File size: 1,478 Bytes
1bbc69a
8a6fc08
 
 
1bbc69a
8a6fc08
 
 
 
1bbc69a
8a6fc08
1bbc69a
8a6fc08
 
 
1bbc69a
8a6fc08
 
 
 
 
 
 
 
 
1bbc69a
8a6fc08
1bbc69a
 
8a6fc08
1bbc69a
8a6fc08
1bbc69a
8a6fc08
 
1bbc69a
8a6fc08
 
 
1bbc69a
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
import torch.nn.functional as F

# 모델 로딩
model_name = "yangheng/deberta-v3-base-absa-v1.1"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)

labels = ["Negative", "Neutral", "Positive"]

# 분석 함수
def analyze_sentiment(sentence, aspects_text):
    aspects = [a.strip() for a in aspects_text.split(",") if a.strip()]
    output = ""

    for aspect in aspects:
        combined = f"{sentence} [ASP] {aspect}"
        inputs = tokenizer(combined, return_tensors="pt", truncation=True)
        with torch.no_grad():
            outputs = model(**inputs)
            probs = F.softmax(outputs.logits, dim=1)
            pred = torch.argmax(probs, dim=1).item()
            sentiment = labels[pred]
            output += f"- **{aspect}** → **{sentiment}**\n"

    return output

# Gradio 인터페이스
iface = gr.Interface(
    fn=analyze_sentiment,
    inputs=[
        gr.Textbox(label="문장 입력", placeholder="예: The battery is good but the screen is dim."),
        gr.Textbox(label="속성 목록 (쉼표로 구분)", placeholder="예: battery, screen")
    ],
    outputs=gr.Markdown(label="감정 분석 결과"),
    title="ABSA 감정 분석기",
    description="Hugging Face Transformers 모델 사용"
)

iface.launch()