Spaces:
Running
on
Zero
Running
on
Zero
File size: 20,722 Bytes
4c35d22 62151c5 4c35d22 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 |
import warnings
warnings.filterwarnings('ignore')
import spaces
import os
import tyro
import imageio
import numpy as np
import tqdm
import cv2
import torch
import torch.nn.functional as F
from torchvision import transforms as T
import torchvision.transforms.functional as TF
from safetensors.torch import load_file
import kiui
from kiui.op import recenter
from kiui.cam import orbit_camera
import rembg
import gradio as gr
from gradio_imageslider import ImageSlider
import sys
sys.path.insert(0, "src")
from src.enhancer import Enhancer
from src.utils.camera import get_c2ws
# import LGM
sys.path.insert(0, "extern/LGM")
from core.options import AllConfigs
from core.models import LGM
from mvdream.pipeline_mvdream import MVDreamPipeline
# download checkpoints
from huggingface_hub import hf_hub_download
hf_hub_download(repo_id="ashawkey/LGM", filename="model_fp16_fixrot.safetensors", local_dir='pretrained_models/LGM')
hf_hub_download(repo_id="Luo-Yihang/3DEnhancer", filename="model.safetensors", local_dir='pretrained_models/3DEnhancer')
### Title and Description ###
#### Description ####
title = r"""<h1 align="center">3DEnhancer: Consistent Multi-View Diffusion for 3D Enhancement</h1>"""
important_link = r"""
<div align='center'>
<a href='https://arxiv.org/abs/2412.18565'>[arxiv]</a>
  <a href='https://Luo-Yihang.github.io/projects/3DEnhancer'>[Project Page]</a>
  <a href='https://github.com/Luo-Yihang/3DEnhancer'>[Code]</a>
</div>
"""
description = r"""
<b>Official Gradio demo</b> for <a href='https://yihangluo.com/projects/3DEnhancer' target='_blank'><b>3DEnhancer: Consistent Multi-View Diffusion for 3D Enhancement</b></a>.<br>
π₯ 3DEnhancer employs a multi-view diffusion model to enhance multi-view images, thus improving 3D models.<br>
"""
article = r"""
<br>If 3DEnhancer is helpful, please help to β the <a href='https://github.com/Luo-Yihang/3DEnhancer' target='_blank'>Github Repo</a>. Thanks!
[](https://github.com/Luo-Yihang/3DEnhancer)
---
π **License**
<br>
This project is licensed under <a href="https://github.com/Luo-Yihang/3DEnhancer/blob/main/LICENSE">S-Lab License 1.0</a>,
Redistribution and use for non-commercial purposes should follow this license.
<br>
π **Citation**
<br>
If our work is useful for your research, please consider citing:
```bibtex
@article{luo20243denhancer,
title={3DEnhancer: Consistent Multi-View Diffusion for 3D Enhancement},
author={Yihang Luo and Shangchen Zhou and Yushi Lan and Xingang Pan and Chen Change Loy},
booktitle={arXiv preprint arXiv:2412.18565}
year={2024},
}
```
π§ **Contact**
<br>
If you have any questions, please feel free to reach me out at <b>[email protected]</b>.
"""
IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406)
IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225)
BASE_SAVE_PATH = 'gradio_results'
GRADIO_VIDEO_PATH = f'{BASE_SAVE_PATH}/gradio_output.mp4'
GRADIO_PLY_PATH = f'{BASE_SAVE_PATH}/gradio_output.ply'
GRADIO_ENHANCED_VIDEO_PATH = f'{BASE_SAVE_PATH}/gradio_enhanced_output.mp4'
GRADIO_ENHANCED_PLY_PATH = f'{BASE_SAVE_PATH}/gradio_enhanced_output.ply'
DEFAULT_NEG_PROMPT = "ugly, blurry, pixelated obscure, unnatural colors, poor lighting, dull, unclear, cropped, lowres, low quality, artifacts, duplicate"
DEFAULT_SEED = 0
os.makedirs(BASE_SAVE_PATH, exist_ok=True)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# load dreams
pipe_text = MVDreamPipeline.from_pretrained(
'ashawkey/mvdream-sd2.1-diffusers', # remote weights
torch_dtype=torch.float16,
trust_remote_code=True
)
pipe_text = pipe_text.to(device)
pipe_image = MVDreamPipeline.from_pretrained(
"ashawkey/imagedream-ipmv-diffusers", # remote weights
torch_dtype=torch.float16,
trust_remote_code=True
)
pipe_image = pipe_image.to(device)
# load lgm
lgm_opt = tyro.cli(AllConfigs, args=["big"])
tan_half_fov = np.tan(0.5 * np.deg2rad(lgm_opt.fovy))
proj_matrix = torch.zeros(4, 4, dtype=torch.float32, device=device)
proj_matrix[0, 0] = 1 / tan_half_fov
proj_matrix[1, 1] = 1 / tan_half_fov
proj_matrix[2, 2] = (lgm_opt.zfar + lgm_opt.znear) / (lgm_opt.zfar - lgm_opt.znear)
proj_matrix[3, 2] = - (lgm_opt.zfar * lgm_opt.znear) / (lgm_opt.zfar - lgm_opt.znear)
proj_matrix[2, 3] = 1
lgm_model = LGM(lgm_opt)
lgm_model = lgm_model.half().to(device)
ckpt = load_file("pretrained_models/LGM/model_fp16_fixrot.safetensors", device='cpu')
lgm_model.load_state_dict(ckpt, strict=False)
lgm_model.eval()
# load 3denhancer
enhancer = Enhancer(
model_path = "pretrained_models/3DEnhancer/model.safetensors",
config_path = "src/configs/config.py",
)
# load rembg
bg_remover = rembg.new_session()
@torch.no_grad()
@spaces.GPU
def gen_mv(ref_image, ref_text):
kiui.seed_everything(DEFAULT_SEED)
# text-conditioned
if ref_image is None:
mv_image_uint8 = pipe_text(ref_text, negative_prompt=DEFAULT_NEG_PROMPT, num_inference_steps=30, guidance_scale=7.5, elevation=0)
mv_image_uint8 = (mv_image_uint8 * 255).astype(np.uint8)
# bg removal
mv_image = []
for i in range(4):
image = rembg.remove(mv_image_uint8[i], session=bg_remover) # [H, W, 4]
# to white bg
image = image.astype(np.float32) / 255
image = recenter(image, image[..., 0] > 0, border_ratio=0.2)
image = image[..., :3] * image[..., -1:] + (1 - image[..., -1:])
mv_image.append(image)
# image-conditioned (may also input text, but no text usually works too)
else:
ref_image = np.array(ref_image) # uint8
# bg removal
carved_image = rembg.remove(ref_image, session=bg_remover) # [H, W, 4]
mask = carved_image[..., -1] > 0
image = recenter(carved_image, mask, border_ratio=0.2)
image = image.astype(np.float32) / 255.0
image = image[..., :3] * image[..., 3:4] + (1 - image[..., 3:4])
mv_image = pipe_image(ref_text, image, negative_prompt=DEFAULT_NEG_PROMPT, num_inference_steps=30, guidance_scale=5.0, elevation=0)
# mv_image, a list of 4 np_arrays in shape (256, 256, 3) in range (0.0, 1.0)
mv_image_512 = []
for i in range(len(mv_image)):
mv_image_512.append(cv2.resize(mv_image[i], (512, 512), interpolation=cv2.INTER_LINEAR))
return mv_image_512[0], mv_image_512[1], mv_image_512[2], mv_image_512[3], ref_text, 120
@torch.no_grad()
@spaces.GPU
def gen_3d(image_0, image_1, image_2, image_3, elevation, output_video_path, output_ply_path):
kiui.seed_everything(DEFAULT_SEED)
mv_image = [image_0, image_1, image_2, image_3]
for i in range(len(mv_image)):
if type(mv_image[i]) is tuple:
mv_image[i] = mv_image[i][1]
mv_image[i] = np.array(mv_image[i]).astype(np.float32) / 255.0
mv_image[i] = cv2.resize(mv_image[i], (256, 256), interpolation=cv2.INTER_AREA)
# generate gaussians
input_image = np.stack([mv_image[1], mv_image[2], mv_image[3], mv_image[0]], axis=0) # [4, 256, 256, 3], float32
input_image = torch.from_numpy(input_image).permute(0, 3, 1, 2).float().to(device) # [4, 3, 256, 256]
input_image = F.interpolate(input_image, size=(lgm_opt.input_size, lgm_opt.input_size), mode='bilinear', align_corners=False)
input_image = TF.normalize(input_image, IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD)
rays_embeddings = lgm_model.prepare_default_rays(device, elevation=elevation)
input_image = torch.cat([input_image, rays_embeddings], dim=1).unsqueeze(0) # [1, 4, 9, H, W]
with torch.no_grad():
with torch.autocast(device_type='cuda', dtype=torch.float16):
# generate gaussians
gaussians = lgm_model.forward_gaussians(input_image)
lgm_model.gs.save_ply(gaussians, output_ply_path)
# render 360 video
images = []
elevation = 0
if lgm_opt.fancy_video:
azimuth = np.arange(0, 720, 4, dtype=np.int32)
for azi in tqdm.tqdm(azimuth):
cam_poses = torch.from_numpy(orbit_camera(elevation, azi, radius=lgm_opt.cam_radius, opengl=True)).unsqueeze(0).to(device)
cam_poses[:, :3, 1:3] *= -1 # invert up & forward direction
# cameras needed by gaussian rasterizer
cam_view = torch.inverse(cam_poses).transpose(1, 2) # [V, 4, 4]
cam_view_proj = cam_view @ proj_matrix # [V, 4, 4]
cam_pos = - cam_poses[:, :3, 3] # [V, 3]
scale = min(azi / 360, 1)
image = lgm_model.gs.render(gaussians, cam_view.unsqueeze(0), cam_view_proj.unsqueeze(0), cam_pos.unsqueeze(0), scale_modifier=scale)['image']
images.append((image.squeeze(1).permute(0,2,3,1).contiguous().float().cpu().numpy() * 255).astype(np.uint8))
else:
azimuth = np.arange(0, 360, 2, dtype=np.int32)
for azi in tqdm.tqdm(azimuth):
cam_poses = torch.from_numpy(orbit_camera(elevation, azi, radius=lgm_opt.cam_radius, opengl=True)).unsqueeze(0).to(device)
cam_poses[:, :3, 1:3] *= -1 # invert up & forward direction
# cameras needed by gaussian rasterizer
cam_view = torch.inverse(cam_poses).transpose(1, 2) # [V, 4, 4]
cam_view_proj = cam_view @ proj_matrix # [V, 4, 4]
cam_pos = - cam_poses[:, :3, 3] # [V, 3]
image = lgm_model.gs.render(gaussians, cam_view.unsqueeze(0), cam_view_proj.unsqueeze(0), cam_pos.unsqueeze(0), scale_modifier=1)['image']
images.append((image.squeeze(1).permute(0,2,3,1).contiguous().float().cpu().numpy() * 255).astype(np.uint8))
images = np.concatenate(images, axis=0)
imageio.mimwrite(output_video_path, images, fps=30)
return output_video_path, output_ply_path
@torch.no_grad()
@spaces.GPU
def enhance(image_0, image_1, image_2, image_3, prompt, elevation, noise_level, cfg_scale, steps, seed, color_shift):
kiui.seed_everything(seed)
mv_image = [image_0, image_1, image_2, image_3]
img_tensor_list = []
for image in mv_image:
img_tensor_list.append(T.ToTensor()(image))
img_tensors = torch.stack(img_tensor_list)
color_shift = None if color_shift=="disabled" else color_shift
output_img_tensors = enhancer.inference(
mv_imgs=img_tensors,
c2ws=get_c2ws(elevations=[elevation]*4, amuziths=[0,90,180,270]),
prompt=prompt,
noise_level=noise_level,
cfg_scale=cfg_scale,
sample_steps=steps,
color_shift=color_shift,
)
mv_image_512 = output_img_tensors.permute(0,2,3,1).cpu().numpy()
# return to the image slider component
return (image_0, mv_image_512[0]), (image_1, mv_image_512[1]), (image_2, mv_image_512[2]), (image_3, mv_image_512[3])
def check_video(input_video):
if input_video:
return gr.update(interactive=True)
return gr.update(interactive=False)
i2mv_examples = [
["assets/examples/i2mv/cake.png", "cake"],
["assets/examples/i2mv/skull.png", "skull"],
["assets/examples/i2mv/sea_turtle.png", "sea turtle"],
["assets/examples/i2mv/house2.png", "house"],
["assets/examples/i2mv/cup.png", "cup"],
["assets/examples/i2mv/mannequin.png", "mannequin"],
["assets/examples/i2mv/boy.jpg", "boy"],
["assets/examples/i2mv/dragontoy.jpg", "dragon toy"],
["assets/examples/i2mv/gso_rabbit.jpg", "rabbit car"],
["assets/examples/i2mv/Mario_New_Super_Mario_Bros_U_Deluxe.png", "standing Mario"],
]
t2mv_examples = [
"teddy bear",
"hamburger",
"oldman's head sculpture",
"headphone",
"mech suit",
"wooden barrel",
"scary zombie"
]
mv_examples = [
[
"assets/examples/mv_lq_prerendered/vase.mp4",
"assets/examples/mv_lq/vase/00.png",
"assets/examples/mv_lq/vase/01.png",
"assets/examples/mv_lq/vase/02.png",
"assets/examples/mv_lq/vase/03.png",
"vase",
0
],
[
"assets/examples/mv_lq_prerendered/tower.mp4",
"assets/examples/mv_lq/tower/00.png",
"assets/examples/mv_lq/tower/01.png",
"assets/examples/mv_lq/tower/02.png",
"assets/examples/mv_lq/tower/03.png",
"brick tower",
0
],
[
"assets/examples/mv_lq_prerendered/truck.mp4",
"assets/examples/mv_lq/truck/00.png",
"assets/examples/mv_lq/truck/01.png",
"assets/examples/mv_lq/truck/02.png",
"assets/examples/mv_lq/truck/03.png",
"truck",
0
],
[
"assets/examples/mv_lq_prerendered/gascan.mp4",
"assets/examples/mv_lq/gascan/00.png",
"assets/examples/mv_lq/gascan/01.png",
"assets/examples/mv_lq/gascan/02.png",
"assets/examples/mv_lq/gascan/03.png",
"gas can",
0
],
[
"assets/examples/mv_lq_prerendered/fish.mp4",
"assets/examples/mv_lq/fish/00.png",
"assets/examples/mv_lq/fish/01.png",
"assets/examples/mv_lq/fish/02.png",
"assets/examples/mv_lq/fish/03.png",
"sea fish with eyes",
0
],
[
"assets/examples/mv_lq_prerendered/tshirt.mp4",
"assets/examples/mv_lq/tshirt/00.png",
"assets/examples/mv_lq/tshirt/01.png",
"assets/examples/mv_lq/tshirt/02.png",
"assets/examples/mv_lq/tshirt/03.png",
"t-shirt",
0
],
[
"assets/examples/mv_lq_prerendered/turtle.mp4",
"assets/examples/mv_lq/turtle/00.png",
"assets/examples/mv_lq/turtle/01.png",
"assets/examples/mv_lq/turtle/02.png",
"assets/examples/mv_lq/turtle/03.png",
"sea turtle",
200
],
[
"assets/examples/mv_lq_prerendered/cake.mp4",
"assets/examples/mv_lq/cake/00.png",
"assets/examples/mv_lq/cake/01.png",
"assets/examples/mv_lq/cake/02.png",
"assets/examples/mv_lq/cake/03.png",
"cake",
120
],
[
"assets/examples/mv_lq_prerendered/lamp.mp4",
"assets/examples/mv_lq/lamp/00.png",
"assets/examples/mv_lq/lamp/01.png",
"assets/examples/mv_lq/lamp/02.png",
"assets/examples/mv_lq/lamp/03.png",
"lamp",
0
],
[
"assets/examples/mv_lq_prerendered/oldman.mp4",
"assets/examples/mv_lq/oldman/00.png",
"assets/examples/mv_lq/oldman/00.png",
"assets/examples/mv_lq/oldman/00.png",
"assets/examples/mv_lq/oldman/00.png",
"old man sculpture",
120
],
[
"assets/examples/mv_lq_prerendered/mario.mp4",
"assets/examples/mv_lq/mario/00.png",
"assets/examples/mv_lq/mario/01.png",
"assets/examples/mv_lq/mario/02.png",
"assets/examples/mv_lq/mario/03.png",
"standing mario",
120
],
[
"assets/examples/mv_lq_prerendered/house.mp4",
"assets/examples/mv_lq/house/00.png",
"assets/examples/mv_lq/house/01.png",
"assets/examples/mv_lq/house/02.png",
"assets/examples/mv_lq/house/03.png",
"house",
120
],
]
# gradio UI
demo = gr.Blocks().queue()
with demo:
gr.Markdown(title)
gr.Markdown(important_link)
gr.Markdown(description)
original_video_path = gr.State(GRADIO_VIDEO_PATH)
original_ply_path = gr.State(GRADIO_PLY_PATH)
enhanced_video_path = gr.State(GRADIO_ENHANCED_VIDEO_PATH)
enhanced_ply_path = gr.State(GRADIO_ENHANCED_PLY_PATH)
with gr.Column(variant='panel'):
with gr.Accordion("Generate Multi Views (LGM)", open=False):
gr.Markdown("*Don't have multi-view images on hand? Generate them here using a single image, text, or a combination of both.*")
with gr.Row():
with gr.Column():
ref_image = gr.Image(label="Reference Image", type='pil', height=400, interactive=True)
ref_text = gr.Textbox(label="Prompt", value="", interactive=True)
with gr.Column():
gr.Examples(
examples=i2mv_examples,
inputs=[ref_image, ref_text],
examples_per_page=3,
label='Image-to-Multiviews Examples',
)
gr.Examples(
examples=t2mv_examples,
inputs=[ref_text],
outputs=[ref_image, ref_text],
cache_examples=False,
run_on_click=True,
fn=lambda x: (None, x),
label='Text-to-Multiviews Examples',
)
with gr.Row():
gr.Column() # Empty column for spacing
button_gen_mv = gr.Button("Generate Multi Views", scale=1)
gr.Column() # Empty column for spacing
with gr.Column():
gr.Markdown("Let's enhance!")
with gr.Row():
with gr.Column(scale=2):
with gr.Tab("Multi Views"):
gr.Markdown("*Upload your multi-view images and enhance them with 3DEnhancer. You can also generate 3D model using LGM.*")
with gr.Row():
input_image_0 = gr.Image(label="[Input] view-0", type='pil', height=320)
input_image_1 = gr.Image(label="[Input] view-1", type='pil', height=320)
input_image_2 = gr.Image(label="[Input] view-2", type='pil', height=320)
input_image_3 = gr.Image(label="[Input] view-3", type='pil', height=320)
gr.Markdown("---")
gr.Markdown("Enhanced Output")
with gr.Row():
enhanced_image_0 = ImageSlider(label="[Enhanced] view-0", type='pil', height=350, interactive=False)
enhanced_image_1 = ImageSlider(label="[Enhanced] view-1", type='pil', height=350, interactive=False)
enhanced_image_2 = ImageSlider(label="[Enhanced] view-2", type='pil', height=350, interactive=False)
enhanced_image_3 = ImageSlider(label="[Enhanced] view-3", type='pil', height=350, interactive=False)
with gr.Tab("Generated 3D"):
gr.Markdown("Coarse Input")
with gr.Column():
with gr.Row():
gr.Column() # Empty column for spacing
with gr.Column():
input_3d_video = gr.Video(label="[Input] Rendered Video", height=300, scale=1, interactive=False)
with gr.Row():
button_gen_3d = gr.Button("Render 3D")
button_download_3d = gr.DownloadButton("Download Ply", interactive=False)
# button_download_3d = gr.File(label="Download Ply", interactive=False, height=50)
gr.Column() # Empty column for spacing
gr.Markdown("---")
gr.Markdown("Enhanced Output")
with gr.Row():
gr.Column() # Empty column for spacing
with gr.Column():
enhanced_3d_video = gr.Video(label="[Enhanced] Rendered Video", height=300, scale=1, interactive=False)
with gr.Row():
enhanced_button_gen_3d = gr.Button("Render 3D")
enhanced_button_download_3d = gr.DownloadButton("Download Ply", interactive=False)
gr.Column() # Empty column for spacing
with gr.Column():
with gr.Row():
enhancer_text = gr.Textbox(label="Prompt", value="", scale=1)
enhancer_noise_level = gr.Slider(label="enhancer noise level", minimum=0, maximum=300, step=1, value=0, interactive=True)
with gr.Accordion("Addvanced Setting", open=False):
with gr.Column():
with gr.Row():
with gr.Column():
elevation = gr.Slider(label="elevation", minimum=-90, maximum=90, step=1, value=0)
cfg_scale = gr.Slider(label="cfg scale", minimum=0, maximum=10, step=0.1, value=4.5)
with gr.Column():
seed = gr.Slider(label="random seed", minimum=0, maximum=100000, step=1, value=0)
steps = gr.Slider(label="inference steps", minimum=1, maximum=100, step=1, value=20)
with gr.Row():
color_shift = gr.Radio(label="color shift", value="disabled", choices=["disabled", "adain", "wavelet"])
with gr.Row():
gr.Column() # Empty column for spacing
button_enhance = gr.Button("Enhance", scale=1, variant="primary")
gr.Column() # Empty column for spacing
gr.Examples(
examples=mv_examples,
inputs=[input_3d_video, input_image_0, input_image_1, input_image_2, input_image_3, enhancer_text, enhancer_noise_level],
examples_per_page=3,
label='Multiviews Examples',
)
gr.Markdown("*Don't have multi-view images on hand but want to generate your own multi-viwes? Generate them in the `Generate Multi Views (LGM)` secction above.*")
gr.Markdown(article)
button_gen_mv.click(
gen_mv,
inputs=[ref_image, ref_text],
outputs=[input_image_0, input_image_1, input_image_2, input_image_3, enhancer_text, enhancer_noise_level]
)
button_gen_3d.click(
gen_3d,
inputs=[input_image_0, input_image_1, input_image_2, input_image_3, elevation, original_video_path, original_ply_path],
outputs=[input_3d_video, button_download_3d]
).success(
lambda: gr.Button(interactive=True),
outputs=[button_download_3d],
)
enhanced_button_gen_3d.click(
gen_3d,
inputs=[enhanced_image_0, enhanced_image_1, enhanced_image_2, enhanced_image_3, elevation, original_video_path, original_ply_path],
outputs=[enhanced_3d_video, enhanced_button_download_3d]
).success(
lambda: gr.Button(interactive=True),
outputs=[enhanced_button_download_3d],
)
button_enhance.click(
enhance,
inputs=[input_image_0, input_image_1, input_image_2, input_image_3, enhancer_text, elevation, enhancer_noise_level, cfg_scale, steps, seed, color_shift],
outputs=[enhanced_image_0, enhanced_image_1, enhanced_image_2, enhanced_image_3]
).success(
gen_3d,
inputs=[input_image_0, input_image_1, input_image_2, input_image_3, elevation, original_video_path, original_ply_path],
outputs=[input_3d_video, button_download_3d]
).success(
lambda: gr.Button(interactive=True),
outputs=[button_download_3d],
).success(
gen_3d,
inputs=[enhanced_image_0, enhanced_image_1, enhanced_image_2, enhanced_image_3, elevation, enhanced_video_path, enhanced_ply_path],
outputs=[enhanced_3d_video, enhanced_button_download_3d]
).success(
lambda: gr.Button(interactive=True),
outputs=[enhanced_button_download_3d],
)
demo.launch() |