File size: 4,955 Bytes
b83e315
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Демонстрация работы API"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "text = \"Привет мир\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Способ 1"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/home/timo/rep/TextClassifier/venv/lib/python3.12/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
      "  from .autonotebook import tqdm as notebook_tqdm\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Loaded as API: http://0.0.0.0:7860/ ✔\n",
      "Текст: Привет мир\n",
      "Статус: Positive\n"
     ]
    }
   ],
   "source": [
    "from gradio_client import Client\n",
    "\n",
    "def classify_text(text: str) -> str:\n",
    "    # Создаем клиент для общения с сервером\n",
    "    client = Client(\"http://0.0.0.0:7860/\")\n",
    "\n",
    "    # Отправляем текст для классификации\n",
    "    result = client.predict(\n",
    "        text=text,\n",
    "        api_name=\"/predict\"\n",
    "    )\n",
    "\n",
    "    # Обрабатываем результат\n",
    "    if result:\n",
    "        status = result[0]\n",
    "        return status\n",
    "\n",
    "    return \"Ошибка классификации\"\n",
    "\n",
    "# Пример использования функции\n",
    "status = classify_text(text)\n",
    "\n",
    "print(f\"Текст: {text}\")\n",
    "print(f\"Статус: {status}\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Способ 2"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Текст: Привет мир\n",
      "Статус: Positive\n"
     ]
    }
   ],
   "source": [
    "import requests\n",
    "\n",
    "def classify_text(text: str) -> str:\n",
    "    # URL и заголовки для POST-запроса\n",
    "    url = 'http://0.0.0.0:7860/gradio_api/call/predict'\n",
    "    headers = {'Content-Type': 'application/json'}\n",
    "    data = {\"data\": [text]}\n",
    "\n",
    "    # Отправляем POST-запрос для классификации\n",
    "    response = requests.post(url, json=data, headers=headers)\n",
    "\n",
    "    # Проверяем успешность ответа\n",
    "    if response.status_code == 200:\n",
    "        # Извлекаем EVENT_ID из ответа\n",
    "        event_id = response.json().get('event_id')\n",
    "\n",
    "        # Проверяем, что event_id присутствует\n",
    "        if event_id:\n",
    "            # Второй запрос с EVENT_ID для получения классификации\n",
    "            event_url = f'http://0.0.0.0:7860/gradio_api/call/predict/{event_id}'\n",
    "            event_response = requests.get(event_url)\n",
    "\n",
    "            # Если второй запрос успешен\n",
    "            if event_response.status_code == 200:\n",
    "                for line in event_response.iter_lines():\n",
    "                    if line:\n",
    "                        decoded_line = line.decode('utf-8')\n",
    "\n",
    "                        if 'data: ' in decoded_line:\n",
    "                            parsed_data = decoded_line.split('data: ')[1]\n",
    "                            parsed_data = parsed_data.strip('[]').split(', ')\n",
    "\n",
    "                            # Извлекаем статус\n",
    "                            status = parsed_data[0].strip('\"')\n",
    "                            return status\n",
    "\n",
    "    return \"Ошибка классификации\"\n",
    "\n",
    "# Пример использования функции\n",
    "status = classify_text(text)\n",
    "\n",
    "print(f\"Текст: {text}\")\n",
    "print(f\"Статус: {status}\")"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "venv",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.3"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}