Spaces:
Sleeping
Sleeping
init
Browse files- app.py +76 -0
- requirements.txt +6 -0
app.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torchvision.transforms as transforms
|
3 |
+
import gradio as gr
|
4 |
+
from PIL import Image
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
|
8 |
+
def get_model_name(name, batch_size, learning_rate, epoch):
|
9 |
+
""" Generate a name for the model consisting of all the hyperparameter values
|
10 |
+
|
11 |
+
Args:
|
12 |
+
config: Configuration object containing the hyperparameters
|
13 |
+
Returns:
|
14 |
+
path: A string with the hyperparameter name and value concatenated
|
15 |
+
"""
|
16 |
+
path = "model_{0}_bs{1}_lr{2}_epoch{3}".format(name,
|
17 |
+
batch_size,
|
18 |
+
learning_rate,
|
19 |
+
epoch)
|
20 |
+
return path
|
21 |
+
|
22 |
+
class LargeNet(nn.Module):
|
23 |
+
def __init__(self):
|
24 |
+
super(LargeNet, self).__init__()
|
25 |
+
self.name = "large"
|
26 |
+
self.conv1 = nn.Conv2d(3, 5, 5)
|
27 |
+
self.pool = nn.MaxPool2d(2, 2)
|
28 |
+
self.conv2 = nn.Conv2d(5, 10, 5)
|
29 |
+
self.fc1 = nn.Linear(10 * 29 * 29, 32)
|
30 |
+
self.fc2 = nn.Linear(32, 8)
|
31 |
+
|
32 |
+
def forward(self, x):
|
33 |
+
x = self.pool(F.relu(self.conv1(x)))
|
34 |
+
x = self.pool(F.relu(self.conv2(x)))
|
35 |
+
x = x.view(-1, 10 * 29 * 29)
|
36 |
+
x = F.relu(self.fc1(x))
|
37 |
+
x = self.fc2(x)
|
38 |
+
x = x.squeeze(1) # Flatten to [batch_size]
|
39 |
+
return x
|
40 |
+
|
41 |
+
transform = transforms.Compose([
|
42 |
+
transforms.Resize((128, 128)), # Resize to 128x128
|
43 |
+
transforms.ToTensor(), # Convert to Tensor
|
44 |
+
transforms.Normalize((0.5,), (0.5,)) # Normalize to [-1, 1]
|
45 |
+
])
|
46 |
+
|
47 |
+
def load_model():
|
48 |
+
net = LargeNet() #small or large network
|
49 |
+
model_path = get_model_name(net.name, batch_size=128, learning_rate=0.001, epoch=29)
|
50 |
+
state = torch.load(model_path)
|
51 |
+
net.load_state_dict(state)
|
52 |
+
|
53 |
+
net.eval()
|
54 |
+
return net
|
55 |
+
|
56 |
+
class_names = ["Gasoline_Can", "Pebbels", "pliers", "Screw_Driver", "Toolbox", "Wrench", "other"]
|
57 |
+
|
58 |
+
|
59 |
+
def predict(image):
|
60 |
+
model = load_model()
|
61 |
+
image = transform(image).unsqueeze(0)
|
62 |
+
with torch.no_grad():
|
63 |
+
output = model(image)
|
64 |
+
_, pred = torch.max(output, 1)
|
65 |
+
return class_names[pred.item()]
|
66 |
+
|
67 |
+
interface = gr.Interface(
|
68 |
+
fn=predict,
|
69 |
+
inputs=gr.Image(type="pil"),
|
70 |
+
outputs="label",
|
71 |
+
title="Mechanical Tools Classifier",
|
72 |
+
description="Upload an image to classify it as one of the mechanical tools."
|
73 |
+
)
|
74 |
+
|
75 |
+
if __name__ == "__main__":
|
76 |
+
interface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
torchvision
|
3 |
+
gradio
|
4 |
+
Pillow
|
5 |
+
numpy
|
6 |
+
pandas
|