Spaces:
Sleeping
Sleeping
File size: 3,235 Bytes
afe1590 e4cc30b afe1590 e4cc30b afe1590 e4cc30b afe1590 e4cc30b afe1590 e4cc30b afe1590 e4cc30b afe1590 e4cc30b afe1590 e4cc30b afe1590 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from modules.llm_in_use import get_llm\n",
"from langchain_ollama import ChatOllama\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"llm = get_llm()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.messages import AIMessage\n",
"\n",
"messages = [\n",
" (\n",
" \"system\",\n",
" \"You are a helpful assistant that translates English to French. Translate the user sentence.\",\n",
" ),\n",
" (\"human\", \"I love programming.\"),\n",
"]\n",
"ai_msg = llm.invoke(messages)\n",
"ai_msg"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain_core.prompts import ChatPromptTemplate\n",
"\n",
"prompt = ChatPromptTemplate.from_messages(\n",
" [\n",
" (\n",
" \"system\",\n",
" \"You are a helpful assistant that translates {input_language} to {output_language}.\",\n",
" ),\n",
" (\"human\", \"{input}\"),\n",
" ]\n",
")\n",
"\n",
"chain = prompt | llm\n",
"chain.invoke(\n",
" {\n",
" \"input_language\": \"English\",\n",
" \"output_language\": \"German\",\n",
" \"input\": \"I love programming.\",\n",
" }\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from typing import List\n",
"\n",
"from langchain_core.tools import tool\n",
"from langchain_ollama import ChatOllama\n",
"\n",
"\n",
"@tool\n",
"def validate_user(user_id: int, addresses: List[str]) -> bool:\n",
" \"\"\"Validate user using historical addresses.\n",
"\n",
" Args:\n",
" user_id (int): the user ID.\n",
" addresses (List[str]): Previous addresses as a list of strings.\n",
" \"\"\"\n",
" return True\n",
"\n",
"\n",
"llm = ChatOllama(\n",
" model=\"llama3.2\",\n",
" temperature=0,\n",
" base_url=\"http://141.211.127.171\"\n",
").bind_tools([validate_user])\n",
"\n",
"result = llm.invoke(\n",
" \"Could you validate user 123? They previously lived at \"\n",
" \"123 Fake St in Boston MA and 234 Pretend Boulevard in \"\n",
" \"Houston TX.\"\n",
")\n",
"result.tool_calls"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "paintrek",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.14"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|