File size: 5,746 Bytes
0ad74ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
# Using Gradio in Other Programming Languages

The core `gradio` library is a Python library. But you can also use `gradio` to create UIs around programs written in other languages, thanks to Python's ability to interface with external processes. Using Python's `subprocess` module, you can call programs written in C++, Rust, or virtually any other language, allowing `gradio` to become a flexible UI layer for non-Python applications.

In this post, we'll walk through how to integrate `gradio` with C++ and Rust, using Python's `subprocess` module to invoke code written in these languages. We'll also discuss how to use Gradio with R, which is even easier, thanks to the [reticulate](https://rstudio.github.io/reticulate/) R package, which makes it possible to install and import Python modules in R.

## Using Gradio with C++

Let’s start with a simple example of integrating a C++ program into a Gradio app. Suppose we have the following C++ program that adds two numbers:

```cpp
// add.cpp
#include <iostream>

int main() {
    double a, b;
    std::cin >> a >> b;
    std::cout << a + b << std::endl;
    return 0;
}
```

This program reads two numbers from standard input, adds them, and outputs the result.

We can build a Gradio interface around this C++ program using Python's `subprocess` module. Here’s the corresponding Python code:

```python
import gradio as gr
import subprocess

def add_numbers(a, b):
    process = subprocess.Popen(
        ['./add'], 
        stdin=subprocess.PIPE, 
        stdout=subprocess.PIPE, 
        stderr=subprocess.PIPE
    )
    output, error = process.communicate(input=f"{a} {b}\n".encode())
    
    if error:
        return f"Error: {error.decode()}"
    return float(output.decode().strip())

demo = gr.Interface(
    fn=add_numbers, 
    inputs=[gr.Number(label="Number 1"), gr.Number(label="Number 2")], 
    outputs=gr.Textbox(label="Result")
)

demo.launch()
```

Here, `subprocess.Popen` is used to execute the compiled C++ program (`add`), pass the input values, and capture the output. You can compile the C++ program by running:

```bash
g++ -o add add.cpp
```

This example shows how easy it is to call C++ from Python using `subprocess` and build a Gradio interface around it.

## Using Gradio with Rust

Now, let’s move to another example: calling a Rust program to apply a sepia filter to an image. The Rust code could look something like this:

```rust
// sepia.rs
extern crate image;

use image::{GenericImageView, ImageBuffer, Rgba};

fn sepia_filter(input: &str, output: &str) {
    let img = image::open(input).unwrap();
    let (width, height) = img.dimensions();
    let mut img_buf = ImageBuffer::new(width, height);

    for (x, y, pixel) in img.pixels() {
        let (r, g, b, a) = (pixel[0] as f32, pixel[1] as f32, pixel[2] as f32, pixel[3]);
        let tr = (0.393 * r + 0.769 * g + 0.189 * b).min(255.0);
        let tg = (0.349 * r + 0.686 * g + 0.168 * b).min(255.0);
        let tb = (0.272 * r + 0.534 * g + 0.131 * b).min(255.0);
        img_buf.put_pixel(x, y, Rgba([tr as u8, tg as u8, tb as u8, a]));
    }

    img_buf.save(output).unwrap();
}

fn main() {
    let args: Vec<String> = std::env::args().collect();
    if args.len() != 3 {
        eprintln!("Usage: sepia <input_file> <output_file>");
        return;
    }
    sepia_filter(&args[1], &args[2]);
}
```

This Rust program applies a sepia filter to an image. It takes two command-line arguments: the input image path and the output image path. You can compile this program using:

```bash
cargo build --release
```

Now, we can call this Rust program from Python and use Gradio to build the interface:

```python
import gradio as gr
import subprocess

def apply_sepia(input_path):
    output_path = "output.png"
    
    process = subprocess.Popen(
        ['./target/release/sepia', input_path, output_path], 
        stdout=subprocess.PIPE, 
        stderr=subprocess.PIPE
    )
    process.wait()
    
    return output_path

demo = gr.Interface(
    fn=apply_sepia, 
    inputs=gr.Image(type="filepath", label="Input Image"), 
    outputs=gr.Image(label="Sepia Image")
)

demo.launch()
```

Here, when a user uploads an image and clicks submit, Gradio calls the Rust binary (`sepia`) to process the image, and returns the sepia-filtered output to Gradio.

This setup showcases how you can integrate performance-critical or specialized code written in Rust into a Gradio interface.

## Using Gradio with R (via `reticulate`)

Integrating Gradio with R is particularly straightforward thanks to the `reticulate` package, which allows you to run Python code directly in R. Let’s walk through an example of using Gradio in R. 

**Installation**

First, you need to install the `reticulate` package in R:

```r
install.packages("reticulate")
```


Once installed, you can use the package to run Gradio directly from within an R script.


```r
library(reticulate)

py_install("gradio", pip = TRUE)

gr <- import("gradio") # import gradio as gr
```

**Building a Gradio Application**

With gradio installed and imported, we now have access to gradio's app building methods. Let's build a simple app for an R function that returns a greeting

```r
greeting <- \(name) paste("Hello", name)

app <- gr$Interface(
  fn = greeting,
  inputs = gr$Text(label = "Name"),
  outputs = gr$Text(label = "Greeting"),
  title = "Hello! &#128515 &#128075"
)

app$launch(server_name = "localhost", 
           server_port = as.integer(3000))
```

Credit to [@IfeanyiIdiaye](https://github.com/Ifeanyi55) for contributing this section. You can see more examples [here](https://github.com/Ifeanyi55/Gradio-in-R/tree/main/Code), including using Gradio Blocks to build a machine learning application in R.