Spaces:
Sleeping
Sleeping
File size: 4,955 Bytes
b83e315 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Демонстрация работы API"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"text = \"Привет мир\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Способ 1"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/timo/rep/TextClassifier/venv/lib/python3.12/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
" from .autonotebook import tqdm as notebook_tqdm\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Loaded as API: http://0.0.0.0:7860/ ✔\n",
"Текст: Привет мир\n",
"Статус: Positive\n"
]
}
],
"source": [
"from gradio_client import Client\n",
"\n",
"def classify_text(text: str) -> str:\n",
" # Создаем клиент для общения с сервером\n",
" client = Client(\"http://0.0.0.0:7860/\")\n",
"\n",
" # Отправляем текст для классификации\n",
" result = client.predict(\n",
" text=text,\n",
" api_name=\"/predict\"\n",
" )\n",
"\n",
" # Обрабатываем результат\n",
" if result:\n",
" status = result[0]\n",
" return status\n",
"\n",
" return \"Ошибка классификации\"\n",
"\n",
"# Пример использования функции\n",
"status = classify_text(text)\n",
"\n",
"print(f\"Текст: {text}\")\n",
"print(f\"Статус: {status}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Способ 2"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Текст: Привет мир\n",
"Статус: Positive\n"
]
}
],
"source": [
"import requests\n",
"\n",
"def classify_text(text: str) -> str:\n",
" # URL и заголовки для POST-запроса\n",
" url = 'http://0.0.0.0:7860/gradio_api/call/predict'\n",
" headers = {'Content-Type': 'application/json'}\n",
" data = {\"data\": [text]}\n",
"\n",
" # Отправляем POST-запрос для классификации\n",
" response = requests.post(url, json=data, headers=headers)\n",
"\n",
" # Проверяем успешность ответа\n",
" if response.status_code == 200:\n",
" # Извлекаем EVENT_ID из ответа\n",
" event_id = response.json().get('event_id')\n",
"\n",
" # Проверяем, что event_id присутствует\n",
" if event_id:\n",
" # Второй запрос с EVENT_ID для получения классификации\n",
" event_url = f'http://0.0.0.0:7860/gradio_api/call/predict/{event_id}'\n",
" event_response = requests.get(event_url)\n",
"\n",
" # Если второй запрос успешен\n",
" if event_response.status_code == 200:\n",
" for line in event_response.iter_lines():\n",
" if line:\n",
" decoded_line = line.decode('utf-8')\n",
"\n",
" if 'data: ' in decoded_line:\n",
" parsed_data = decoded_line.split('data: ')[1]\n",
" parsed_data = parsed_data.strip('[]').split(', ')\n",
"\n",
" # Извлекаем статус\n",
" status = parsed_data[0].strip('\"')\n",
" return status\n",
"\n",
" return \"Ошибка классификации\"\n",
"\n",
"# Пример использования функции\n",
"status = classify_text(text)\n",
"\n",
"print(f\"Текст: {text}\")\n",
"print(f\"Статус: {status}\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|