|
import gradio as gr |
|
import spaces |
|
import numpy as np |
|
import random |
|
import spaces |
|
import torch |
|
from diffusers import SanaSprintPipeline |
|
|
|
dtype = torch.bfloat16 |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
pipe = SanaSprintPipeline.from_pretrained( |
|
"Efficient-Large-Model/Sana_Sprint_0.6B_1024px_diffusers", |
|
torch_dtype=torch.bfloat16 |
|
) |
|
pipe2 = SanaSprintPipeline.from_pretrained( |
|
"Efficient-Large-Model/Sana_Sprint_1.6B_1024px_diffusers", |
|
torch_dtype=torch.bfloat16 |
|
) |
|
pipe.to(device) |
|
pipe2.to(device) |
|
MAX_SEED = np.iinfo(np.int32).max |
|
MAX_IMAGE_SIZE = 1024 |
|
|
|
@spaces.GPU(duration=5) |
|
def infer(prompt, model_size, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=4.5, num_inference_steps=2, progress=gr.Progress(track_tqdm=True)): |
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
generator = torch.Generator().manual_seed(seed) |
|
|
|
|
|
selected_pipe = pipe if model_size == "0.6B" else pipe2 |
|
|
|
img = selected_pipe( |
|
prompt=prompt, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=num_inference_steps, |
|
width=width, |
|
height=height, |
|
generator=generator, |
|
output_type="pil" |
|
) |
|
print(img) |
|
return img.images[0], seed |
|
|
|
examples = [ |
|
["a tiny astronaut hatching from an egg on the moon", "1.6B"], |
|
["πΆ Wearing πΆ flying on the π", "1.6B"], |
|
["an anime illustration of a wiener schnitzel", "0.6B"], |
|
["a photorealistic landscape of mountains at sunset", "0.6B"], |
|
] |
|
|
|
css=""" |
|
#col-container { |
|
margin: 0 auto; |
|
max-width: 520px; |
|
} |
|
""" |
|
|
|
with gr.Blocks(css=css) as demo: |
|
|
|
with gr.Column(elem_id="col-container"): |
|
gr.Markdown(f"""# Sana Sprint""") |
|
gr.Markdown("Demo for the real-time [Sana Sprint](https://huggingface.co./collections/Efficient-Large-Model/sana-sprint-67d6810d65235085b3b17c76) model") |
|
with gr.Row(): |
|
|
|
prompt = gr.Text( |
|
label="Prompt", |
|
show_label=False, |
|
max_lines=1, |
|
placeholder="Enter your prompt", |
|
container=False, |
|
) |
|
|
|
run_button = gr.Button("Run", scale=0) |
|
|
|
result = gr.Image(label="Result", show_label=False) |
|
|
|
model_size = gr.Radio( |
|
label="Model Size", |
|
choices=["0.6B", "1.6B"], |
|
value="1.6B", |
|
interactive=True |
|
) |
|
|
|
with gr.Accordion("Advanced Settings", open=False): |
|
|
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=0, |
|
) |
|
|
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
|
|
with gr.Row(): |
|
|
|
width = gr.Slider( |
|
label="Width", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=1024, |
|
) |
|
|
|
height = gr.Slider( |
|
label="Height", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=1024, |
|
) |
|
|
|
with gr.Row(): |
|
|
|
guidance_scale = gr.Slider( |
|
label="Guidance Scale", |
|
minimum=1, |
|
maximum=15, |
|
step=0.1, |
|
value=4.5, |
|
) |
|
|
|
num_inference_steps = gr.Slider( |
|
label="Number of inference steps", |
|
minimum=1, |
|
maximum=50, |
|
step=1, |
|
value=2, |
|
) |
|
|
|
gr.Examples( |
|
examples = examples, |
|
fn = infer, |
|
inputs = [prompt, model_size], |
|
outputs = [result, seed], |
|
cache_examples="lazy" |
|
) |
|
|
|
gr.on( |
|
triggers=[run_button.click, prompt.submit], |
|
fn = infer, |
|
inputs = [prompt, model_size, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], |
|
outputs = [result, seed] |
|
) |
|
|
|
demo.launch() |