysrEpnOXLkCKZMmYKMjIxKz0NM8+fPx6JFiyTNYCXp0kUwbdo0BAcHIz8/H4cOHcKCBQuwZcsWnD9/HnZ2dlLHI7IInp6e+OOPPwxu+/777xEfH49Zs2aVmLaqbt++jalTpyIoKAjNmjUr9+OKvy/UajXu3LmDffv24f3338fMmTOxceNGhIeHVzjLkSNHMHXqVIwYMQIuLi4VfrzY5s+fDw8PD4wYMUKyDCZfLL1790bLli0BAKNHj4a7uztmzpyJDRs2YOjQoRKnI7IM9vb2ePHFFw1uW7FiBdLT00vcLqUHvy8AYPz48dizZw/69euH/v37Izo6GiqVSsKE5sFkN4WVpWvXrgCAGzduAADS0tLw0UcfoUmTJnBwcICTkxN69+6NM2fOlHhsfn4+pkyZgtDQUNja2sLX1xcDBw7EtWvXADx+db9z5876ee3btw8ymQwrV67Ep59+Ch8fH9jb26N///6Ii4srsexjx47hySefhLOzM+zs7BAZGYnDhw+X+hw7d+5c6vKnTJlSYtqlS5ciIiICKpUKbm5uGDJkSKnLf9Rze5BOp8Ps2bPRqFEj2NrawtvbG2PGjEF6errBdEFBQejXr1+J5bz99tsl5lla9hkzZpR4TQGgoKAAkydPRkhICJRKJQIDAzF27FgUFBSU+lo9qHPnziXm98UXX0Aul+PPP/+s1Ovx3XffoV27dnB3d4dKpUJERATWrFlT6vKXLl2K1q1bw87ODq6urujUqRN27NhhMM3WrVsRGRkJR0dHODk5oVWrViWyrV69Wv+eenh44MUXX0RCQoLBNCNGjDDI7Orqis6dO+PgwYOPfZ2q8tjHKe/7t3PnTnTo0AEuLi5wcHBA/fr18emnnwIo+my1atUKADBy5Eh9zspu/unatSsmTpyImzdvYunSpfrbz549ixEjRqBOnTqwtbWFj48PRo0ahdTUVP00U6ZMwccffwwACA4OLrG5b+HChejatSu8vLygVCrRsGFDLFiwoESGf//9F7169YKHhwdUKhWCg4MxatQog2nK89kLCgrChQsXsH///lK/l2qKya+xPKy4BNzd3QEA169fx/r16/Hcc88hODgYSUlJ+OmnnxAZGYmLFy/Cz88PAKDVatGvXz/s3r0bQ4YMwXvvvYesrCzs3LkT58+fR926dfXLGDp0KPr06WOw3PHjx5ea54svvoBMJsMnn3yC5ORkzJ49G927d0dUVJT+L6M9e/agd+/eiIiIwOTJkyGXy/W/kAcPHkTr1q1LzDcgIABfffUVACA7OxtvvPFGqcueOHEiBg8ejNGjR+Pu3bv44Ycf0KlTJ5w+fbrU1fbXXnsNHTt2BACsW7cOf/31l8H9Y8aMwaJFizBy5Ei8++67uHHjBubOnYvTp0/j8OHDsLa2LvV1qIiMjAz9c3uQTqdD//79cejQIbz22mto0KABzp07h1mzZuHKlStYv359hZazcOFCfPbZZ/j+++/xwgsvlDrN416POXPmoH///hg2bBgKCwuxYsUKPPfcc9i8eTP69u2rn27q1KmYMmUK2rVrh2nTpsHGxgbHjh3Dnj170LNnTwBF+wFGjRqFRo0aYfz48XBxccHp06exbds2fb7i175Vq1b46quvkJSUhDlz5uDw4cMl3lMPDw/9Zqj4+HjMmTMHffr0QVxc3GM32VTlsWUp7/t34cIF9OvXD+Hh4Zg2bRqUSiViYmL0f2g1aNAA06ZNw6RJkwzen3bt2lUqFwC89NJL+PTTT7Fjxw68+uqrAIrK7fr16xg5ciR8fHxw4cIF/Pzzz7hw4QL++ecfyGQyDBw4EFeuXMHy5csxa9YseHh4APhvc9+CBQvQqFEj9O/fH1ZWVti0aRPefPNN6HQ6vPXWWwCA5ORk9OzZE56enhg3bhxcXFwQGxuLdevWGWQsz2dv9uzZeOedd+Dg4IAJEyYAALy9vSv9ulSaYKIWLlwoABB27dol3L17V4iLixNWrFghuLu7CyqVSoiPjxcEQRDy8/MFrVZr8NgbN24ISqVSmDZtmv6233//XQAgzJw5s8SydDqd/nEAhBkzZpSYplGjRkJkZKT+57179woABH9/f+HevXv621etWiUAEObMmaOfd7169YRevXrplyMIgpCbmysEBwcLPXr0KLGsdu3aCY0bN9b/fPfuXQGAMHnyZP1tsbGxgkKhEL744guDx547d06wsrIqcfvVq1cFAMLixYv1t02ePFl48Ffk4MGDAgBh2bJlBo/dtm1bidtr164t9O3bt0T2t956S3j41+7h7GPHjhW8vLyEiIgIg9f0jz/+EORyuXDw4EGDx//4448CAOHw4cMllvegyMhI/fz+/vtvwcrKSvjwww9LnbY8r4cgFL1PDyosLBQaN24sdO3a1WBecrlceOaZZ0r8Lha/5xkZGYKjo6PQpk0bIS8vr9RpCgsLBS8vL6Fx48YG02zevFkAIEyaNEl/2/Dhw4XatWsbzOfnn38WAAjHjx8v9TmL8dgH9e3b12A+5X3/Zs2aJQAQ7t69W+a8T5w4IQAQFi5cWK4sxd8XJ06cKHMaZ2dnoXnz5vqfH35vBUEQli9fLgAQDhw4oL9txowZAgDhxo0bJaYvbR69evUS6tSpo//5r7/+emy2inz2Hv4ukoLJbwrr3r07PD09ERgYiCFDhsDBwQF//fUX/P39AQBKpRJyedHT1Gq1SE1N1a9anzp1Sj+ftWvXwsPDA++8806JZTy8+aMiXn75ZTg6Oup/HjRoEHx9fbFlyxYAQFRUFK5evYoXXngBqampSElJQUpKCnJyctCtWzccOHAAOp3OYJ75+fmwtbV95HLXrVsHnU6HwYMH6+eZkpICHx8f1KtXD3v37jWYvrCwEEDR61WW1atXw9nZGT169DCYZ0REBBwcHErMU61WG0yXkpKC/Pz8R+ZOSEjADz/8gIkTJ8LBwaHE8hs0aICwsDCDeRZv/nx4+WU5fvw4Bg8ejGeffRYzZswodZryvB4ADLbHp6enIzMzEx07djT43Vq/fj10Oh0mTZqk/10sVvy7tXPnTmRlZWHcuHEl3tviaf79918kJyfjzTffNJimb9++CAsLw99//23wOJ1Op3+NoqKisGTJEvj6+qJBgwaPfE5VfWxZyvv+Fa8RbdiwocTvfnVycHAwGB324Hubn5+PlJQUtG3bFgAM3t9HeXAemZmZSElJQWRkJK5fv47MzEwA/z3fzZs3Q61Wlzqfin72pGbym8LmzZuH0NBQWFlZwdvbG/Xr1zf48Op0OsyZMwfz58/HjRs3oNVq9fcVby4Dijah1a9fH1ZW4r4k9erVM/hZJpMhJCREvw326tWrAIDhw4eXOY/MzEy4urrqf05JSSkx34ddvXoVgiCUOd3Dm6yKh0o+/GX+8DwzMzPh5eVV6v3JyckGP+/YsaPCI4AmT54MPz8/jBkzpsS+iqtXryI6OrrMeT68/NIkJCSgb9++yMnJQWpqapl/NJTn9QCKvgw+//xzREVFGewneHC+165dg1wuR8OGDcucT/Em3MaNG5c5zc2bNwEA9evXL3FfWFgYDh06ZHBbXFycwWvl6+uLtWvXPvY5VfWxZSnv+/f888/j119/xejRozFu3Dh069YNAwcOxKBBg0oUs5iys7MNfrfT0tIwdepUrFixosTvVnEpPM7hw4cxefJkHD16FLm5uSXm4ezsjMjISDz77LOYOnUqZs2ahc6dO2PAgAF44YUX9H/YVPSzJzWTL5bWrVsbjPJ42JdffomJEydi1KhRmD59Otzc3CCXy/H+++/X6F9DZSnOMGPGjDKHTT74YS4sLERiYiJ69Ojx2PnKZDJs3boVCoXikfMEgDt37gAAfHx8HjlPLy8vLFu2rNT7H/7CaNOmDT7//HOD2+bOnYsNGzaU+vjo6GgsWrQIS5cuLXVfjU6nQ5MmTTBz5sxSHx8YGFhm9mIxMTFo0aIFZs2ahZdeegmLFy8utdTL83ocPHgQ/fv3R6dOnTB//nz4+vrC2toaCxcuLLHDXQre3t76ndGZmZn4/fff8eSTT+LQoUNo0qRJtT22LOV9/1QqFQ4cOIC9e/fi77//xrZt27By5Up07doVO3bsKPX3uari4+ORmZmJkJAQ/W2DBw/GkSNH8PHHH6NZs2ZwcHCATqfDk08+Wa7vjmvXrqFbt24ICwvDzJkzERgYCBsbG2zZsgWzZs3Sz0Mmk2HNmjX4559/sGnTJmzfvh2jRo3C999/j3/++Ue/3Ip89qRm8sXyOGvWrEGXLl3w22+/GdyekZGh39EGAHXr1sWxY8egVqtF2QFdrHiNpJggCIiJidGPly8eFODk5ITu3bs/dn5nzpyBWq1+ZJkWz1cQBAQHByM0NPSx87148SJkMlmpfw0/OM9du3ahffv25RqS6eHhUeI5PWoH+/jx49GsWTM8//zzZS7/zJkz6NatW6U3TxZvhvT29saGDRvw4Ycfok+fPiU+mOV5PdauXQtbW1ts377dYJPZwoULS+TW6XS4ePFimX88FP8enD9/3uDL7UG1a9cGAFy+fFm/+ajY5cuX9fcXs7W1NXj9+/fvDzc3N8ydOxc//fRTmc+rqo8tS0XeP7lcjm7duqFbt26YOXMmvvzyS0yYMAF79+5F9+7dq7R5ujTFx+D06tULQNFmzd27d2Pq1KmYNGmSfrqHP89A2ZvKN23ahIKCAmzcuBG1atXS317WZqu2bduibdu2+OKLL/Dnn39i2LBhWLFiBUaPHl2hz57Yr01lmPw+lsdRKBQQBMHgttWrV5cYnvnss88iJSUFc+fOLTGPhx9fEUuWLDHYbrtmzRokJiaid+/eAICIiAjUrVsX3333HbKzs0s8/u7duyWyKxSKUofyPmjgwIFQKBSYOnVqifyCIBgMmdRoNFi7di1at279yE0dgwcPhlarxfTp00vcp9FoqnTk8dGjR7FhwwZ8/fXXZX4wBg8ejISEBPzyyy8l7svLy0NOTs5jlxMaGqofJfPDDz9Ap9PhvffeM5imvK+HQqGATCYz2LwaGxtbojwHDBgAuVyOadOmlfhLt/i96dmzJxwdHfHVV1+V2A9VPE3Lli3h5eWFH3/80WCz29atWxEdHW0wCq00hYWF0Gg05RqaLeZji5X3/UtLSytxf3EhFy/f3t4eAEQ52n3Pnj2YPn06goODMWzYMADQrxU9/NmZPXt2iceXlaW0eWRmZpb4wyM9Pb3Ech5+vhX57Nnb20t+FgCzX2Pp168fpk2bhpEjR6Jdu3Y4d+4cli1bhjp16hhM9/LLL2PJkiX4v//7Pxw/fhwdO3ZETk4Odu3ahTfffBNPP/10pZbv5uaGDh06YOTIkUhKSsLs2bMREhKiH9Iol8vx66+/onfv3mjUqBFGjhwJf39/JCQkYO/evXBycsKmTZuQk5ODefPm4X//+x9CQ0Oxb98+/TKKC+ns2bM4evQonnjiCdStWxeff/45xo8fj9jYWAwYMACOjo64ceMG/vrrL7z22mv46KOPsGvXLkycOBFnz57Fpk2bHvlcIiMjMWbMGHz11VeIiopCz549YW1tjatXr2L16tWYM2cOBg0aVKnXaceOHejRo8cj19peeuklrFq1Cq+//jr27t2L9u3bQ6vV4tKlS1i1ahW2b9/+2DW5B/n4+GDGjBkYPXo0XnzxRfTp06dCr0ffvn0xc+ZMPPnkk3jhhReQnJyMefPmISQkBGfPntVPFxISggkTJmD69Ono2LEjBg4cCKVSiRMnTsDPzw9fffUVnJycMGvWLIwePRqtWrXCCy+8AFdXV5w5cwa5ublYvHgxrK2t8c0332DkyJGIjIzE0KFD9cONg4KC8MEHHxjky8nJMdic9ccffyA/Px/PPPPMY1+bqjy2LOV9/6ZNm4YDBw6gb9++qF27NpKTkzF//nwEBASgQ4cOAIrWflxcXPDjjz/C0dER9vb2aNOmDYKDgx+ZYevWrbh06RI0Gg2SkpKwZ88e7Ny5E7Vr18bGjRv1gyKcnJzQqVMnfPvtt1Cr1fD398eOHTv0x8c9KCIiAgAwYcIEDBkyBNbW1njqqafQs2dP2NjY4KmnnsKYMWOQnZ2NX375BV5eXkhMTNQ/fvHixZg/fz6eeeYZ1K1bF1lZWfjll1/g5OSkP6yhIp+9iIgILFiwAJ9//jlCQkLg5eVVYg232kkzGK3qyjN8UBCKhht/+OGHgq+vr6BSqYT27dsLR48eNRh6Wiw3N1eYMGGCEBwcLFhbWws+Pj7CoEGDhGvXrgmCULnhxsuXLxfGjx8veHl5CSqVSujbt69w8+bNEo8/ffq0MHDgQMHd3V1QKpVC7dq1hcGDBwu7d+82WPbj/g0fPtxgvmvXrhU6dOgg2NvbC/b29kJYWJjw1ltvCZcvXxYEQRDeeecdoVOnTsK2bdtKZCpteK0gFA09jYiIEFQqleDo6Cg0adJEGDt2rHD79m39NBUdbiyTyYSTJ08a3F7ae1RYWCh88803QqNGjQSlUim4uroKERERwtSpU4XMzMwSy3vc/ARBELp27SrUqlVLyMrKqvDr8dtvvwn16tUTlEqlEBYWJixcuLDM1+33338Xmjdvrs8dGRkp7Ny502CajRs3Cu3atRNUKpXg5OQktG7dWli+fLnBNCtXrtTPx83NTRg2bJh+eH2x4cOHG/xeODg4CC1atBD++OOPR75GVX3sgx4ebiwI5Xv/du/eLTz99NOCn5+fYGNjI/j5+QlDhw4Vrly5YjCvDRs2CA0bNhSsrKweO/S4+Pui+J+NjY3g4+Mj9OjRQ5gzZ47BIQHF4uPjhWeeeUZwcXERnJ2dheeee064fft2ieHxgiAI06dPF/z9/QW5XG4w9Hjjxo1CeHi4YGtrKwQFBQnffPON/tCG4mlOnTolDB06VKhVq5agVCoFLy8voV+/fsK///5bIlN5Pnt37twR+vbtKzg6OgoAJBl6LBOEKmznoTLt27cPXbp0werVqyv9V/yDYmNjERwcjBs3biAoKKjUaaZMmYLY2FjJT0BHRJbN7PexEBFRzTL7fSzmwsHBAcOGDXvkzuTw8HD9KWqIiKTCYjERHh4eBifIK83AgQNrKA0RUdm4j4WIiETFfSxERCQqFgsREYmKxUJERKJisRARkahYLEREJCoWCxERiYrFQkREomKxEBGRqFgsREQkKhYLERGJisVCRESiYrEQEZGoWCxERCQqFgsREYmKxUJERKJisRARkahYLEREJCoWCxERiYrFQkREomKxEBGRqFgsREQkKhYLERGJisVCRESiYrEQEZGoWCxERCQqFgsREYmKxUJERKJisRARkahYLEREJCoWCxERiYrFQkREomKxEBGRqFgsREQkKhYLERGJisVCRESiYrEQEZGoWCxERCQqFgsREYmKxUJERKKykjoAkTHKKdDgdkYe0nIKkV2g+e9fvgY5BRrka3Qo1OhQoNFBrS36f7VWB2uFHCprBVQ2Rf/sHvh/lbXiv/usFbBXWsHH2RYeDkqpny6RqFgsZJHScwoRn56HhIzc+//NQ0LxfzPykJGrrrEsttZy+Lmo4O+iQoBr0X/9XVUIcLWDv4sK3k62UMhlNZaHqKpkgiAIUocgqi6ZeWqci8/E2YQMnIvPRExyNhIy8pBbqJU6WrlZyWXwcbZFbXc7NPZzRpMAZ4T7u6CWu53U0YhKxWIhs5FdoMG5+EycS8jA2fhMnEvIxM3UXKljVRtXO2s09ndGeIAzwgNcEB7gDF9nldSxiFgsZLpikrNw6GoKzsRn4mx8Bm6k5EBn4b/Nno5KNLlfNq2C3NAyyBVKK4XUscjCsFjIZOSrtThyLQV7L93FvivJiEvLkzqS0VNZK9Cmjhs61fNEp1BPhHg5SB2JLACLhYzardRc7LmUhL2X7+Kf66ko0OikjmTS/F1U6FzfE90beqNdXXeuzVC1YLGQUVFrdfjnemrRWsnlZFxPyZE6ktmyt1GgY72ikukW5gVXexupI5GZYLGQUTh5Mx1/nY7H5rOJNTrUl4pYK2ToUt8Lz7UMRJf6nrBS8NhpqjwWC0nmVmou1p2Ox/rTCYg149FbpsbDQYlnmvvhuZaBCPV2lDoOmSAWC9WoAo0W287fwYrjcfjnRir422fcmgY4Y1DLQPRv6gdnlbXUcchEsFioRlxJysLy47fw1+kEbuoyQUorOXo18sFzLQPQvq4H5DwTAD0Ci4Wq1b7LyViw7xqO3UiTOgqJxN9FhVc6BGNo61pQ2XBUGZXEYiHR6XQCtp6/gwX7Y3A+4Z7UcaiauNvbYGT7ILz0RBA3k5EBFguJRq3V4a9TCfjxwDVcv8thwpbCUWmFYW1r45UOwfB05JmaicVCIsgr1GL58Vv49eB13M7MlzoOSURpJcfgloF4rVMdBLrxBJmWjMVClZaZp8aSI7FYeCQWaTmFUschI2Ell6F/Uz+80bku6nG4skVisVCF5au1+PnAdfx84DqyCzRSxyEjJZMBfRr7YlzvMK7BWBgWC1XI5rO38dWWS0jI4AkgqXyUVnKM7hiMt7qEwM6G1xa0BCwWKpcLtzMxddNFHOewYaokbyclxvYKw8AW/pDJeByMOWOx0COlZBfgu+2XserfOIu/1gmJo1mgCyY/1RDNa7lKHYWqCYuFSqXW6rDw8A38sDsGWdyPQiKTyYBnmvnjk95h8HaylToOiYzFQiXsjk7CF39H85T1VO3sbRR4s0sIRncM5rVhzAiLhfTuZhVg/Lpz2BWdJHUUsjC13Ozw9bNN0K6uh9RRSAQsFgIAbDufiE//Os/jUUgyMhnwUtvaGNc7jKPHTByLxcLdy1djyoYLWHc6QeooRACK1l5mDApHmzruUkehSmKxWLAjMSn4aPUZnoaFjI5MBoxoF4RPngyDrTX3vZgaFosFyldr8c22S1h0JJYX2iKjFurtgDlDmqOBr5PUUagCWCwW5mx8Bv5v1RnEJGdLHYWoXGys5Bjbqz5e6RDMAytNBIvFQmi0OszdG4O5e2Kg4ZGOZII61vPA9881hRePezF6LBYLkJJdgLeWneJVHMnkeTgo8dNLLRBR203qKPQILBYzdyYuA68vPYlE7qAnM2GjkGP6gEZ4vlUtqaNQGVgsZmzliVuYuOECCjU6qaMQiW5EuyB81rcBrBRyqaPQQ1gsZkit1WHKxgtYduyW1FGIqlX7EHfMe6EFXOxspI5CD2CxmJmM3EK8vvQk/rnO/SlkGWq52eHX4S0RyqtVGg0Wixm5djcbryw6gdjUXKmjENUoB6UVZg5uip6NfKSOQmCxmI2DV+/irWWncC+fp7gnyySTAR90D8W73epJHcXisVjMwIrjt/DZ+vM8PoUIQN9wX8wa3Aw2VtypLxUWi4n77dANTN98UeoYREYlMtQTP70UwfOMSYTFYsLm7Y3BjO2XpY5BZJSeqOOOX4e3hL2Sp+CvaSwWEzVj+yXM23tN6hhERq1FLRcsGtUaTrbWUkexKCwWEzR980X8duiG1DGITEJjfyf8MaoNXO15rEtNYbGYEEEQ8Nn68zzwkaiC6ns7YunoNvB0VEodxSKwWEyEVifg4zVnsO4Ur/RIVBl1POyx7NU28HVWSR3F7LFYTIBaq8P7K6Pw99lEqaMQmbRANxX+HN0WgW52UkcxaywWI6fW6vDG0lPYFZ0kdRQis+DrbIs/X22LYA97qaOYLR5BZMQEQcDYNWdZKkQiSszMx0u/HUNyFi8lUV1YLEbs2+2X8ddp7lMhElt8eh5GLTqBnAKeAqk6sFiM1B9HY7FgH49TIaou5xPu4c1lp6DR8npFYmOxGKHtF+5g8sYLUscgMnv7r9zFuHXnpI5hdlgsRubkzXS8t+I0eD5Jopqx5mQ8Zu7gqZHExGIxItfvZmP04hPIV3PVnKgm/W9PDP7kgceiYbEYieSsfAxfeBzpuWqpoxBZpIkbzmM3R2CKgsViBHIKNBi16ATi0vKkjkJksbQ6AW//eRpn4jKkjmLyWCwS0+kEvLnsFM4n3JM6CpHFy1NrMWrRCdzi5b2rxKKLRSaTYf369ZJmmL37KvZfuStpBiL6T2pOIcYsPYl8tVbqKCbLJIolKCgIs2fPFn2+iYmJ6N27t+jzLa+DV+9i7p6rki2fiEoXnXgPE9eflzqGyTKJYqkuPj4+UCqlOY128r18fLAyisOKiYzU6pPxWHGcI8Uqo0LF0rlzZ7z77rsYO3Ys3Nzc4OPjgylTpujvv3XrFp5++mk4ODjAyckJgwcPRlLSf6MspkyZgmbNmuGPP/5AUFAQnJ2dMWTIEGRlZT1ymTdv3sQHH3wAmUwGmUymv2/t2rVo1KgRlEolgoKC8P333+vvmzZtGvz8/JCamqq/rW/fvujSpQt0uqLhvA9vCouPj8fQoUPh5uYGe3t7tGzZEseOHavIS1QuWp2Ad5afRkp2oejzJiLxTN54AecTMqWOYXIqvMayePFi2Nvb49ixY/j2228xbdo07Ny5EzqdDk8//TTS0tKwf/9+7Ny5E9evX8fzzz9v8Phr165h/fr12Lx5MzZv3oz9+/fj66+/LnN569atQ0BAAKZNm4bExEQkJhadOv7kyZMYPHgwhgwZgnPnzmHKlCmYOHEiFi1aBACYMGECgoKCMHr0aADAvHnzcOTIESxevBhyecmnnZ2djcjISCQkJGDjxo04c+YMxo4dqy8hMc3aeQXHbqSJPl8iEleBRoc3lp3EvXweBlARVhV9QHh4OCZPngwAqFevHubOnYvdu3cDAM6dO4cbN24gMDAQALBkyRI0atQIJ06cQKtWrQAAOp0OixYtgqOjIwDgpZdewu7du/HFF1+Uujw3NzcoFAo4OjrCx8dHf/vMmTPRrVs3TJw4EQAQGhqKixcvYsaMGRgxYgQUCgWWLl2KZs2aYdy4cfjf//6HX3/9FbVq1Sp1OX/++Sfu3r2LEydOwM3NDQAQEhJS0ZfnsQ5cuYt5+2JEny8RVY+4tDyMX3cO815oIXUUk1HhNZbw8HCDn319fZGcnIzo6GgEBgbqSwUAGjZsCBcXF0RHR+tvCwoK0pfKg48HgGXLlsHBwUH/7+DBg2XmiI6ORvv27Q1ua9++Pa5evQqttmg0R506dfDdd9/hm2++Qf/+/fHCCy+UOb+oqCg0b95cXyrV4U5m0X4VXgGHyLT8fTaR+1sqoMJrLNbW1gY/y2SyCm0uetTj+/fvjzZt2ujv8/f3r2i8Eg4cOACFQoHY2FhoNBpYWZX+lFWq6r1cqVYn4N3lp5Gaw/0qRKZo6qaLaBnkihAvx8dPbOFEGxXWoEEDxMXFIS4uTn/bxYsXkZGRgYYNG5ZrHo6OjggJCdH/K/6yt7Gx0a+FPLi8w4cPG9x2+PBhhIaGQqFQAABWrlyJdevWYd++fbh16xamT59e5rLDw8MRFRWFtLTq2ffx/Y7LOB7L/SpEpipPrcXbf57m8S3lIFqxdO/eHU2aNMGwYcNw6tQpHD9+HC+//DIiIyPRsmXLKs07KCgIBw4cQEJCAlJSUgAAH374IXbv3o3p06fjypUrWLx4MebOnYuPPvoIQNEIrzfeeAPffPMNOnTogIULF+LLL7/EP//8U+oyhg4dCh8fHwwYMACHDx/G9evXsXbtWhw9erRK2QHg2PVULNjPa6sQmbpLd7Lw3XaeCflxRCsWmUyGDRs2wNXVFZ06dUL37t1Rp04drFy5ssrznjZtGmJjY1G3bl14enoCAFq0aIFVq1ZhxYoVaNy4MSZNmoRp06ZhxIgREAQBI0aMQOvWrfH2228DAHr16oU33ngDL774IrKzs0ssw8bGBjt27ICXlxf69OmDJk2a4Ouvv9av/VRWvlqLT9ae5X4VIjOx8EgszsVzCPKjyASBX3nV6cst0fj5wHWpYxCRiBr7O2HDWx2gkMseP7EFsugj76vbmbgM/HbohtQxiEhk5xPu4Xd+tsvEYqkmhRodxq45Cy3P2UJklmbtuoK4NJ4FuTQslmry0/5ruJxU9qlqiMi05RZqMXEDT1RZGhZLNbiZmoO5e3l0PZG523f5LjZEJUgdw+iwWKrBpA0XUKDhdeuJLMH0zReRyUuKG2CxiGzLuUReuIvIgqRkF+KLLReljmFUWCwiyi7QYNom/oIRWZpV/8bj6LXUx09oIVgsIpq3NwZ37uVLHYOIJDBxw3mOAr2PxSKS5Hv5WHQ4VuoYRCSRmORsrD0VL3UMo8BiEckPe2KQx5PTEVm0ObuuopADd1gsYohLy8WKE7xWA5GlS8jIw5/HbkodQ3IsFhHM2nkFai23rRIRMHfvNeQWaqSOISkWSxVdScrCeh4gRUT3pWQXYKGF729lsVTRd9svgwNBiOhBP+2/ZtEHTbJYqiAqLgM7LiZJHYOIjMy9fA1+PGC5F/djsVTBjO2XpI5AREZq0eFY3M0qkDqGJFgslXQkJgWHY3ikLRGVLk+txdw9V6WOIQkWSyXN2MHrXhPRoy0/HmeR12xhsVTCidg0nL6VIXUMIjJyhVodFh2JlTpGjWOxVIIl/qIQUeWs+jfO4o5rYbFU0J3MfGw/f0fqGERkIrLyNVh3yrKOdWOxVNDSf25CwwNXiKgClhyNlTpCjWKxVECBRovlx3lOMCKqmCtJ2TgSkyJ1jBrDYqmAzWcSkZpTKHUMIjJBlrRvlsVSAYstbHWWiMSz+1Iy4tMtY+gxi6WcTt5Mx9n4TKljEJGJ0uoE/PGPZZxSn8VSTostaDWWiKrHyhNxyLeACwKyWMoh+V4+tp5PlDoGEZm4jFw1NljAZTZYLOXw5/FbvJAXEYli0RHz3xxmJXUAU7Ah6rbUEcpN0GmReehPZF/cB11OOhQObrBv3A3O7YZAJpNB0GqQcfAP5F37F5rMO5Ar7WFbuylcIkfAytH9kfPOOrUZmcfWQZuTDhuvYLh1HwOlX339/Wm7f0HO+d2QWdvCJXI4HBp10d+Xc+kQcs7vhtegydX23IlMQXTiPVy8fQ8N/ZykjlJtuMbyGOcTMnEjJUfqGOV279haZEVthVuP1+E3egFcIkfg3vF1yDq5CQAgaApQeOcanNsNge/wOfAc8CnUaQm4u276I+ebE30AaXt+hUv7ofAdMQc2XsFIXjUJ2pwMAEBuzDHkRO+H1+DpcO08EmnbfoA2t2iwg64gBxkHlsCt5xvV+tyJTMWGM+a9OYzF8hhbzpnWvpWChGioQtrArm4rWDl7wz6sA1RBzVGYeAUAIFfaw3vI57Bv0BHW7gFQ+ofBrcfrKLwTA8295DLne+/Eejg27QWH8B6w8agFt15vQWatRPa5nQAAdWocbAObQOlbD/YNIyGzsYMms+giaOl7F8KxeR9YOXlV/wtAZAI2n0mEIJjv5nUWy2OYWrEo/Rsg/+YZqNOK/iIqTL6O/PiLsK0TUeZjdAW5AGSQKx1KvV/QqlF4Jwa2tZvpb5PJ5LANaoaChKKLndl4BqPwTgy0+dkouBMDQVMAK1c/5MdfQGHSNThGPCXacyQydQkZeTh5M13qGNWG+1ge4XxCJmJTTeuAJqe2g6AryMXtX14H5HJAp4NLp5cM9nc8SNAUImPfQtg17AS50q7UabS59wBBB4W9i8HtCjsXqFPjAQCqOhGwb9QZdxZ/AJmVDTz6fgC5tRJp2+fDve8HyDq9BVmnNkOhcoJbr7dh41lb1OdNZGo2RN1GyyA3qWNUCxbLI/xtYmsrAJAbfRA5F/fB46mPYO1ZG4VJ15G++xcoHNzh0KSbwbSCVoO7G74GALj3fKvKy3bpMAwuHYbpf8449Cdsg5pBJlcg8+hK+I2ah7yY40j9eyZ8R8yp8vKITNmWc4mY0r8RFHKZ1FFEx01hj2Bqm8EAIH3fQji3HQT7hpGw8QyCQ+OucGz1NDL/WW0wXXGpaDKT4fX89DLXVgBAYecEyOT6HfXFtLkZUNi7lvoYdWocci7uhUvHF5F/6xxsAxpDYecMu7COKEy6dn/zG5HlSs0pxInYNKljVAsWSxnOxWfipoltBgMAQV0AyAzfVplMDgi6/6YpLpX02/Ae8gUUqkcPe5QprGHjE4L8m2f+m4egQ37sGSj9w0pmEASkbp8H166jIbdRAYIOgu7+hY6K//tAHiJLtc1Mr+3EYimDKW4GAwBVSGtkHlmJ3GsnoMlMQu6VI7h3Yj3sQp8AcL9U1n+Fwjsx8HjqI0CngzY7HdrsdAhatX4+SSs+xb37Q5QBwKnVAGSd2Y7sc7uhTolD2vb5ENT5cGjSvUSG7DPboVA5wS6kDYDiAQVnUZBwCfdObIC1ey3IbUsfKEBkSXZeTJI6QrXgPpYymOJmMABw6z4GGQeXIm3HfOhyM6FwcINDs95waT8EAKDNTkVezDEAQOLCdw0e6z30S9jWCgcAqNPvQJl3T3+ffYNO0OZmIuPQ0vsHSNaB1+BpJTaFaXPSkXl0FXxenKG/TelXH06tn0HymqmQ2znDo+8H1fLciUxNQkYezsZnIDzAReooopIJ5jyYupLOxWfiqbmHpI5BRBbgrS518XGvkpuUTRk3hZVi9yXzXD0lIuOz99JdqSOIjsVSiiMxqVJHICILcenOPWTmqR8/oQlhsTwkt1CD03Hme0QsERkXnQCcuGFew45ZLA85fiONp8gnohp17IZ5bSVhsTzkyDXzeoOJyPgd4xqLeTtyLUXqCERkYS7cvoesfPPZz8JieUBWvhoXb997/IRERCLS6gT8a0ZnO2axPODUrQzouHuFiCRw7Lr5bA5jsTzgpJmeEI6IjJ857cBnsTzgRKz5rIoSkWk5F5+J3EKN1DFEwWK5T6PVISouQ+oYRGShNDoB/5rJH7cslvuiE7OQp9ZKHYOILNhxMxl2zGK579IdjgYjImldupMldQRRsFjui7mbLXUEIrJwMcksFrMSk8RiISJpxaXnoUBj+pvkWSz3XU1msRCRtLQ6Adfv5kgdo8pYLADy1VrEp5ve9e2JyPyYwx+5LBYA1+5m84h7IjIKMSwW82AObyQRmQdz2IHPYgFwlTvuichImMMfuiwWmMcbSUTmITYlFxqtTuoYVcJiAXDVDFY9icg8FGp1uJlm2oOJLL5Y1Fodbqaa9ptIRObF1DfPW3yxxKfnQcMhYURkRGJTTftYFosvltTsAqkjEBEZMPXvJRZLTqHUEYiIDJj695LFF0uaib+BRGR+TP17icVi4m8gEZmfdBP/XmKxmPgbSETmh5vCTByLhYiMjal/L1l8sZj6XwZEZH5yC7XIN+FLpVt8saTlmPawPiIyT6a81sJiyTbdN4+IzBeLxYSl5Zrum0dE5ovFYqJyCzXIV5v2WUSJyDyxWExUdr5G6ghERKW6l6+WOkKlWXSx8NSTRGSsNFrT/Yay6GIhIjJWOoHFQkREIjLly3mwWIiIjJCWxUJERGIy5WKxkjoAkblo4ZyFpY5zITPhbeNkPNTKEQDqSR2jUiy6WPj5JzGdynREvqsz3O4ckjoKmQGVLkPqCJXGTWFEIpqrfkrqCGQuZAqpE1Qai4VIRL8nBCLbs7nUMcgcyFksRHTfQtlAqSOQOeAaCxEVmxlXBwWu9aWOQaZOYS11gkqz6GJRWln006dqIggyrLJ9VuoYZOpsXaROUGkW/c3qpLKGTCZ1CjJH0242gsapltQxyJSpXKVOUGkWXSwKuQwONhY94pqqiVonwxan56SOQaaMxWK6nFSmux2TjNuE2KbQ2XlKHYNMFYvFdDmzWKiaZGmssN99sNQxyFSxWEwXi4Wq0/hbrSAonaWOQSZHBqhcpA5RaRZfLG4ONlJHIDN2p8AG/3pxhBhVkNKJB0iaMk8HpdQRyMyNS2gPwUoldQwyJXamuxkMYLHA05HFQtXrWq4K0b4DpI5BpsSE968ALBausVCN+Cy5CwQ59+dRObFYTBvXWKgmnMp0wE2/PlLHIFPhHCB1giphsbBYqIZMSesJQWbxHzkqD7c6UieoEov/LQ90tZM6AlmIfWmuSPLrJnUMMgVudaVOUCUWXyzOdtZca6Ea8212X6kjkCngGovpq+flIHUEshDrkryQ7tNe6hhk1GQsFnMQwmKhGjRP3V/qCGTMHH0AG9PeRM9iAddYqGb9mhCIHM9mUscgY2XiaysAiwUAUJfFQjVsoZyXL6YysFjMQz0vR6kjkIX5/lZdXr6YSsdiMQ+ejkq42PGoaKo5giDDGhVPTkmlcDftocYAi0UvxJObw6hmTYttCI1ToNQxyNh4hkmdoMpYLPdxZBjVtAKdHFsdeflieoDSGfAIlTpFlbFY7mOxkBQ+vdmMly+m//g3B2QyqVNUGYvlvlBv7sCnmpelscIBd6610H0BraROIAoWy33NarlAbvp/KJAJGnerNQSlk9QxyBj4t5Q6gShYLPc52VqjgS8/3FTz7hTY4BQvX0wAEMBiMTttgt2ljkAWatztDrx8saVzqQ3Ye0idQhQslge0qeMmdQSyUFdzVLjk+7TUMUhKZrK2ArBYDLQOcjOHARlkoiYkd4Egt5I6BknFTPavACwWA672NqjP0WEkkVOZjrjFyxdbLq6xmK82wdwcRtKZlt4TArjabHGsVIBPuNQpRMNieUibOtyBT9LZneqGZF6+2PIEdwSsbaVOIRoWy0Nac42FJPZtDi9fbHHq9ZQ6gahYLA/xcFDy9C4kqbVJ3sjwaSd1DKpJ9XpInUBULJZScD8LSW2+hpcvthgeoYBrkNQpRMViKUXHeuZxkBKZrp/jayHXo6nUMagmmNlmMIDFUqrO9b1gZ6OQOgZZuEUKXr7YIrBYLIOttQJdwrykjkEWbsatEBS4Gse1OQ7c1OCp5bnw+z4Lsqn3sP6S2uD+7EIBb2/JQ8DMLKi+uIeG87Lx47+Fj53v6gtqhM3Nhu3n99BkQTa2XDWc73dHCuA1IwteM7Lw/ZECg/uOxWsQ8XM2NDqh6k9QKjaOQG3z25/GYilDvya+UkcgCycIMqw1kssX5xQKaOotx7w+pQ+J/b/t+dgWo8HSgSpEv+WA99va4O0t+dh4WV3q9ABwJE6DoWvz8Epza5weY48B9a0wYEUezidrAQBnk7SYtLcAKwapsPxZFT7bW4BzSUX3aXQCXv87Hz/2VcHKlE9LXicSUJjfZdFZLGXoEsbNYSS9qbGNoHEMkDoGetezxuddbfFMg9K/BI/EaTG8qQ06B1khyEWO1yJs0NRHjuMJ2jLnOedYIZ4MscLH7ZVo4KnA9K62aOGrwNzjRWs6l1J0CPdWoGuwFbrVsUK4txyXUnQAgBmHC9GplhVa+Zv4Z9QMN4MBLJYycXMYGYMCnRzbnY3/QmDtAhXYeEWNhHs6CIKAvTc0uJKqQ8+6ZZ/77GicFt3rGBZDr7oKHI0vKqMmXnJcSdXiVqYONzN0uJKqQ2MvOa6l6bAwSo3Puyqr9TlVO5kCCH1S6hTVgme8e4S+TXzx99lEqWOQhfv0ZnP0dvSAPDdF6ihl+qG3LV7bnI+AWdmwkgNyGfDLU7boVLvsr5g72QK87Q3/tvV2kONOdtE+kwaeCnzZzRY9/sgFAHzVzRYNPBXoviQH3/ZQYvs1DabsK4C1Apjz5KOXZZTqdAYcvaVOUS1M7J2oWV3vbw7LLSx7dZ6oumWqrXDI/Tl0yl0gdZQy/XC8EP/Ea7FxiAq1XeQ4cFOLt7bkw89Rju51Kv8183pLG7ze0kb/8+KoQjgqZXgiQIH6c7Nx4lV7xN8TMGRNHm685wCllQntb2k6VOoE1Yabwh6Bm8PIWHwS1waC0jjPvJ2nFvDp7gLM7KnEU/WtEe6twNutbfB8I2t899BIrgf5OMiQlKMzuC0pWwcfh9LLISVXh6n7C/BDb1scS9Ai1F2Oeu4KdAm2gloHXEnVlfo4o2TjCDToJ3WKasNieYy+HB1GRiAx3wanvY1jhNjD1Lqifw8PzlLIgEeNBH4iUIHdNwy3Buy8rsUTAaXvkP9gewE+aKtEgJMc2vvLLKbRCdCa0qjjRk8D1uZ7xVAWy2N05egwMhLjEjpCsJLmDLjZhQKi7mgRdaeoCG6k6xB1p2jHupNShsjaCny8swD7YjW4ka7DoqhCLDmrxjNh/40ie/mvPIzfla//+b02NtgWo8H3RwpwKUWLKfvy8e9tLd5ubVNi+TuvaXAlVYu3WhfNr5W/ApdSdNh6VY2fTxZCIZOhvrsJfZ2Z8WYwAJAJgmBKPS+Jd5afxqYzt6WOQYTt9TagftzKGl/uvlgNuizOLXH78KbWWDRAhTvZOozfXYAd1zRIyxNQ21mO1yKs8UFbG8juX5a186IcBLnIsWjAf3+pr76gxmd7CxCboUM9Nzm+7aFEn3qGQ5rz1AKa/ZSDlYNUaObz3x95v54qxGd7CqC0Aub3sUXfUBM5HsSlFvDeWZjz5WpZLOVw5FoKXvjlmNQxiNDSOQur1W9BptNIHYUqq9PHQNfPpE5RrUxo3VE67ep6oI6nvdQxiPAvL19s+sx8MxjAYim3YW1qSx2BCAAvX2zSAloD7nWlTlHtWCzlNKhFAGyt+XKR9HanuuGuX1epY1BltBwpdYIawW/KcnK2s8ZT4X5SxyACAMzI5eWLTY6DD9B4kNQpagSLpQKGtwuSOgIRAGD1HR9kereVOgZVRJvXAKuSQ6nNEYulAhr7O6M1L1tMRmK+doDUEai8rO2BlqOkTlFjWCwV9EqHYKkjEAEAfoqvhVyPcKljUHk0HwaoXKVOUWNYLBXUo4E3arvbSR2DCACwhJcvNn4yOdD2TalT1CgWSwXJ5TKM5L4WMhLf3KqHQpcQqWPQo4T1A9wsa0sHi6USnmsZCBc7Ezl9BJk1QZBhnZ3xXwjMorV7R+oENY7FUgn2SiuM6WT+BzmRaZh6syE0jv5Sx6DSBLQGAltLnaLGsVgqaUS7IHg5mvilUcks5GkV2OE8WOoYVJr270qdQBIslkpS2Sjwdldu2ybjMP5mc+hUHlLHoAf5tSjav2KBWCxVMLR1LQS6me/Fesh0ZKqtcNjDMo7qNhk9ppr1qfEfhcVSBdYKOd7rFip1DCIAwLi4NhBsHKSOQQBQtxsQ3EnqFJJhsVTRwOb+qOfFDzNJLyFfiSgjvXyxZZEVra1YMBZLFcnlMvxfD661kHH45HYnyS5fTPc1eQ7waSJ1CkmxWETQu4kvwgOcpY5BhCs5Klzx7S91DMulsAG6TpA6heRYLCL5qGd9qSMQAQAm3u0KQaZ4/IQkvpajANcgqVNIjsUikk6hnmhbh2c+Jukdz3BCvH9vqWNYHqUT0Gms1CmMAotFRJ/1bQiF3DKHF5JxmZ7xJC9fXNPavQPYu0udwiiwWETU2N+ZJ6gko7AjhZcvrlGuwUA7yzzKvjQsFpH9X89QBLjyoEmS3vd5vHxxjen7HWDN0XjFWCwis7OxwvQBjaWOQYSVibx8cY1oOAAI6S51CqPCYqkGXep74ammflLHIMKPOg49rlY2jsCTX0udwuiwWKrJpH4N4aziNVtIWgvigpDrYdkH61WrbhMBJ1+pUxgdFks18XRUYnzvMKljEGGpFU/zUi0C2wKtXpU6hVFisVSj51sFonUwj20haX1zMwSFLrwwnagUSqD/D4DceL5Cg4KCMHv2bKljAGCxVCuZTIYvn2kCGyu+zCQdrSDHX7x8sbgixwKelT9HYOfOnfH++++LlwfAiRMn8Nprr4k6z8riN141C/FywJud+dciSWvKzUa8fLFYfMKB9u9LnaIET09P2NnZSR0DAIulRrzZOYQnqSRJ5WkV2OXMC4FVmY0DMGghoLCq9CxGjBiB/fv3Y86cOZDJZJDJZIiNjcX+/fvRunVrKJVK+Pr6Yty4cdBoNACAJUuWwMHBAVevXtXP580330RYWBhyc3MBlNwUlpGRgTFjxsDb2xu2trZo3LgxNm/eXOncFcFiqQE2VnLMe6EFHG0r/8tIVFXjb0ZAp+IpR6qkz3eAR9UuST5nzhw88cQTePXVV5GYmIjExERYW1ujT58+aNWqFc6cOYMFCxbgt99+w+effw4AePnll9GnTx8MGzYMGo0Gf//9N3799VcsW7as1LUUnU6H3r174/Dhw1i6dCkuXryIr7/+GgpFzZyclN90NSTQzQ4zBoXj9aWnpI5CFipdbYUjHoPQIe4nqaOYpqZDgWZDqzwbZ2dn2NjYwM7ODj4+PgCACRMmIDAwEHPnzoVMJkNYWBhu376NTz75BJMmTYJcLsdPP/2E8PBwvPvuu1i3bh2mTJmCiIiIUpexa9cuHD9+HNHR0QgNLdoXVKdOnSpnLy+usdSgJxv7YgTPJUYS+iSuLS9fXBnu9YC+31fb7KOjo/HEE09AJvvvxKHt27dHdnY24uPjAQCurq747bffsGDBAtStWxfjxo0rc35RUVEICAjQl0pNY7HUsE/7NEBT7m8hiSTkK3HGe6DUMUyLQgk8txCwsZc6CQ4cOACFQoHExETk5OSUOZ1KJe35ClksNczGSo65L7SAE/e3kETGJ3aCoFBKHcN09PpC9EsN29jYQKvV6n9u0KABjh49CkEQ9LcdPnwYjo6OCAgIAAAcOXIE33zzDTZt2gQHBwe8/fbbZc4/PDwc8fHxuHLliqi5y4vFIoFANzt8O6ip1DHIQkVn2+GqH88hVi5h/YDW4h9dHxQUhGPHjiE2NhYpKSl48803ERcXh3feeQeXLl3Chg0bMHnyZPzf//0f5HI5srKy8NJLL+Hdd99F7969sWzZMqxcuRJr1qwpdf6RkZHo1KkTnn32WezcuRM3btzA1q1bsW3bNtGfS2lYLBJ5srEP97eQZCbe7cbLFz+Ocy3g6bnVMuuPPvoICoUCDRs2hKenJ9RqNbZs2YLjx4+jadOmeP311/HKK6/gs88+AwC89957sLe3x5dffgkAaNKkCb788kuMGTMGCQkJpS5j7dq1aNWqFYYOHYqGDRti7NixBmtJ1UkmPLjuRTWqUKPDcz8ewZn4TKmjkAU6GLIMgfF/Sx3DOFnbASO3AH7NpU5ikrjGIqHi/S0udjwLMtW8LzJ5+eJSyeTAwF9YKlXAYpFYoJsdfnwxAjYKvhVUs7bddUeKX2epYxif7lOABv2kTmHS+G1mBNrWccfXz/KaGVTzvs/jF6iBFsOB9u9JncLksViMxMAWAXivWz2pY5CFWZHoi3vebaSOYRyCI4G+M6VOYRZYLEbkgx6hGNicZ6ClmvWT7mmpI0jPoz4weEmVTi5J/2GxGJmvnw1H+xCeKJBqzry4IOR5NJY6hnTsPIBhqwCVi9RJzAaLxcjYWMnx00st0cSfp32hmrPMUi9fbGULDF0OuAZJncSssFiMkIPSCgtHtkKQu3FctIfM31c366HQpebOfmsU5NbAc4uAwNZSJzE7LBYj5eGgxB+vtIGXI8/pRNVPK8ix3t6CLl8styo6sWT93lInMUssFiMW6GaHxaNa8wBKqhGTYxtD6+AndYzqJ7cCnv0NaPCU1EnMFovFyDXwdcLyV9vCw8FG6ihk5vK0CuxyMfO1FpkCeOYnoNEAqZOYNRaLCWjg64QVrz0BbyduFqPq9emtFtCp3KSOUT1kcmDAAqDJIKmTmD0Wi4kI8XLAqjFPwN9F2gv4kHlLLbTGPx7m+MUrA/rPBZo+L3UQi8BiMSG13e2x6vUnOFqMqtXYuCcgGMHVEsUjA56aAzQfJnUQi8FiMTH+LiqsGvME6nnxuuVUPeLzlTjrYyaXL5YpgKdmAxHDpU5iUVgsJsjLyRYrXmuLhr5OUkchMzXudqTpX77Y2g54fikQMULqJBaHxWKi3B2UWP5qWzQNdJE6Cpmh6Gw7xPiZ8HBcOw9g+CYgrI/USSwSi8WEOdtZY9noNmgdbKajeEhSk1JM9PLFrsHAKzuAgJZSJ7FYLBYT56C0wh+vtMagiACpo5CZOZrujAS/XlLHqBi/FsArOwH3ulInsWgsFjOgtFLgu+eaYmK/hlDIealZEs8X956UOkL51esFjPgbcPCUOonFY7GYkVc6BGPRyFZwVvEUMCSOrXc9TOPyxREjis5SbMOh+MaAxWJmOtbzxIa32iOEw5FJJLOM+fLFMgXQY1rRcSpyE9wfZKZkgiAIUocg8WXlq/H+iijsvpQsdRQyA2drzYJT8gmpYxhy8AYG/Q4EdZA6CT2EayxmytHWGr+83BJvdOZOTKq6X4QBUkcwVLsDMOYgS8VIcY3FAmyISsAna88iX62TOgqZsGj/L6FKPS9xChnQ/j2g2yRu+jJiXGOxAE8388ea19uhjqc5nf+JatqfNhKf5sXWuWgHfY+pLBUjxzUWC5Kv1uKrLdFY8s9N8F2nilLIdLjkNQnWmddrfuG+zYDBi3ltehPBNRYLYmutwNSnG2PJqNbwcbKVOg6ZGK0gx0YHCU6p33JU0ZH0LBWTwTUWC5WZq8bEDeex8cxtqaOQCbFX6HDW9WMoshOrf2HOtYD+c4C6Xat/WSQqrrFYKGc7a/xvaHP8MLQ5D6ikcsvRyrG72i9fLANajQbePMpSMVFcYyEk3cvHx2vO4sCVu1JHIRPgbqPGCfsPIM9LE3/mrkFFV3oM7ij+vKnGcI2F4O1kiyWjWmP6042gsuZoG3q01EJrHBP98sUyoM3rwBtHWCpmgGssZOBmag6mbrqIPTxinx6hliof+63fgawwp+ozc6sLPD0PqP1E1edFRoHFQqXadTEJ0zZfxK20XKmjkJHaFLoFTW4trfwMrGyBtm8CkWMBa5V4wUhyLBYqU75ai5/2X8eC/TE8ap9KaOSYg826tyDTFlb8wY2fBbpPAVxqiZ6LpMdioceKT8/F11svYfPZGhhiSiZlV721CIlbW/4HBLQGen0JBLaqvlAkORYLldupW+n4fPNFnLqVIXUUMhLtXTOxNP9tyATtoyd0rgX0mFK0pkJmj8VCFbb57G18s+0S4tLypI5CRuBw3T/gn7C19DuVTkCHD4r2pVjzbA+WgsVClVKg0WLNyXj8tP86d/BbuH6eKZib9a7hjQol0OJlIPITXirYArFYqEq0OgGbz97G/L3XcDkpS+o4JJGTwT/BPXE/YKUCWo4E2r0LOPlKHYskwmIhUQiCgF3RyZi3NwZRcRlSx6EaNqpWEibViwWeeIdrKMRiIfEduZaC+Xuv4VBMitRRqJp5OSoxon0QhrWpzXPOkR6LharNmbgMzNsbg53RSbz+i5mp5+WAVzvWwYDm/rCx4pmhyBCLhapdTHI2Vp64hb9OJyAluxIH05FRsFHI0a2BFwa3CkTnUE/IZDKpI5GRYrFQjdFoddhzKRmrT8Zj76VkaHT81TMFDX2d8FzLAAxo5g9Xexup45AJYLGQJFKyC7D+dAJW/RuHK0nZUsehh7jZ2+DpZn4YFBGARn7OUschE8NiIcmdicvA6pNx2Bh1G/fyNVLHsVhWchkiQz3xXMsAdA3z5r4TqjQWCxmNfLUWOy4mYceFOzhw5S5LpgZYyWVoUcsVPRp64+nmfvBy5NHxVHUsFjJKWp2AkzfTsedSMvZdTsalOzz4UiweDkpEhnqiS5gnOtbz5DBhEh2LhUzC7Yw87L2cjL2X7uLItRTkFj7mpIekJ5cB4QEu6FLfC13CPNHE35kjuqhasVjI5BRotDh2PQ17LyfjcEwKYpKzwQFmhrwclWhbxx1dwjwRGeoFN47mohrEYiGTl5Wvxpm4TJy+lY7TcRmIistAWo7lHC/jbm+DJgHOCPd3RpMAF4QHOMPbiftKSDosFjJLcWm5uHD7Hi7ezsSF2/dw4fY93LmXL3WsKnOxs0YTf2c08XdGeEBRkfi78LK+ZFxYLGQxUrMLEJuag/j0PCRk5BX99/7/J6TnIU9tHPtt7GwUqOVmh0A3O9R2s0Mt96L/D/F0QKCbndTxiB6LxUJ0X2p2gb5kEjKK/mXla5BXqEWeWovcQg3y1DrkFWqQp9YW3X7/vgf38chkgK2VAiobBVTWCthayx/4/6L/qmwUsFdawdvRFr7OtvB2toWPky18nG05SotMHouFSAT5ai0K1DrYWMlhay3nqCuyaCwWIiISFc/ZQEREomKxEBGRqFgsREQkKhYLERGJisVCRESiYrEQEZGoWCxERCQqFgsREYmKxUJERKJisRARkahYLEREJCoWCxERiYrFQkREomKxEBGRqFgsREQkKhYLERGJisVCRESiYrEQEZGoWCxERCQqFgsREYmKxUJERKJisRARkahYLEREJCoWCxERiYrFQkREomKxEBGRqFgsREQkKhYLERGJisVCRESiYrEQEZGoWCxERCQqFgsREYmKxUJERKJisRARkahYLEREJCoWCxERiYrFQkREomKxEBGRqFgsREQkKhYLERGJisVCRESiYrEQEZGoWCxERCQqFgsREYmKxUJERKL6f7gLd0g4ndFHAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 640x480 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"datasets = {\"Train Dataset\": train, \"Test Dataset\": test}\n",
"\n",
"for name, df in datasets.items():\n",
" df['class'].value_counts().plot.pie(\n",
" autopct='%1.1f%%',\n",
" ylabel='',\n",
" title=f\"Распределение классов в {name}\"\n",
" )\n",
" plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Train Dataset\n",
"class: non-toxic\n",
"0 видимо в разных регионах называют по разному ,...\n",
"2 какие классные, жизненные стихи....\n",
"3 а и правда-когда его запретили?...\n",
"4 в соленой воде вирусы живут .ученые изучали со...\n",
"6 ни в одном из близлежащих строительных не нашл...\n",
"7 какая дрянь сломала? виноваты родители, выраст...\n",
"8 да, висели такие на стене, над кроватью. в люб...\n",
"9 потому что мы так воспитаны\n",
"10 лапти и не только\n",
"11 привет обмен на дизель без вложений\n",
"Name: text, dtype: object \n",
"\n",
"class: toxic\n",
"1 понятно что это нарушение правил, писать капсл...\n",
"5 правильно! это же тихановская 26 лет растила и...\n",
"13 на хуй, безликая\n",
"16 дебилов хватает.надо было с головой\n",
"30 умник хуев. у каждого своё мнение\n",
"38 на мыло его дегтярное пустить пидора путинского\n",
"47 неправильно вы называете таких чиновников идио...\n",
"52 ретранслятор тебе в жопу\n",
"67 пидор усатый\n",
"71 а вы пидоры учились платно???,гандоны!!!\n",
"Name: text, dtype: object \n",
"\n",
"Test Dataset\n",
"class: non-toxic\n",
"0 видимо в разных регионах называют по разному ,...\n",
"2 какие классные, жизненные стихи....\n",
"3 а и правда-когда его запретили?...\n",
"4 в соленой воде вирусы живут .ученые изучали со...\n",
"6 ни в одном из близлежащих строительных не нашл...\n",
"7 какая дрянь сломала? виноваты родители, выраст...\n",
"8 да, висели такие на стене, над кроватью. в люб...\n",
"9 потому что мы так воспитаны\n",
"10 лапти и не только\n",
"11 привет обмен на дизель без вложений\n",
"Name: text, dtype: object \n",
"\n",
"class: toxic\n",
"1 понятно что это нарушение правил, писать капсл...\n",
"5 правильно! это же тихановская 26 лет растила и...\n",
"13 на хуй, безликая\n",
"16 дебилов хватает.надо было с головой\n",
"30 умник хуев. у каждого своё мнение\n",
"38 на мыло его дегтярное пустить пидора путинского\n",
"47 неправильно вы называете таких чиновников идио...\n",
"52 ретранслятор тебе в жопу\n",
"67 пидор усатый\n",
"71 а вы пидоры учились платно???,гандоны!!!\n",
"Name: text, dtype: object \n",
"\n"
]
}
],
"source": [
"for name, df in datasets.items():\n",
" print(name)\n",
" for label in train['class'].unique():\n",
" print(f\"class: {label}\")\n",
" print(train[train['class'] == label]['text'].iloc[:10], \"\\n\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|