File size: 1,525 Bytes
bc120ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
_base_ = ['models']
# model settings
model = dict(
    type='R2Tuning',
    arch='ViT-B/32',
    init=False,
    dims=256,
    strides=(1, 2, 4, 8),
    buffer_size=1024,
    max_num_moment=50,
    adapter_cfg=dict(
        type='R2Block',
        k=4,
        dropout=0.5,
        use_tef=True,
        pos_cfg=dict(type='PositionalEncoding', normalize=True, max_len=1024),
        tem_cfg=dict(
            type='TransformerDecoderLayer',
            heads=8,
            ratio=4,
            att_dropout=0.0,
            ffn_dropout=0.0,
            att_out_dropout=0.0,
            ffn_out_dropout=0.0,
            droppath=0.1,
            pre_norm=False,
            bias=True,
            norm_cfg=dict(type='LN'),
            act_cfg=dict(type='ReLU', inplace=True),
            order=('cross_att', 'self_att', 'ffn'),
            att_init_cfg=dict(type='xavier', distribution='uniform'),
            ffn_init_cfg=dict(type='kaiming'))),
    pyramid_cfg=dict(type='ConvPyramid'),
    pooling_cfg=dict(type='AdaPooling'),
    class_head_cfg=dict(type='ConvHead', kernal_size=3),
    coord_head_cfg=dict(type='ConvHead', kernal_size=3),
    loss_cfg=dict(
        type='BundleLoss',
        sample_radius=1.5,
        loss_cls=dict(type='FocalLoss', loss_weight=1.0),
        loss_reg=dict(type='L1Loss', loss_weight=0.2),
        loss_sal=dict(type='SampledNCELoss', loss_weight=0.1),
        loss_video_cal=dict(type='InfoNCELoss', loss_weight=0.1),
        loss_layer_cal=dict(type='InfoNCELoss', loss_weight=0.1)))